\[\renewcommand\arraystretch{1.3} \begin{array}[t]{rc|ll} \multicolumn2{l|}{\hbox{Boolean formula $f$}} && \hbox{Representing OBDD $B_f$} \\\hline 0 &&& B_0\hbox{ (Fig.~\ref{fig:bdd03})} \\ 1 &&& B_1\hbox{ (Fig.~\ref{fig:bdd03})} \\ x &&& B_x\hbox{ (Fig.~\ref{fig:bdd03})} \\ \bar f &&& \hbox{swap the $0$- and $1$-nodes in }B_f \\ f+g &&& \apply\;(+,B_f,B_g) \\ f\cdot g &&& \apply\;(\cdot\,,B_f,B_g) \\ f\oplus g &&& \apply\;(\oplus,B_f,B_g) \\ f[1/x] &&& \restrict\;(1,x,B_f) \\ \qquad f[0/x] &&& \restrict\;(0,x,B_f) \\ \exists x.f &&& \apply\;(+,B_{f[0/x]},B_{f[1/x]}) \\ \forall x.f &&& \apply\;(\cdot\,,B_{f[0/x]},B_{f[1/x]}) \\ \end{array}\]