Publications and references related to the Meta-Morphogenesis Project

(Still disorganised -- to be improved later).
(DRAFT: Liable to change)

Aaron Sloman
School of Computer Science, University of Birmingham.

Installed: 24 Aug 2014
Last updated: 24 Aug 2014; 17 Sep 2014; 19 Dec 2014 (Added related projects)

This document is
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/m-m-related.html
A PDF version may be added later.

A partial index of discussion notes is in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/AREADME.html

Publications and projects related to the Meta-Morphogenesis project
(Project overview)

CONTENTS

- CONTENTS
- Papers and presentations on the Birmingham M-M web site
- Video presentations related to the M-M project
- Related projects
- Publications and presentations by others
- Others -- to be added: request for suggestions
- Possibly related Penrose presentation

Papers and presentations on the Birmingham M-M web site
(List probably incomplete!)

Online papers and presentations

- The Meta-Morphogenesis (M-M) Project (or Meta-Project?)
 (Top level M-M web site.)
 How can a cloud of dust transform itself into a planet full of living
 things as diverse as life on Earth?
- http://www.cs.bham.ac.uk/research/projects/cogaff/11.html#1106
Four Papers for: **Alan Turing - His Work and Impact** (Elsevier, 2013) including the first paper introducing the Meta-Morphogenesis project.

The four papers are:

1. Virtual Machinery and Evolution of Mind (Part 1) (Pages 97-101)
2. Virtual Machinery and Evolution of Mind (Part 2) (574-579)
3. The Mythical Turing Test pages (606-610)

 A DRAFT, incomplete, list of types of transition in information processing produced by biological mechanisms.

- http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
 Meta-Morphogenesis and Toddler Theorems: Case Studies

 Mathematics is at root a biological, not an anthropological, phenomenon.

 A draft speculative paper on the nature of mathematics and evolution of mathematicians (Sept 2013):

- http://www.cs.bham.ac.uk/research/projects/cogaff/misc/mathsem.html
 Extended abstract for a seminar talk: "From Molecules to Mathematicians" on 1st Nov 2013:

 Why is it so hard to get machines to reason like our ancestors who produced Euclidean Geometry? (Seminar summary. June 2013))

 Hidden Depths of Triangle Qualia
 Theorems About Triangles, and Implications for
 Biological Evolution and AI
 The Median Stretch, Side Stretch, and Triangle Area Theorems: Old and new proofs.

- http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
 The Triangle Sum Theorem
 Old and new proofs concerning the sum of interior angles of a triangle.
 (More on the hidden depths of triangle qualia.)

- http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html
 Reasoning About Continuous Deformation of Curves on a torus and other things.

 An incomplete, and personal, review of some of Annette Karmiloff-Smith’s ideas about ‘Representational Redescription’, as presented in her (1992).

- Natural and artificial meta-configured altricial information-processing systems
 Jackie Chappell and Aaron Sloman
 http://www.cs.bham.ac.uk/research/projects/cogaff/07.html#717

Abstract:
The full variety of powerful information-processing mechanisms ’discovered’ by evolution has not yet been re-discovered by scientists and engineers. By attending closely to the diversity of biological phenomena, we may gain new insights into

(a) how evolution happens,

(b) what sorts of mechanisms, forms of representation, types of learning and development and types of architectures have evolved,

(c) how to explain ill-understood aspects of human and animal intelligence,
new useful mechanisms for artificial systems.
We analyse trade-offs common to both biological evolution and engineering design, and propose a kind of architecture that grows itself, using, among other things, genetically determined meta-competences that deploy powerful symbolic mechanisms to achieve various kinds of discontinuous learning, often through play and exploration, including development of an ‘exosomatic’ ontology, referring to things in the environment - in contrast with learning systems that discover only sensorimotor contingencies or adaptive mechanisms that make only minor modifications within a fixed architecture. See the diagram on the main M-M web page.

 Aaron Sloman,
 Autistic Information Processing
 Steps toward a generative theory of information-processing abnormalities.

- http://www.cs.bham.ac.uk/research/projects/cogaff/misc/vision
 A.Sloman
 How to study human vision. (How to look at what you see.)
 A presentation of some hard, apparently unsolved, problems about natural vision and how to replicate the functions and the designs in AI/Robotic vision systems.

- http://www.softbox.co.uk/cybertalk-issuethree
 An invited summary of the M-M project published Sept 2013 in Cybertalk Magazine
 http://www.cs.bham.ac.uk/research/projects/cogaff/13.html#1303 (HTML and PDF)
 More readable version on this web site.

- A. Sloman, R.L. Chrisley, (2003,) Virtual machines and consciousness, Journal of Consciousness Studies, 10, 4-5, pp. 113--172,
 http://www.cs.bham.ac.uk/research/projects/cogaff/03.html#200302

 Aaron Sloman,
 Requirements for a Fully Deliberative Architecture (Or component of an architecture), Research Note, COSY-DP-0604,
 School of Computer Science, University of Birmingham, UK, May, 2006,
 This presents a variety of intermediate cases between simple reactive information-processing architectures and "fully deliberative" architectures with several concurrently active layers of processing, that evolved at different times, and develop at different stages in individuals.

 A. Sloman
 Introduction to Virtual Machine Functionalism

- http://www.cs.bham.ac.uk/research/projects/cogaff/09.html#905
 Aaron Sloman, 2011,
 What’s information, for an organism or intelligent machine?
 How can a machine or organism mean?,
 In, Information and Computation, Eds. G. Dodig-Crnkovic and M. Burgin, World Scientific, New Jersey, pp.393--438,

 Jane Austen’s concept of information (As opposed to Claude Shannon’s)
Aaron Sloman,
Some Requirements for Human-like Robots:
Why the recent over-emphasis on embodiment has held up progress, in
Creating Brain-like Intelligence,

Further information about the Meta-Morphogenesis project:
Long PDF slide presentation introducing the Meta-Morphogenesis project
(Also flash version on slideshare.net.)

Abstract for Meta-Morphogenesis tutorial
At: AGI 2012 -- Dec 11th Oxford
St Anne’s College Oxford

Video presentations related to the M-M project

Adam Ford’s video recording of the tutorial at AGI 2012 (about 2 hrs 30 mins) available online: http://www.youtube.com/watch?v=BNul52kF174
Medium resolution version also available on the CogAff web site: http://www.cs.bham.ac.uk/research/projects/cogaff/movies#m-m-tut

Adam Ford also interviewed me the day before the Oxford tutorial and produced a video of the interview (about 57 minutes):
http://www.youtube.com/watch?v=iuH8dC7Snno
Also available on the CogAff web site:
http://www.cs.bham.ac.uk/research/projects/cogaff/movies#m-m-int
A draft transcript of the interview was very kindly provided by Dylan Holmes (at that time an MIT student), then revised and slightly extended by me here:
http://www.cs.bham.ac.uk/research/projects/cogaff/movies/transcript-interview.html
Also an expanded PDF version.
http://www.cs.bham.ac.uk/research/projects/cogaff/14.html#1401

Additional videos (including videos of children processing information adequately and inadequately):
http://www.cs.bham.ac.uk/research/projects/cogaff/movies

Related projects

http://www-thphys.physics.ox.ac.uk/people/ArdLouis/ Ard Louis research group
Interdisciplinary research, on the border between theoretical physics and chemistry, applied mathematics and biology, applying theoretical and computational tools from statistical mechanics to study how complex behaviour emerges from the interaction of many individual objects. Particularly interested in biological physics and the dynamics of soft-matter.

Thanks to Chris Scambler for drawing my attention to the work of Andreas Wagner whose book Wagner (2014) claims that the structure of the search space generated by the molecules making up the genome increases the chance of useful, approximate, solutions to important problems to be found with relatively little searching (compared with other search spaces), after which small
random changes allow improvements ot be found. (This search strategy works well only under certain conditions.) I have not yet read the book but it seems to illustrate the importance for evolution of the types of construction-kit available. This work seems to be an unwitting but important contribution to the Meta-Morphogenesis project.

His earlier book, which I have also not read yet, seems to be very relevant too:

An interview with the author in 2012 is online at
https://www.youtube.com/watch?v=wyQgCMZdv6E
For more on construction kits see
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html

- Minimal Intelligence Lab (MINT Lab)
 Studying Plant Intelligence
 http://www.um.es/web/minimal-intelligence-lab/
 http://www.um.es/web/minimal-intelligence-lab/contenido/manifesto
 http://www.um.es/web/minimal-intelligence-lab/contenido/the-team

- Gert Korthof’s collection of reviews and discussions of publications and theories in or related to biology:
 http://wasdarwinwrong.com/

Please send me additional items for this list.
Email: a.sloman[AT]cs.bham.ac.uk

Publications and presentations by others
(A seriously incomplete selection.)

- Margaret Boden’s work
 There is much relevant content in Margaret Boden’s work, e.g. on purposive explanation in psychology, on achievements and limitations of AI, on creativity, her theoretical work on biology (especially the relations between life and mind) and her outstanding historical analyses of various aspects of the development of Cognitive Science (2006). Here is a small sample of her work:
 ○ M. A. Boden, 2000, Autopoiesis and life, Cognitive Science Quarterly, 1, 1, pp. 115--143,
 ○ Her "Magnum Opus":
 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/boden-mindasmachine.html
The discussion starting in section 15iii (Mathematical Biology Begins), continuing to the end of 15iv (15.iv. Turing’s Biological Turn) is specially relevant to the M-M project, summarising work by D’Arcy Thompson, Alan Turing and others. Most of the rest of the book is also relevant, some portions more closely than others. In particular see her
discussions of the role of the notions of "information" (as opposed to matter, energy, force, etc.) both in explanations of natural phenomena and in design of new machinery.

4.v. Cybernetic Circularity: From Steam-Engines to Societies (p.198)

"...the focus of cybernetics was on the flow of information, as opposed to the matter or energy involved. Because information is an abstract notion, it could be applied to many different types of system--even including minds."

- Graham Bell
 Selection: The Mechanism of Evolution
 2nd Ed. OUP, 2008.

 PDF available here.

From the Abstract:
Hayek’s *The Sensory Order* contains a physicalistic identity theory of the mind. Popper criticized it, saying that it could not explain the higher functions of language. Hayek took up that challenge in a manuscript but failed to refute Popper’s arguments. Drawing upon the same manuscript, Hayek developed a theory of behavioural rules and cultural evolution. Despite his criticism of the theory of mind on which this evolutionary theory was based, Popper adopted Hayek’s idea of group selection. He transformed it into a theory of the selective power of ecological niches. This became a central element of Popper’s theory of evolution. The chapter traces the influence Popper and Hayek had on each other in the fields of the philosophy of mind and evolutionary theory. ...

NOTE: an online PDF version of Hayek’s The Sensory Order is available *Hayek (1952).*

NOTE: Jack Birner has recently written a draft paper that includes more on Hayek, Popper, and theory of mind, available on Academia: *How Artificial is Intelligence in AI? Arguments for a Non-Discriminatory Turing test.* (2014)

- Noam Chomsky’s early work deeply influenced my thinking, especially the idea of generative forms of representation able to cope with arbitrary (essentially infinite) variation in structure (not just values of a fixed size vector, so popular in much current AI). See his three notions of ‘adequacy’, observational, descriptive and explanatory adequacy, in *Aspects of the theory of syntax* (1965)

Added 26 Aug 2014
The idea of a system with generative power was previously well understood in mathematics and computer science: e.g. a turing machine has generative power, and a recursive or iterative computer program can give a turing machine or conventional computer infinite competence in Chomsky’s sense, though with performance limitations, in exactly the same way as he claimed human minds have infinite competence but finite performance -- mainly because of physical size limits. It was also known much earlier that a finite rule or set of axioms can have infinitely many consequences, a point discussed by Kant in his *Critique of Pure Reason* (1781).
One of the claims of the M-M project is that natural selection is also a mechanism with infinite competence and finite performance limitations. In part that is obvious insofar as natural selection can produce human brains. But long before that happened the mechanisms driving increases in physical complexity and increases in information processing powers had the same sort of "infinite competence", which could more modestly be described as "potentially unbounded competence).

- Two books by Jack Cohen (biologist) and Ian Stewart (mathematician)
 The Collapse of Chaos (1994)

- Kenneth Craik’s 1943 book (The Nature of Explanation), written nearly 70 years ago makes some major contributions to the meta-morphogenesis project by drawing attention to previously unnoticed problems about biological information processing in intelligent animals. For a draft incomplete discussion of his contribution, see
 http://tinyurl.com/CogMisc/kenneth-craik.html

- Richard Dawkins, 'The Evolution of Evolvability',
 in Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems,
 Dawkins’ paper is entirely about evolution of physical form, and of procedures for producing physical forms. The idea of meta-morphogenesis includes evolution of behaviours, evolution of information processing (including mechanisms for producing and controlling behaviour), evolution of forms of learning, learning, evolution of mechanisms of development of new information-processing capabilities, evolution of abilities to alter the evolvability of all of those. Dawkins paper is a useful introduction to the basic idea, with informative toy examples.

- D.C. Dennett’s very readable little book is very relevant:
 Kinds of minds: towards an understanding of consciousness,
 Weidenfeld and Nicholson, London, 1996,
 This book, like much of what Dennett has written is mostly consistent with my own emphasis on the need to understand "the space of possible minds" if we wish to understand human minds. Simply trying to study human minds while ignoring all others is as misguided as trying to do chemistry by studying one complex molecule (e.g. haemoglobin) and ignoring all others.

- Dennett and I have also written similar things about how to think about discussions of "free will" in the light of changes produced by Biological evolution.
 - D.C. Dennett
 Elbow Room: the varieties of free will worth wanting,
 Oxford: The Clarendon Press, 1984,
 (See also his later book Freedom Evolves)
 - A. Sloman
 'How to Dispose of the Free-Will Issue’,
 In AISB Quarterly, No 82, 1992, pp. 31--32,
 http://www.cs.bham.ac.uk/research/projects/cogaff/81-95.html#8,
 (Originally posted to Usenet some time earlier.)
Also used (with my permission) as the basis for Chapter 2 of Stan Franklin,
Artificial Minds, MIT Press, 1995,
(Franklin extended my notes and made them clearer.)

Our main difference is that I don’t regard what Dennett calls "the intentional stance" as a requirement for a science of mind, since reference to mental states and processes is not merely a sort of useful explanatory fiction: those states and processes, and qualia exist and their existence can be explained in terms of the operation of virtual machinery that is a product of biological evolution rather than human engineering, and which need not be rational in most of its processing. However, Dennett *sometimes* also seems to hold that view.

- Ideas of David Deutsch. See his old and new web sites:
 http://www.qubit.org/people/david/

- Merlin Donald’s book
 A Mind So Rare: The Evolution of Human Consciousness (1992)
 Is very relevant. It is spoilt especially near the beginning, by excessive rants against reductionism, which originally put me off reading the rest of the book. So it lay in a pile of books to be read for several years before I returned to it. Despite the complaints about reductionism much of the book attempts to relate empirical claims about the capabilities of humans and other animals to requirements for explanatory information processing mechanisms. The author does not seem to be well informed about achievements of AI and the nature of symbolic computation, so his sketchy ideas about explanatory mechanisms can mostly be ignored. But the book gives a superb introduction to many of the evolutionary transitions that involve information-processing, e.g. Chapter 4.

In particular, much of what Merlin Donald has written about evolution of consciousness is relevant to this project, though it is not clear that he appreciates the importance of virtual machinery, as outlined in

A. Sloman

- Peter Gardenfors
 How Homo Became Sapiens: On the evolution of thinking
 Oxford University Press, 2003

- The Only Way is Up
 On A Tower of Abstractions for Biology
 Jasmin Fisher, Nir Piterman, and Moshe Y. Vardi
 17th International Symposium on Formal Methods, LNCS 6664, pp. 3-11, 2011

Abstract:
We draw an analogy between biology and computer hardware systems and argue for the need of a tower of abstractions to tame complexity of living systems. Just like in hardware design, where engineers use a tower of abstractions to produce the most complex man-made systems, we stress that in reverse engineering of biological systems; only by using a tower of abstractions we would
be able to understand the "program of life".

 whom I met and talked to occasionally at Sussex University, expressed ideas in conversation (and
 in his publications which I did not read, mainly because I could not keep up with the mathematical
details), had ideas about natural selection being only part of the story of how evolution works: he used
to talk about "Laws of Form" constraining the possibilities for growth in ways that did not require
genetic control. In retrospect I think some of the ideas behind the M-M project may have come from
him, and before him from D'Arcy Thompson, Goethe and others. See Boden (2006) Sections
15x(b-d), Vol 2

However, some of the "laws of form", which as far as I know they did not discuss, are concerned
with forms of information processing and how possibilities are enabled and constrained by (a) the
physical mechanisms in which the information processing machinery (even virtual machinery) has to
be implemented and (b) the environments with which organisms need to interact in order to develop,
learn, live their lives and reproduce -- some of which include other information processors: friends,
foes, food, playmates, and things to observe or be observed by.

- F.A. Hayek, 1952, The Sensory Order
 The University of Chicago Press, Chicago
 W. J. Gage & Co., Limited, Toronto 2B, Canada
 Online PDF versions are available here:
 https://archive.org/details/sensoryorderinqu00haye
 (The "BW/PDF" version (on left) is smaller and slightly more readable.)

- David Lambert, Chris Chetland and Craig Millar, Eds.,
 The Intuitive Way of Knowing: A Tribute to Brian Goodwin,
 Floris Books, Edinburgh, 2013,
 Contributors: Stuart Kauffman, Lewis Wolpert, Fritjof Capra, Margaret Boden, Michael Ruse,
 Fred Cummings, Mae-wan Ho, Philip Franses, Stephan Harding, Nick Monk, Claudio Stern, Johannes
 Jaeger, Craig Millar and David Lambert. There are three interviews with Brian Goodwin. (Some of the
 contributions implicitly or explicitly refer to processes involving information.)

- Immanuel Kant’s Critique of Pure Reason (1781)
 has relevant ideas and questions, but he lacked our present understanding of information
 processing (which is still too limited)
 http://archive.org/details/immanuelkantscri032379mbp

- Annette Karmiloff-Smith
 Beyond Modularity,
 A Developmental Perspective on Cognitive Science,
 MIT Press (1992) --Informally reviewed in
 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/beyond-modularity.html

- Stuart Kauffman’s work, e.g. see this useful overview by Gert Korthof
 http://wasdarwinwrong.com/kortho32.htm

 Kauffman’s 1995 book is very approachable:
 At home in the universe: The search for laws of complexity

Gert Korthof’s web site is full of relevant reviews and discussions: highly recommended, though I’ve not yet read more than a tiny subset. Don’t be fooled by the name of the web site: http://wasdarwinwrong.com/

Much of Jean Piaget’s work is also relevant, especially his last two (closely related) books written with his collaborators: *Possibility and Necessity*
Vol 1. The role of possibility in cognitive development (1981)
Vol 2. The role of necessity in cognitive development (1983)
Tr. by Helga Feider from French in 1987
Like Kant, he had deep observations but lacked an understanding of information processing mechanisms, required for explanatory theories.

http://www-formal.stanford.edu/jmc/child.html

Ulric Neisser wrote in *Cognition and Reality*, W.H. Freeman, 1976.
"... we may have been lavishing too much effort on hypothetical models of the mind and not enough on analyzing the environment that the mind has been shaped to meet."

See the very useful summary/review of this book by Gert Korthoff: http://wasdarwinwrong.com/korthof66.htm

Steve Burbeck’s web site: http://www.evolutionofcomputing.org/
• K.R. Popper, *The logic of scientific discovery*, Routledge, London, 1934,

• Karl R. Popper, 1976, *Unended Quest*, Fontana/Collins, Glasgow,

 Popper’s Darwin Lecture: (Linked here 5 Apr 2014)
 Natural Selection and the Emergence of Mind
 Delivered at Darwin College, Cambridge, November 8, 1977
 Kindly made available on Bob Doyle’s remarkable web site which is full of relevant pages:
 http://www.informationphilosopher.com/
 (I learnt about this for the first time on 4th Apr 2014. Google should have introduced us sooner!)

• Jean Sauvy and Simonne Sauvy, with an introduction by Bill Brookes
 The Child’s Discovery of Space: From hopscotch to mazes -- an introduction to intuitive topology,
 Penguin Education, Harmondsworth, 1974. Translated from the French by Pam Wells,

• Juergen Schmidhuber (2013)
 PowerPlay: training an increasingly general problem solver by continually searching for the simplest still unsolvable problem
 http://arxiv.org/abs/1112.5309

• Juergen Schmidhuber, (2014)
 Deep Learning in Neural Networks: An Overview,
 Technical Report IDSIA-03-14,
 http://arxiv.org/abs/1404.7828

• Erwin Schroedinger (1944) *What is life?* CUP, Cambridge,

• **Peter Strawson on Descriptive Metaphysics (Added 30 Jul 2014)**

 The Meta-Descriptive Metaphysics project.
 A note on Strawson’s notion of "Descriptive Metaphysics", which claims:
 "There is a massive central core of human thinking which has no history -
or none recorded in histories of thought; there are categories and concepts
which, in their most fundamental character, change not at all."
 Perhaps that core actually has a history, in the evolution of human minds and
some of their precursors, and perhaps slightly different cores have evolutionary
histories along different lineages. This suggests a new project: investigation of
Meta-Descriptive Metaphysics described in
 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-descriptive-metaphysics.html

• http://www.amazon.com/On-Growth-Form-Complete-Revised/dp/0486671356
 /ref=cm_cr_pr_org_subj
 D’Arcy Wentworth Thompson
 On Growth and Form (1992)
 There are some abridged editions, the latest of which has been much criticised in Amazon reviews.
 I have been aware of this book for some time, but, alas, never got around to reading it. It is more
concerned with evolution of physical forms and their development in individual organisms than with evolution and development of information processing. But what Thompson tried to do for physical forms in organisms is close to what the M-M project aims to do for forms of biological information-processing, including the claim that the processes of change of information-processing capabilities during evolution and during individual development and learning, like the processes of physical growth and development studied by Thompson, have rich mathematical structures.

- Andreas Wagner, 2014, *Arrival of the Fittest: Solving Evolution’s Greatest Puzzle* Published by: Oneworld Publications,

Others -- to be added: request for suggestions

I know there are lots more related books and papers -- most of them not yet read by me. I would welcome a volunteer collaborator (or a group of collaborators) to help setting up an annotated online bibliography of notes, books, papers, discussions, videos, etc. relevant to meta-morphogenesis, whether the label is used or not, especially freely available open access documents, for reasons given here.

Possibly related Penrose presentation

Presentation by Roger Penrose, Manchester 2012

Roger Penrose seems to agree partially with one of the ideas here. At the Alan Turing centenary conference in Manchester (June 2012) http://www.turing100.manchester.ac.uk/, he gave the final keynote lecture, which was open to the public. His lecture (The Problem of Modelling the Mathematical Mind) was recorded on video and is available online: http://videolectures.net/turing100_penrose_mathematical_mind/

Questions from the audience were also recorded. Near the end of the video (at approximately 1 hour 26 minutes from the start) I had a chance to suggest that what he was trying to say about human consciousness and its role in mathematical discovery might be expressed (perhaps more clearly) in terms of the kinds of meta-cognitive functions required in animals, children, and future robots, as well as mathematicians. The common process is first gaining expertise in some domain (or micro-domain!) of experience and then using meta-cognitive mechanisms that inspect the knowledge acquired so far and discover the possibility of reorganising the information gained into a deeper, more powerful, generative form. The best known example of this sort of transition is the transition in human language development to use of a generative syntax. (At one point I mistakenly referred to a "generative theorem" when I meant "generative theory".)

I suggested that something similar must have happened when early humans made the discoveries, without the aid of mathematics teachers, that provided the basis of Euclidean geometry (later systematised through social processes). I have proposed that there are many examples, that have mostly gone unnoticed, of young children discovering what I call "Toddler theorems", some of them probably also discovered by other animals, as discussed in http://tinyurl.com/BhamCog/misc/toddler-theorems.html.
This is also related to the ideas about "Representational Re-description" in the work of Annette Karmiloff-Smith, presented in her 1992 book.

Penrose seemed to agree with the suggestion, and to accept that it might also explain why the basis of some mathematical competences are biologically valuable, which he had previously said he was doubtful about. I don’t know whether he realised he was agreeing to a proposal that instead of thinking of consciousness as part of the explanation of human mathematics, we can switch to thinking of the biological requirement for mathematical thinking as part of the explanation of important kinds of human (and animal) consciousness.

This is also connected with the need to extend J.J.Gibson’s theory of perception of affordances discussed in http://tinyurl.com/BhamCog/talks/#gibson

Maintained by Aaron Sloman
School of Computer Science
The University of Birmingham
Email: a.sloman[AT]cs.bham.ac.uk