A Mini-workshop On Causation
Tuesday 8th July, 2pm
University of Birmingham

The room is booked from 2pm for three hours,
to allow extended discussion if people are interested.

Installed: 4 Jul 2014
Last updated: 4 Jul 2014; 5 Jul 2014

This document is


Mini-Workshop On Causation 8th July

The concept of "cause" has been of interest to philosophers for centuries, but
clarifying what that concept is remains problematic. Several web sites
introducing philosophical theories and debates about causation are listed in

Scientists aim to discover causes either for the advance of knowledge or for the
sake of improved prevention and control, e.g. of diseases, crop failures,
climate change, and other processes, or production of new phenomena, e.g. safe
nuclear power sources.

Engineers, including civil, mechanical, electrical and computer engineers, make
use of their understanding of causal mechanisms when designing new materials,
machines or structures, extending old designs, or identifying and eliminating
design flaws when things don't work as expected.

Psychologists and biologists investigate the understanding of causation and uses
of causal reasoning in humans, including young children, also in other animals,
while neuroscientists attempt to understand the causal powers of brain mechanisms
that support those and other forms of reasoning and learning.

Roboticists concerned with producing intelligent machines need to understand how
to give their robots the ability to discover and use causal relationships.

Computer scientists attempt to design new forms of computation and new
formalisms making it possible for programmers and computer systems designers
to produce machines with new sorts of causal powers, e.g. resistance to failures
caused by hardware faults, and other forms of robustness.

Can all these and researchers in other disciplines share their knowledge, and
their puzzles, about causation, for mutual benefit?

Many non-philosophers have wondered about, or worried about, whether they can
ever make decisions freely if everything that happens is caused, and, if not everything
is caused, whether uncaused processes must be random and therefore not exercises
of freedom.

David Hume (among others) challenged the claim that we have any clear notion of
causation other than the notion of a learnt regularity that we use to predict
what will come after some observed event or state of affairs. He suggested that
the notion that there is something more than observed correlation, e.g. some
necessary connection, is pure myth, and many contemporary philosophers think that
the notion of an instance of a reliable correlation is the only concept of
causation that we have.

Immanuel Kant, disagreeing with Hume, argued that the requirement that all
concepts must ultimately be based on experience of instances would not allow any
learning to get off the ground, since experience requires use of concepts. (He
therefore disposed of what is now called "symbol grounding theory" in 1781.) He
also claimed that in order to think about a kind of reality that exists
independently of our perceiving it, we need to assume a kind of causal necessity
that is stronger than mere experienced regularity, as a feature of that reality.
Kant's claim can be illustrated using examples of events that have mathematical
consequences. These are situations in which a change in certain properties or
relationships necessitates changes in other properties and relationships.

                              The Konigsberg Bridge Problem
The configuration of seven bridges linking two islands in the river and the
surrounding town causes the impossibility of traversing all the bridges in a
single tour, without crossing any bridge twice. Convince yourself that it is
impossible, and that either adding or removing a bridge will cause a tour
traversing every bridge to become possible. Does it matter what material
the bridges are made of? See the Wikipedia entry.


     Can a baby learn to reason mathematically about the effects of rotating
     one rigid impenetrable gear wheel meshed with another?

That Kantian "necessary connection" view contrasts with a modern variant of the
Humean "mere observed regularity" view. This modern variant uses a notion of
"possible world", and relationships between possible worlds. So our complete
universe as it is, past present and future, is one possible world, but there are
other possible worlds in which different things happen or exist. In this framework
(Possible worlds semantics) talk of causal connections is interpreted as
referring not only to observed regularities but to regularities that would have
been preserved even if different initial states or surrounding circumstances had
existed. So on this neo-Humean analysis the truth of A caused B depends on
whether B would or would not have occurred in other possible worlds in which A
does occur and other possible worlds in which A does not occur.

In contrast, a "power" theory of causation claims that the possible worlds story
(which may or may not be coherent, depending on what sort of things possible
worlds are supposed to be) does not explain what causation is. It merely
summarises some of the consequences of causal relationships. These
debates have implications both for theories about how causal understanding works
in humans, and other animals and how it will need to work in future intelligent
machines. But also implications for what the universe needs to be like for
causal connections to be able to exist. There are different variants of the
"power" theory.

One of the reasons for inviting computer scientists and roboticists to this
meeting is that there are interesting problems about causation in virtual
machines, and problems about how intelligent machines need to understand
causation, both in themselves, and in their environments.

For more on theories about causation see this background document:

This Mini-Workshop

This is a modest attempt to explore some ideas about the nature of causation
triggered by the fact that Andrea Raimondi a philosophy student with a software
engineering background, who studies causation at Nottingham University, will be
visiting the School of Computer Science on Tuesday 8th July. He has agreed to
present some of his ideas about what causation is. An outline of those ideas
about causal powers is available here.

To kick off the workshop, Aaron Sloman, a philosopher in the Birmingham School
of Computer Science will give an introductory talk providing some of the
philosophical background for members of the audience who are not philosophers.
Some of the background is expanded here (work in progress) and includes some
challenges to over simple theories of causation, from computer science and from

After the introduction Andrea Raimondi, Philosophy Dept, University of Nottingham
will give a talk on causation and powers. For more information on his talk see
this overview.

Alastair Wilson, a philosopher of science in the Birmingham University department
of philosophy has agreed to introduce the discussion following Andrea's.
presentation (after a break). Information about him is here:

Alex Silk, also in the department of philosophy hopes to attend, and will also
be given an opportunity to comment from the point of view of a philosopher
interested in semantics and modality. Information about him is here:

Approximate Schedule:
(All times are approximate.)

A: 2pm
Aaron Sloman
Computer Science, University of Birmingham
Welcome, introduce participants,
Introduce workshop:
Present some of the "standard" Philosophical background, extended with examples
of "computational causation" (e.g. causation in virtual machines composed of
multiple asynchronously interacting virtual machines) and "mathematical
causation" (e.g. moving a vertex of a planar triangle further from the opposite
side causes the area to be increased, adding three marbles to a box containing
five marbles causes the number of marbles to go up to eight, changing the
curvature of a line causes infinitely many distances between parts
of the line to change.

B: 2:25-2:35
Questions discussion and clarification, mainly for the benefit of
non-philosophers present.
Objections/counter proposals postponed until after the following talks.

D: 2:35
Andrea Raimondi,
Philosophy Dept, University of Nottingham

What is Causation?

"Metaphysics of powers offer an alternative approach to the
problem of causation. It is argued that this approach, causal
dispositionalism, is explanatory of the behaviour of biological
systems and artefact in terms of their causal production. This
behaviour is a function of selection between natural
possibilities that powers support and constrain."
Extended summary

E: 3:30
    15 Minute Refreshment Break
    (Hot and cold drinks and snacks available in machines
    in basement.)

F: 3:45
    Comments from Alastair Wilson
    Philosophy Department, University of Birmingham

G: Discussion, possibly including comments by Alex Silk.

H: Close (When appropriate -- room booked till 5pm)

Maintained by Aaron Sloman
School of Computer Science
The University of Birmingham