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Abstract. Auctions allocate trillions of dollars in goods and ser-
vices every year. Auction design can have significant consequences,
but its practice outstrips theory. We seek to advance auction theory
with help from mechanised reasoning. To that end we are developing
a toolbox of formalised representations of key facts of auction the-
ory, which will allow auction designers to have relevant properties of
their auctions machine-checked. As a first step, we are investigating
the suitability of different mechanised reasoning systems (Isabelle,
Theorema, and TPTP) for reproducing a key result of auction theory:
Vickrey’s celebrated 1961 theorem on the properties of second price
auctions – the foundational result in modern auction theory. Based
on our formalisation experience, we give tentative recommendations
on what system to use for what purpose in auction theory, and outline
further steps towards a complete auction theory toolbox.

1 MOTIVATION
Auctions are a widely used mechanism for allocating goods and
services (trillions of dollars each year5), perhaps second in import-
ance only to market mechanisms. Auctions are used to allocate elec-
tromagnetic spectrum, airplane landing slots, bus routes, oil fields,
bankrupt firms, internet domains [5], works of art, eBay items, as
well as to establish exchange rates, treasury bill yields, and opening
prices in stock exchanges. Auction design can have significant con-
sequences. Klemperer attributed the low revenues gained by some
governments when auctioning their 3G radio spectrum in 2000 (C20
per capita vs. C600 in other countries) to bad design [11].

Further, the practice of auction design outstrips theory, especially
for more complex modern auctions, such as combinatorial auctions
in which bids may be submitted on subsets of items (e.g. collections
of spectrum, bus routes, landing slots). Important auctions often run
‘in the wild’ with few formal results [10].

We aim to advance auction theory with help from mechanised
reasoning: representing the knowledge underlying auction mechan-
isms in a formal, explicit way, and verifying these formalisations us-
ing computer support. Mechanised reasoning has been successfully
applied, e.g., for verifying software that controls commuter rail or
payment systems [27]. It has also been applied in economics [9], par-
ticularly to social choice theory (cf., e.g., [7]) and game theory (cf.,
e.g., [22]). However, all of this work has been done by computer sci-
entists, not by economists. The formalisation of (mathematical) the-
ories and the application of mechanised reasoning tools remain novel
to economics. Ultimately, we aim to make such techniques more fa-
miliar to auction theorists by providing them with a toolbox of basic
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auction theory formalisations, on top of which they can formalise and
verify their own auction designs.

2 REQUIREMENTS
From the perspective of a domain expert, i.e. an auction designer, the
auction theory toolbox (ATT) should satisfy the following require-
ments:

D1 Provide ready-to-use formalisations of basic concepts of auction
theory, including their definitions and their essential properties

D2 Allow for extension and application to custom-designed auc-
tions without requiring expert knowledge of the underlying mech-
anised reasoning system

From a computer scientist’s perspective, these requirements translate
to the following, more technical ones:

C1 Identify the right language to formalise auction theory, i.e. a lan-
guage that is sufficiently expressive for capturing relevant con-
cepts, while supporting efficient proofs for the majority of relevant
problems.

C2 Identify a mechanised reasoning system that allows for formal-
ising auction designs in a way that is close to the textbook style
economists are used to, and that facilitates reuse of any existing
formalisations in the toolbox.

These two requirements cannot be treated independently of each
other: a language that is adequate w.r.t. requirement C1 may not be
supported by any mechanised reasoning system that satisfies require-
ment C2.

3 APPROACH
We are building the ATT in parallel to identifying suitable languages
and mechanised reasoning systems to avoid a chicken-and-egg prob-
lem. The right ‘hammers’ can only be identified when there are
‘nails’, i.e. concepts of the application domain to be formalised. In
the case of a successful choice of language and system, these initial
formalisations will form the core of the future toolbox.

3.1 The Nail: Vickrey’s Theorem and Beyond
As the first nail, we chose William Vickrey’s 1961 theorem on the
properties of second price auctions of a single, indivisible good
whose value is not publicly known. In such an auction, each par-
ticipant submits a sealed bid; one of those with the highest bids
wins, and pays the highest of the remaining bids; the losers pay noth-
ing.6 Vickrey proved that ‘truth-telling’ (i.e. submitting a bid equal to

6 Wikipedia provides further background, including a discussion of variants
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one’s actual valuation of the good) was a weakly dominant strategy.
This means that no bidder could do strictly better by bidding above
or below its valuation whatever the other bidders did. Thus, the auc-
tion is also efficient, awarding the item to the bidder with the highest
valuation. Vickrey was awarded economics’ Nobel prize in 1996 for
his work.

We have several reasons for starting our work by redoing an old
proof: its formalisation will enable us to prove properties of contem-
porary related auctions as well; the underlying mathematical theory
can be formalised in contemporary systems with reasonable effort;
finally, we assume that domain experts being introduced to mechan-
ised reasoning would rather trust this technology, which is new to
them, if it is first applied to known results.

Eric Maskin collected high level versions of Vickrey’s theorem
and 12 others in his 2004 review [13] of Paul Milgrom’s influential
book on auction theory [14]. This review guides us in building the
toolbox; here, however, we focus on Vickrey’s theorem (restated as
proposition 1 in Maskin’s review), as it is the only one we have fully
formalised so far.

3.2 Wielding the Hammer

We are formalising auction theory, starting with Vickrey’s theorem,
in three systems, which differ in logic, syntax and user experience.
Before discussing these categories in detail, we discuss how we pre-
pared ourselves for machine formalisation by refining the original
paper source; we then introduce the three systems we are using.

3.2.1 Preparing the Paper Formalisation

Maskin’s paper states Vickrey’s theorem in two sentences of high-
level text and proves it in another six sentences. On paper, we elab-
orated the theorem and its proof into a version that made the de-
tails explicit, resulting in eight definitions.7 Mechanised reasoning
systems generally require much more explicit statements than com-
monly found on paper: Automated theorem provers (cf. the detailed
discussion in section 3.2.2) require them to find proofs without run-
ning out of search space, whereas proof checkers require proofs to be
at a certain level of detail, which in turn requires detailed statements.

An initial attempt to formalise our elaborated proof distinguished
cases on the basis of bidders’ bids. This generated a multi-level case
distinction with nine mostly straightforward leaf cases for Isabelle to
check. While feasible, this was tedious, encouraging us to to re-write
the cases on the basis of whether a participant won or lost the auction,
whether by truthful bidding or otherwise. This resulted in four cases,
once more largely straightforward.

We conjecture that such an extra step of elaborating the original
paper source will typically be helpful before starting a machine form-
alisation. The history of proving Arrow’s impossibility theorem on
the non-existence of a fair aggregation of the preferences of a group
of individuals, a central result of social choice theory, supports this
claim: Nipkow’s Isabelle formalisation [17] as well as Wiedijk’s
Mizar formalisation [24], both based on Geanakoplos’ widely known
paper version [6], required such elaborations where the paper source
was imprecise. Beyond these formalisations, Tang and Lin obtained
insights on the general structure of impossibility results in social
choice theory only by studying and formalising a novel, induction-
based proof [21].

7 This ‘paper formalisation’ is available from the ATT homepage [12].

3.2.2 Choosing a Mechanised Reasoning System

In terms of logic, it is not immediately clear whether Vickrey’s the-
orem is inherently a higher-order statement. It does make a statement
about the maximum of an arbitrary number n of bids. Defining such
an n-vector and proving essential properties of the maximum opera-
tion requires induction and thus goes beyond first-order logic. How-
ever, if one takes n-vectors and a maximum operation on them for
granted, the rest of the formalisation does not require higher-order
logic. That is, first-order logic suffices to formalise the concepts that
are actually relevant from the perspective of the application domain:
single good auctions, second price auctions, and the statement of
Vickrey’s theorem. First-order logic has the computational advant-
age that its statements are semi-decidable, and that sound and com-
plete calculi exist. In practice, this means that a number of efficient
automated theorem provers are available.

In terms of syntax, we assume that our domain experts, i.e. auction
designers, will prefer a language that looks like the textbook math-
ematics they are used to, rather than one that has the flavour of a
programming language. We assume that a typed language will sup-
port them in defining types for domain concepts (such as bids) and
avoiding mistakes in formalisation.

In terms of user experience, one has to distinguish between fully
automated proving, where systems are given a theorem and a know-
ledge base and they try to automatically find a proof of the theorem
w.r.t. the given knowledge base, and interactive proving, where the
author has to write a proof and have it checked interactively by the
system. There are systems that confine themselves to one of these
paradigms, but there are also systems that try to combine them.

We roughly describe the features of the languages and systems that
we are using:

Isabelle/HOL [8]: higher-order logic (typed), supported by the Isa-
belle interactive theorem prover, accessible via the ProofGen-
eral [1] and jEdit [23] text editor interfaces

Theorema [26]: first-order logic with set theory8, implemented as
an add-on package for the Mathematica computer algebra system
with its document-oriented notebook interface

TPTP FOF [19, 18]: untyped first-order logic, a machine-oriented
language supported by several automated theorem provers, ac-
cessible for human authors and developers via the many-sorted
first-order logic language CASL9 [4], which the Hets inter-
face [15] can translate to TPTP and send to provers.10

4 STATE, AND EXPERIENCES SO FAR

We performed the first complete formalisation of Vickrey’s theorem
in Isabelle.11 We redid the same formalisation in CASL (to obtain
TPTP) and thus showed that first-order logic is sufficiently express-
ive for Vickrey’s theorem. Here, the full proof is still work in pro-
gress. Finally, we are redoing the formalisation once more in Theor-
ema 2.0. The purpose of redoing the formalisation from scratch is to
understand the specific advantages and disadvantages of the different

8 The Theorema language is actually based on higher-order logic, but in our
case we use FOL + set theory.

9 CASL has a few higher-order features, such as inductive datatypes.
10 TPTP has a typed (sorted) first-order form (TFF) as well [20]. As Hets is

not currently capable of translating CASL to TPTP TFF, we are not using
the latter. Note that CASL is more expressive than TPTP TFF in that it
supports subsorts.

11 There was no specific conceptual reason for starting with Isabelle.



languages and systems and to obtain a formalisation that is as idio-
matic as possible.12 The formalisations are available from the ATT
homepage [12].

4.1 Theory Structure

Formalising further theorems from Maskin’s review paper, some of
which make statements about similar types of auctions, should reuse
as much of the Vickrey formalisation as possible. To enable this, we
have therefore organised them into modular theories. Four of them
are essential from the domain perspective:

Single good auctions (basic concepts): the auction as a mechan-
ism that maps bids to an outcome (i.e. uniquely allocating the good
to one participant, and defining the participants’ payments).

Properties single good auctions may have: efficiency and weak
dominance of a given bidding strategy (cf. section 3.1).

Second price auctions: the definition (cf. section 3.1) and some
lemmas one can infer from them, e.g. that if there is exactly one
highest bidder, that bidder wins; functions to compute the payoff
of a winner and a loser.

Vickrey’s theorem: truthful bidding in a second price auction is a
weakly dominant and efficient strategy.

4.2 Library Coverage

All of our formalisations are structured in terms of the theories listed
above.13 Depending on the system, we had to provide further math-
ematical foundations as additional theories. Theorema has a built-in
tuple datatype which we used to formalise vectors of bids, and sup-
ports a maximum operation on such tuples. CASL supports inductive
datatypes, and its standard library provides a number of them, in-
cluding arrays [3, 16], but there is no built-in n-argument maximum
operation. The Isabelle/HOL standard library provides a Max opera-
tion on finite sets; however, given Isabelle’s functional programming
style syntax, we found it most intuitive to model our own vectors
as functions N → R evaluated for arguments up to a given n. Thin
wrappers make the set maximum operator usable for these vectors
and prove the properties required subsequently.

4.3 Level of Detail Required by the Machine

Even the elaborated paper version introduced in section 3.2.1 turned
out to be insufficient for direct machine formalisation. The Isabelle
formalisation of the four theories listed above comprises 4 additional,
auxiliary definitions, and 7 auxiliary lemmas. We estimate that a sim-
ilar number of auxiliary statements will be required to guide the auto-
mated provers of Theorema and those that support TPTP. On the
other hand, our initial steps of extending the formalisation beyond
Vickrey’s theorem suggest that the auxiliary material makes it easier
to formalise further notions.

12 Hets is, for example, capable of translating CASL to Isabelle, but the res-
ulting Isabelle code would not make use of higher-order features other than
inductive datatypes.

13 In Theorema, which does not support a formal notion of theory, we chose
to use notebook sections for structuring. Once further reuse will be re-
quired, we may change this to archives: collections of definitions, theor-
ems, etc., which a notebook can load for reuse.

4.4 User-friendliness of Input Syntax
While we have not yet collected feedback from actual domain ex-
perts, we assume that they will find Theorema’s input syntax most
accessible. The two-dimensional symbolic notation of Mathematica
notebooks is similar to textbook notation; additionally, large parts of
our target audience are familiar with Mathematica already. The ap-
pearance of Isabelle and CASL is closer to programming languages;
however, both allow for defining operators with a custom ‘mixfix’
notation. The ProofGeneral and jEdit interfaces of Isabelle display
the operators built into the language or defined in the standard lib-
rary in a one-dimensional approximation of textbook style, using the
appropriate Unicode characters. Finally, TPTP’s pure ASCII syntax
is not extensible by custom symbols.

4.5 Interactive or Automated?
Our tentative verdict on interactive vs. automated approaches is that it
does not matter: What matters, instead, is that the systems give good
error messages, which allow the user to tell where exactly the form-
alisation is wrong or insufficient, and why exactly the system failed
to check or to find a proof. Given that the user provides a proof that
proceeds in sufficiently small steps, the jEdit interface for Isabelle
gives localised feedback on errors. When Theorema tries to prove a
theorem, it develops a structured textbook-style proof at a configur-
able level of verbosity. The user can navigate it via a tree view and
thus quickly identify where Theorema failed to proceed. For CASL,
Hets itself performs a type check, and otherwise relies on the output
of the theorem provers it invokes.

4.6 Community Support
Community support is another criterion that facilitates adoption of
a system. The user communities of the systems considered here
mainly comprise computer scientists and therefore may not be ready
to answer questions that a domain expert with little computer sci-
ence background may have, as they often assume previous know-
ledge about mechanised reasoning, mathematical formalisation, and
the specific reasoning approach underlying the respective system.
Therefore we simply compare the sizes of the communities for now,
assuming that domain experts can expect better assistance from a lar-
ger community. Isabelle is developed by multiple institutions and has
a large user community; more than 100 posts per month are made to
its user mailing list. CASL has been standardised in an international
effort and has been the subject of several hundred scientific public-
ations but does not currently have a functional mailing list. Hets is
mainly developed and used within a single institution; its user mail-
ing list receives less than 10 posts per month. TPTP has been the
subject of more than a thousand publications but does not have a
mailing list. Theorema does not have a mailing list either and has so
far been developed as closed source software within a single institu-
tion, but this is expected to change soon with the open source release
of Theorema 2.0.

5 CONCLUSION AND OUTLOOK
Auctions allocate trillions of dollars in goods and services every year,
but still it is not well understood how to design a ‘good’ auction. Our
auction theory toolbox (ATT) currently formalises key results about
single good second price auctions, a simple, well-understood type of
auction. It does so in a modular way, which makes us confident that



we will be able to build formalisations of more complex and new auc-
tion types on top of the existing core, ultimately enabling computer-
supported verification of auction designs. We are planning to put this
hammer right into the hand of domain experts, i.e. auction designers.
To that end we are, at the same time as we are building the tool-
box, identifying those mechanised reasoning languages and systems
whose user experience is closest to the domain experts’ mindset.

The logics, languages and systems studied so far satisfy our tech-
nical requirements C1 and, thanks to their support for modular the-
ories, C2 as well. Our Isabelle formalisation, the most complete one
so far, satisfies the domain expert’s requirement D1 for second price
auctions but needs to be expanded to other types of auctions. An as-
sessment of how well the ATT satisfies requirement D2 can only be
made once there is a larger core ATT, on top of which we – or rather:
auction designers themselves – will have formalised new auctions.
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