Genetic Operators & Selection Schemes
Recap: The Evolutionary Cycle

1. Population
2. Selection
3. Replacement
4. Parents
5. Recombination
6. Mutation
7. Offspring
Outline

Summary of the Previous Lecture
 A Simple Evolutionary Algorithm

Mutation Operators
 Local and global mutation

Recombination Operators
 One- and multi-point crossover
 Uniform crossover

Selection Mechanisms
 Fitness proportionate selection
 Rank-based selection
 Tournament selection
 \((\mu + \lambda)\)- and \((\mu, \lambda)\)-selection
 Selection pressure

Summary of Lecture
A Simple Evolutionary Algorithm

Simple Evolutionary Algorithm

Generate the initial population $P(0)$ at random, and set $t \leftarrow 0$.

\textbf{repeat}

\hspace{1em}Evaluate the fitness of each individual in $P(t)$.

\hspace{1em}Select parents from $P(t)$ based on their fitness.

\hspace{1em}Obtain population $P(t + 1)$ by applying \texttt{crossover} and \texttt{mutation} to parents.

\hspace{1em}Set $t \leftarrow t + 1$.

\textbf{until} termination criterion satisfied.

- Basic idea from natural evolution and population genetics.
- Survival of the fittest.
Exploration and Exploitation

Exploration of new parts of search space
 - Mutation operators
 - Recombination operators

Exploitation of promising genetic material
 - Selection mechanism
Mutation operators for bitstrings

The mutation operator introduces small, random changes to an individual’s chromosome.

Local Mutation
- One randomly chosen bit is flipped.

Global Mutation
- Each bit flipped independently with a given probability p_m, called the *per bit mutation rate*, which is often $1/n$, where n is the chromosome length.

$$ \Pr [k \text{ bits flipped}] = \binom{n}{k} \cdot p_m^k \cdot (1 - p_m)^{n-k}. $$

Mutation rate
- Note the *difference* between per bit (gene) and per chromosome (individual) mutation rates.
Recombination operators - One point crossover

The recombination operator generates an offspring individual whose chromosome is composed from the parents’ chromosomes.

Crossover rate
- probability of applying crossover to parents

One point crossover between parents x and y

Randomly select a crossover point p in ${1, 2, \ldots, n}$.
Offspring 1 is $x_1 \cdots x_p \cdot y_{p+1} \cdots y_n$.
Offspring 2 is $y_1 \cdots y_p \cdot x_{p+1} \cdots x_n$.

Example

Parent x: 101011 | 1010
Offspring 1: 101011 | 1110
Parent y: 010100 | 1110
Offspring 2: 010100 | 1010
Recombination operators - Multi-point crossover

k-point crossover between parents x and y

Randomly select k crossover points $p_1 < \cdots < p_k$ in \{1, 2, ..., n\}.
Offspring 1 is $x_1 \cdots x_{p_1} \cdot y_{p_1+1} \cdots y_{p_2} \cdot x_{p_2+1} \cdots x_{p_3} \cdots$ etc.
Offspring 2 is $y_1 \cdots y_{p_1} \cdot x_{p_1+1} \cdots x_{p_2} \cdot y_{p_2+1} \cdots y_{p_3} \cdots$ etc.

Example (2-point crossover)

Parent x: 101 | 011 | 1010
Offspring 1: 101 | 100 | 1010

Parent y: 010 | 100 | 1110
Offspring 2: 010 | 011 | 1110
Uniform crossover between parents x and y

Select a bitstring z of length n uniformly at random.

for all i in 1 to n

if $z_i = 1$ then bit i in offspring 1 is x_i else y_i.

if $z_i = 1$ then bit i in offspring 2 is y_i else x_i.

Example

$z = 1010001110$

Parent x: 1010111010 Offspring 1: 1110001010

Parent y: 0101001110 Offspring 2: 0000111110
Selection and Reproduction

Selection *emphasizes* the better solutions in a population

▶ One or more copies of good solutions.
▶ Inferior solutions are much less likely to be selected.
▶ Not normally considered a search operator, but influences search significantly

Selection can be used either before or after search operators.

▶ When selection is used before search operators, the process of choosing the next generation from the union of all parents and offspring is sometimes called *reproduction*.

Generational gap of EA

▶ refers to the overlap (i.e., individuals that did not go through any search operators) between the old and new generations.
▶ The two extremes are *generational* EAs and *steady-state* EAs.
▶ 1-elitism can be regarded as having a generational gap of 1.
Fitness Proportional Selection

Probability of selecting individual \(x \) from population \(P \) is

\[
Pr[x] = \frac{f(x)}{\sum_{y \in P} f(y)}.
\]

- Use raw fitness in computing selection probabilities. Does not allow negative fitness values.
- Also known as roulette wheel selection.

Weaknesses

- Domination of “super individuals” in early generations.
- Slow convergence in later generations.

Fitness scaling often used in early days to combat problem

- Fitness function \(f \) replaced with a scaled fitness function \(\tilde{f} \).
Fitness Scaling 1/2

Simple scaling

\[\tilde{f}(x) := f(x) - f_{\text{min},\omega}, \quad \text{where} \]

- \(\omega \) is *scaling window*
- \(f_{\text{min},\omega} \) is lowest observed fitness in last \(\omega \) generations

Sigma scaling

\[\tilde{f}(x) := \min\{0, f(x) - (\bar{f} - c \cdot \sigma_f)\}, \quad \text{where} \]

- \(c \) is a constant, e.g. 2
- \(\bar{f} \) is average fitness in current population
- \(\sigma_f \) is the standard deviation of the fitness in the current population
Fitness Scaling 2/2

Power scaling

\[\tilde{f}(x) := f(x)^k, \quad \text{where } k > 0. \]

Exponential scaling

\[\tilde{f}(x) := \exp(f(x)/T), \quad \text{where} \]

- \(T > 0 \) is the temperature, approaching zero.
1. Sort population from best to worst according to fitness:

\[x^{(\lambda-1)}, x^{(\lambda-2)}, x^{(\lambda-3)}, \ldots, x^{(0)} \]

2. Select the \(\gamma \)-ranked individual \(x^{(\gamma)} \) with probability \(\text{Pr} [\gamma] \), where \(\text{Pr} [\gamma] \) is a ranking function, e.g.
 - linear ranking
 - exponential ranking
 - power ranking
 - geometric ranking
Linear ranking

Population size λ, and rank γ, $0 \leq \gamma \leq \lambda - 1$, (0 worst)

Linear ranking

$$\Pr_{\text{linear}}[\gamma] := \frac{\alpha + (\beta - \alpha) \cdot \frac{\gamma}{\lambda - 1}}{\lambda}$$

where $\sum_{\gamma=0}^{\lambda-1} \Pr_{\text{linear}}[\gamma] = 1$ implies $\alpha + \beta = 2$ and $1 \leq \beta \leq 2$.

In expectation

- best individual reproduced β times
- worst individual reproduced α times.
Other ranking functions

Power ranking

$$\Pr_{\text{power}}[\gamma] := \frac{\alpha + (\beta - \alpha) \cdot \left(\frac{\gamma}{\lambda-1}\right)^k}{C},$$

Geometric ranking

$$\Pr_{\text{geom}}[\gamma] := \frac{\alpha \cdot (1 - \alpha)^{\lambda-1-\gamma}}{C},$$

Exponential ranking

$$\Pr_{\text{exp}}[\gamma] := \frac{1 - e^{-\gamma}}{C},$$

where C is a normalising factor and $0 < \alpha < \beta$.
Tournament Selection

Tournament selection with tournament size k

Randomly sample a subset P' of k individuals from population P. Select the individual in P' with highest fitness.

- Often, tournament size $k = 2$ is used.
(μ + λ) and *(*μ, λ*)))) selection

Origins in Evolution Strategies.

(μ + λ)-selection

Parent population of size *μ*.
Generate *λ* offspring from randomly chosen parents.
Next population is *μ* best among parents and offspring.

(μ, λ)-selection (*where* *λ* > *μ*)

Parent population of size *μ*.
Generate *λ* offspring from randomly chosen parents.
Next population is *μ* best among offspring.
Selection pressure

Degree to which selection emphasizes the better individuals. How can selection pressure be measured and adjusted?

Take-over time τ^* [Goldberg and Deb, 1991, Bäck, 1994].

1. Initial population with unique fittest individual x^*.
2. Apply selection operator reapeadly with no other operators.
3. τ^* is number of generations until population consists of x^* only.

Higher take-over time \rightarrow lower selection pressure.

<table>
<thead>
<tr>
<th>Selection method</th>
<th>τ^* formula</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness prop.</td>
<td>$\tau^* \approx \frac{\lambda \ln \lambda}{c}$</td>
<td>assuming fitness $f(x) = \exp(cx)$</td>
</tr>
<tr>
<td>Linear ranking</td>
<td>$\tau^* \approx \frac{2 \ln(\lambda - 1)}{\beta - 1}$</td>
<td>$1 < \beta < 2$</td>
</tr>
<tr>
<td>Tournament</td>
<td>$\tau^* \approx \frac{\ln \lambda + \ln \ln \lambda}{\ln k}$</td>
<td>tournament size k</td>
</tr>
<tr>
<td>μ, λ</td>
<td>$\tau^* = \frac{\ln \lambda}{\ln(\lambda/\mu)}$</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Exploration and exploitation
- Mutation operators
- Recombination operators
- Selection mechanisms
- Selection pressure