Introduction

Last lecture, we:
• showed how to perform the Quantum Fourier Transform
In this lecture we will:
• introduce Grover’s search algorithm
• discuss how Grover’s algorithm performs in comparison with classical algorithms

The Search Problem

• Searching is an important task that modern computers can help us with
• Unfortunately, they’re not very good at it!
• Classically, the only way to do a search is to systematically examine all the possibilities until you find the solution
• Clearly if the search space has \(N \) entries, then the time taken to complete a search is \(O(N) \) (on average, \(N/2 \))
• No classical algorithm can do better than this
• Quantum search algorithms can do better than \(O(N) \)
• Grover’s algorithm works in time \(O(\sqrt{N}) \)
• This is the best that a quantum computer can do
• For large \(N \), this could yield very large performance increases
• The key idea is that although finding a solution to the search problem is hard, recognising a solution is easy

Setting up the problem

• We wish to search through a list of \(N \) elements, \(y_x \)
• Each element has an index \(x \) in the range \(0 \rightarrow N - 1 \)
• Assume \(N = 2^n \), so we can store \(x \) in \(n \) qubits
• The search problem has \(M \) solutions, where \(1 \leq M \leq N \)
• Rather than dealing with the list itself, we focus on the index of the list, \(x \)
• The key idea is that given some value of \(x \), we can tell whether \(y_x \) solves the search problem
• We assume that we can construct some device to tell us if \(y_x \) solves the search problem
• This device is called an Oracle
The Oracle

- The Oracle is simply a device with the ability to recognise solutions to the search problem.
- When given an index x, the Oracle raises a flag if y_x solves the search problem.
- For a given search problem, we can define some function $f(x)$ such that $f(x) = 1$ if y_x solves the search problem, and $f(x) = 0$ if it doesn’t.
- The Oracle takes as input an index value in a qubit register $|x\rangle$.
- It also takes a single “Oracle qubit”, $|q\rangle$.
- The state given to the Oracle is thus $|\psi\rangle = |x\rangle |q\rangle$.
- The Oracle is represented by a unitary operator, O.
- If x indexes a solution to the search problem, O sets $f(x) = 1$, and $f(x) = 0$ if it doesn’t index a solution.
- If $f(x) = 1$, the Oracle flips the state of $|q\rangle$.

An Example of the Oracle

- We prepare a 2-qubit system in state $|\psi\rangle = \frac{1}{2} (|0\rangle + |1\rangle + |2\rangle + |3\rangle)$.
- The solution to the search problem is given by $x = 2$.
- So $O |\psi\rangle = \frac{1}{2} (|0\rangle + |1\rangle - |2\rangle + |3\rangle)$.
- The Oracle does not find the solution to the problem.
- It simply recognises the answer when it is presented to it.
- So different search problems need different Oracles.
- The key to quantum search is that we can look at all solutions simultaneously: the Oracle just manipulates the state coefficients using a unitary operator!
- But the Oracle by itself is not sufficient.
- We can’t find out what the answer is!

The Grover Iteration

- When we measure $|x\rangle$ after the Oracle has been applied, we won’t be able to see the sign change.
- What we want is to be able to measure $|x\rangle$ and get the index to the solution of the search problem ($x = 2$ in our example) with high probability.
- The Grover iteration is a technique for achieving this result.
- The essence of Grover is to ensure that when we measure the state of $|x\rangle$, the probability of getting the right answer is maximised.
- Grover realised that this could be done by doing some rather simple manipulations on $|\psi\rangle$, and applying the QFT multiple times.
- Here’s how it works:

- We write this as $O |x\rangle |q\rangle = |x\rangle X f(x) |q\rangle$.
- X is just our quantum NOT operator.
- So if $f(x) = 1$, $|q\rangle \rightarrow X |q\rangle$, else $|q\rangle \rightarrow |q\rangle$.
- We will choose to initially program $|q\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$.
- Then $X |q\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$.
- And $O |x\rangle |q\rangle = (-1)^f(x) |x\rangle |q\rangle$.
- The Oracle therefore takes $|x\rangle \rightarrow (-1)^f(x) |x\rangle$.
- So the term indexing the solution is marked with a -1 sign.
Grover’s Algorithm

1. Begin with $|x\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} |j\rangle$
2. Apply the Oracle to $|x\rangle$:

 $|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} (-1)^{f(x)} |j\rangle$

3. Apply the QFT to $|x\rangle$
4. Reverse the sign of all terms in $|x\rangle$ except for the term $|0\rangle$
5. Apply the Inverse QFT
6. Return to step 2 and repeat

A Very Simple Example

Apply Grover’s algorithm to $N = 4$ with solution $x = 2$

- We start with $|x\rangle = \frac{1}{2} (|0\rangle + |1\rangle + |2\rangle + |3\rangle)$
- Apply the Oracle: $|x\rangle \rightarrow \frac{1}{2} (|0\rangle + |1\rangle - |2\rangle + |3\rangle)$
- Apply the QFT: $F|x\rangle = \frac{1}{2} (|0\rangle + |1\rangle - |2\rangle + |3\rangle)$
- Flips signs of all terms except $|0\rangle$: $F|x\rangle \rightarrow \frac{1}{2} (|0\rangle - |1\rangle + |2\rangle - |3\rangle)$
- Inverse QFT: $|x\rangle = |2\rangle$
- So when we measure $|x\rangle$ we are guaranteed the right answer!
- This is a slightly artificial example
- Try a more complex example: search a list of $N = 8192$ items where the solution is indexed by $x = 367$
- Write a program to do this!

More Grover

- We construct the state $|x\rangle = \frac{1}{\sqrt{8192}} \sum_{j=0}^{8191} |j\rangle$
- Then run the Grover iteration and keep track of $p(367)$
- Running for 71 iterations, we get:

Some Problems

- So if we measure $|x\rangle$ after ≈ 71 iterations, we get the right answer
- But if we let it run for too long (say, 500 iterations)...
Performance of Grover’s Algorithm

- The point at which we terminate Grover’s algorithm and measure the result is critical.
- It has been shown that the optimum number of iterations is $\approx \frac{\pi}{4} \sqrt{\frac{N}{M}}$, where M is the number of solutions.
- It has also been shown that this is the best that any quantum search algorithm can do.
- It’s much better than classical search algorithms which take $O(N)$ steps.
- So there are huge potential benefits when searching very large data sets.
- Note that we could solve any problem where finding answers is hard, but recognising them is easy.
- As long as we can construct an Oracle, we can use Grover’s algorithm.

Conclusions

In this lecture we have:

- Defined the concept of an Oracle as something which can recognise the solution to a problem.
- Shown how Grover’s algorithm uses the Oracle to search a list in $O(\sqrt{N})$ operations.
- Pointed out some problems with Grover’s algorithm: taking the result at the right time.

Next lecture we will:

- Introduce some key ideas in Quantum Communication.