Introduction to Natural Computation

Lecture 17

Propagation Time in Networks

Alberto Moraglio
This Lecture

- Network problems
- Processes from nature
- Fun with probabilities
- Understanding randomness
- Beautiful theory
Use propagation to identify the youngest person in class.
Assume a graph with n nodes.

Initially one node is informed.

In each round each informed node informs a neighbor with probability p.

The decisions for all neighbors are independent.
A Model of Propagation

Assume a graph with n nodes.

Initially one node is informed.

In each round each informed node informs a neighbor with probability p.

The decisions for all neighbors are independent.

Question

How long does it take in expectation until all nodes are informed?
Assume a graph with n nodes.

Initially one node is informed.

In each round each informed node informs a neighbor with probability p.

The decisions for all neighbors are independent.

Question

How long does it take in expectation until all nodes are informed?

Applications

- very simple model of disease spreading
- communication in wireless ad-hoc networks
- analysis of natural computation algorithms
Let us look at a chain of $n + 1$ nodes.
Expected Times

How long does it take on average until a neighbor on the chain gets informed?

A random variable is a variable whose value results from the measurement of some type of random process.

Expectation

Let X be a random variable. Then

$$\sum_{x} x \cdot \text{Prob}(X = x)$$

is called expectation of X, written $E(X)$.
Expected Times

How long does it take on average until a neighbor on the chain gets informed?

A random variable is a variable whose value results from the measurement of some type of random process.

Expectation

Let X be a random variable. Then

$$
\sum_{x} x \cdot \text{Prob}(X = x)
$$

is called expectation of X, written $E(X)$.

Example: what is the expectation of a fair 6-sided die?
What is the expected time until you roll a 6?
What is the expected time until you roll a 6?

Assume I have rolled a fair die four times without getting a 6. How many more times do I need to roll in expectation until I get a 6?
Example: Dice

What is the expected time until you roll a 6?

Assume I have rolled a fair die four times without getting a 6. How many more times do I need to roll in expectation until I get a 6?

What is the expected number of sixes if I roll 6 times?
Example: Dice

What is the expected time until you roll a 6?

Assume I have rolled a fair die four times without getting a 6. How many more times do I need to roll in expectation until I get a 6?

What is the expected number of sixes if I roll 6 times?

What is the probability that I will get at least one 6 if I roll 6 times?
Probability $1/6$, expected waiting time 6. Coincidence?
More Generally . . .

Probability $1/6$, expected waiting time 6. Coincidence?

Lemma

Assume we repeat a random experiment that is successful in each time step with probability p, independent from other time steps. Then the expected time until the first success happens is $1/p$.
Probability $1/6$, expected waiting time 6. Coincidence?

Lemma

Assume we repeat a random experiment that is successful in each time step with probability p, independent from other time steps. Then the expected time until the first success happens is $1/p$.

Math-speak: *geometric distribution* with parameter p.
Chain
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.

Can we simply add all $E(T_i)$’s to compute $E(T)$?
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.

Can we simply add all $E(T_i)$'s to compute $E(T)$?

Yes, we can.

For any two (independent or not independent) random variables X, Y

$$E(X + Y) = E(X) + E(Y).$$
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.

Can we simply add all $E(T_i)$'s to compute $E(T)$?

Yes, we can.

For any two (independent or not independent) random variables X, Y

$$E(X + Y) = E(X) + E(Y).$$

So $E(T) = E(T_1 + T_2 + \cdots + T_n) = E(T_1) + E(T_2) + \cdots + E(T_n) = n/p$.

Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.

Can we simply add all $E(T_i)$’s to compute $E(T)$?

Yes, we can.

For any two (independent or not independent) random variables X, Y

$$E(X + Y) = E(X) + E(Y).$$

So $E(T) = E(T_1 + T_2 \cdots + T_n) = E(T_1) + E(T_2) + \cdots + E(T_n) = n/p$. Voilà!
Let T_i be the random time until v_i gets informed, assuming v_{i-1} is. We already know $E(T_i) = 1/p$.

Let T be the random time until all vertices are informed: $T = T_1 + T_2 + \cdots + T_n$.

Can we simply add all $E(T_i)$'s to compute $E(T)$?

Yes, we can.

For any two (independent or not independent) random variables X, Y

$$E(X + Y) = E(X) + E(Y).$$

So $E(T) = E(T_1 + T_2 + \cdots + T_n) = E(T_1) + E(T_2) + \cdots + E(T_n) = n/p$. Voilà!

Theorem

*The expected propagation time on a chain with $n + 1$ nodes is n/p.***
Consider situation after an \textit{epoch} of \(t := \ln(2n)/p \) time steps.
Consider situation after an epoch of $t := \ln(2n)/p$ time steps.

What's the probability that we have not informed all nodes after one epoch?
Consider situation after an epoch of \(t := \ln(2n)/p \) time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

\[
(1 - p)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}
\]
Consider situation after an epoch of $t := \ln(2n)/p$ time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

$$(1 - p)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}$$

Probability that at least one of n outer nodes not informed:

$$\leq \frac{1}{2n} + \frac{1}{2n} + \cdots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$$
Analysing the Hub

Consider situation after an epoch of \(t := \ln(2n)/p \) time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

\[
(1 - p)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}
\]

Probability that at least one of \(n \) outer nodes not informed:

\[
\leq \frac{1}{2n} + \frac{1}{2n} + \cdots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}
\]

So, probability that epoch ends with all nodes informed \(\geq 1 - \frac{1}{2} = \frac{1}{2} \).
Consider situation after an epoch of $t := \ln(2n)/p$ time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

$$(1 - p)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}$$

Probability that at least one of n outer nodes not informed:

$$\leq \frac{1}{2n} + \frac{1}{2n} + \cdots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$$

So, probability that epoch ends with all nodes informed $\geq 1 - \frac{1}{2} = \frac{1}{2}$.

New random experiment: wait for successful epoch.
Consider situation after an epoch of \(t := \ln(2n)/p \) time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

\[
(1 - p)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}
\]

Probability that at least one of \(n \) outer nodes not informed:

\[
\leq \frac{1}{2n} + \frac{1}{2n} + \cdots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}
\]

So, probability that epoch ends with all nodes informed \(\geq 1 - \frac{1}{2} = \frac{1}{2} \).

New random experiment: wait for successful epoch.
Expected number of epochs is at most \(1/\frac{1}{2} = 2 \).
Analysing the Hub

Consider situation after an epoch of $t := \ln(2n)/p$ time steps.

What's the probability that we have not informed all nodes after one epoch?

Probability that one specific outer node not informed:

$$\left(1 - p\right)^t \leq \exp(-pt) = \exp(-\ln(2n)) = \frac{1}{2n}$$

Probability that at least one of n outer nodes not informed:

$$\leq \frac{1}{2n} + \frac{1}{2n} + \cdots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$$

So, probability that epoch ends with all nodes informed $\geq 1 - \frac{1}{2} = \frac{1}{2}$.

New random experiment: wait for successful epoch. Expected number of epochs is at most $= 1/\frac{1}{2} = 2$.

Theorem

*The expected propagation time on a hub with n nodes is at most $2 \cdot \ln(2n)/p$.**
Theorem

For a star graph with b branches of length d each, the expected propagation time is at most

$$\frac{13(d + \log b)}{p}.$$
What About Other Graphs?
What About Other Graphs?

The diameter is the maximum length of a shortest path between two nodes u and v, where the maximum is taken over all pairs u, v. The length of a path is given by the number of edges.

![Graph Diagram]

The diameter is the maximum length of a shortest path between two nodes u and v, where the maximum is taken over all pairs u, v. The length of a path is given by the number of edges.
What About Other Graphs?

The diameter is the maximum length of a shortest path between two nodes u and v, where the maximum is taken over all pairs u, v. The length of a path is given by the number of edges.

Theorem

For every graph with n nodes and diameter D, the expected propagation time is at most

$$\frac{13(D + \log n)}{p}.$$
Further Reading
