Module 20122 (2013)
Module Description - Intelligent Data Analysis
The Module Description is a strict subset of the Syllabus Page, which gives more information
| Module Title | Intelligent Data Analysis | ||||||||||
| School | Computer Science | ||||||||||
| Module Code | 06-20122 | ||||||||||
| Descriptor | COMP/06-20122/LH | ||||||||||
| Member of Staff | Peter Tino | ||||||||||
| Level | H | ||||||||||
| Credits | 10 | ||||||||||
| Semester | 2 | ||||||||||
| Pre-requisites | None | ||||||||||
| Co-requisites | None | ||||||||||
| Restrictions | May not be taken with 06-20233 (Intelligent Data Analysis (Extended)). | ||||||||||
| Contact hours | |||||||||||
| Delivery | 2 hrs of lectures per week | ||||||||||
| Description | The module introduces a range of state-of-the-art techniques in the fields of statistical pattern analysis and data mining. The 'information revolution' has generated large amounts of data, but valuable information is often hidden and hence unusable. Pattern analysis and data mining techniques seek to unveil hidden patterns in the data that can help us to refine web search, construct more robust spam filters, or uncover principal trends in the evolution of a variety of stock indexes. | ||||||||||
| Outcomes |
| ||||||||||
| Assessment | Sessional: 1.5 hr examination (100%). Supplementary (where allowed): As the sessional assessment | ||||||||||
| Texts | Trevor Hastie, Robert Tibshirani, & Jerome Friedman , The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001 David J. Hand, Heikki Mannila & Padhraic Smyth , Principles of Data Mining, 2003 Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, 2003 Paolo Giudici, Applied Data Mining: Statistical Methods for Business and Industry, 2003 |