Lecture 15
Evolutionary Dynamic Optimisation
Multi-populations

Dr. Philipp Rohlfshagen
P.Rohlfshagen@cs.bham.ac.uk

November 20, 2009
Dynamic TSP I

Classic TSP: Visit every city once, return to origin
- Minimise some cost of travel (e.g., time, distance)
- Consider \(n = 4 \), start and finish at \(S \)
Dynamic TSP I

Classic TSP: Visit every city once, return to origin
- Minimise some cost of travel (e.g., time, distance)
- Consider $n = 4$, start and finish at S

$$3! / 2 = 3 \text{ unique solutions}$$
Dynamic TSP II

Each edge has a value: Time

![Graph with edges labeled with times](image)
Dynamic TSP II

Each edge has a value: Time

Optimal solution: \(x^* = S - 1 - 2 - 3 - S \) with \(f(x^*) = 22 \)
Dynamic TSP III

Time of travel depends on traffic

- Traffic patterns are dynamic and change with time: \(I(T) \rightarrow I(T + 1) \)
Dynamic TSP III

Time of travel depends on traffic

- Traffic patterns are dynamic and change with time: $I(T) \rightarrow I(T + 1)$

New optimal solution: $x^*(T + 1) = S - 1 - 3 - 2 - S$ with $f(x^*(T + 1)) = 22$

- Previous optimal solution now has $f(x^*(T)) = 24$
Introduction

Most optimisation problems considered are static/stationary

Most real-world problems change over time
 ▶ Machines fail unexpectedly, dynamic traffic patterns, etc.
 ▶ New technology allows us to capture and process data (e.g., GPS)

Dynamic problems usually need to be solved online
 ▶ Adjust solution as time goes by; do not know future function values
 ▶ Ensure solution quality/feasibility

History of the field
 ▶ Initial efforts as early as 1966 but most progress in the last 10 years
 ▶ Special sessions/workshops at major conferences (CEC, EvoSTAR)
 ▶ Special issues in journals
Definition I

DOPs have an additional parameter: Time t

- Time is discrete and advances with every function evaluation

Time-variant sequence of *instances* of the same *problem*

$$I(T = 0) \rightarrow I(T = 1) \rightarrow I(T = 2) \rightarrow \ldots$$

- $T \cdot \tau \leq t < (T + 1) \cdot \tau$ where $1/\tau$ is the frequency of change
- The update period τ could be a function of time itself
Definition I

DOPs have an additional parameter: Time t

- Time is discrete and advances with every function evaluation

Time-variant sequence of *instances* of the same *problem*

$$I(T = 0) \rightarrow I(T = 1) \rightarrow I(T = 2) \rightarrow \ldots$$

- $T \cdot \tau \leq t < (T + 1) \cdot \tau$ where $1/\tau$ is the frequency of change
- The update period τ could be a function of time itself

In practice, any component of the problem may be variant

1. Domain of the variables; e.g., from $[0, 1]$ to $[-1, 1]$
2. Dimensionality of the problem; e.g., from $\{0, 1\}^n$ to $\{0, 1\}^{n+m}$
3. Constraints of the problem; e.g., $g(x) \leq y$ to $g(x) \leq y + q$
4. Parameters of the function; e.g., $f(x) = x^2 + 1$ to $f(x) = x^{1.5} + 0.5$
Definition II

The dynamics describe a trajectory through the space of all instances

Typical case stationary optimisation: \(f(x) = 2x^2, x \in [l, u] \)

Dynamic case: \(f(x; a, b) = ax^b \) (a class of functions)

Some mapping \(\mathcal{T} : S \times \mathbb{N} \rightarrow S \) such that

\[
I(T + 1) = \mathcal{T}(I(T), t)
\]
Motivation

Dynamic problem: Time-series of problem instances

▷ Could treat each instance as a new problem
▷ Random re-starts whenever a change occurs
▷ This may be slow and costly

Key idea is to “transfer knowledge from the past” (Branke)

▷ Speed up the process of re-optimisation
▷ Successive instances need to be related to some degree
Motivation

Dynamic problem: Time-series of problem instances
- Could treat each instance as a new problem
- Random re-starts whenever a change occurs
- This may be slow and costly

Key idea is to “transfer knowledge from the past” (Branke)
- Speed up the process of re-optimisation
- Successive instances need to be related to some degree

Commonly used performance measure reflects this

\[
\hat{f} = \frac{1}{G} \sum_{i=1}^{G} e'_i
\]

\[e'_i = \max\{e_\omega, e_{\omega+1}, \ldots, e_i\}\]
- where \(\omega\) is last time step smaller than \(i\) at which a change occurred
- \(e_i\) is the best at iteration (generation) \(i\)
Performance

Change happens every 50 generations
Change Detection & Outdated Fitness Values

Need to make sure fitness values are kept **up-to-date**

- Values stored may represent outdated information
- Generational EAs are commonly used but could still pose a problem
Change Detection & Outdated Fitness Values

Need to make sure fitness values are kept up-to-date
- Values stored may represent outdated information
- Generational EAs are commonly used but could still pose a problem

May need to detect change
- Population-based
 - Monitor fitness values of population (use statistical tests)
- Sensor-based
 - Monitor fitness of stationary points
 - Placement of points?
- Neither method may guarantee detection
 - $\gamma = |Y|/|X|$ where $Y = \{y^i\}$ such that $\forall i, f(y^i, T+1) \neq f(y^i, T)$
- Dimensionality and domain changes should be signalled by the system
 - They require a change in the representation
Common Approaches

Diversity

- Constant or reactive
- **Hyper-mutations**, **Random immigrants**, Thermo-dynamic GA
Common Approaches

Diversity
- Constant or reactive
- **Hyper-mutations, Random immigrants**, Thermo-dynamic GA

Memory
- Implicit or **explicit**, direct or **indirect** (abstraction)
- Diploidy, external memory, memory-based diversity
Common Approaches

Diversity
- Constant or reactive
- **Hyper-mutations**, **Random immigrants**, Thermo-dynamic GA

Memory
- Implicit or **explicit**, direct or **indirect** (abstraction)
- Diploidy, external memory, memory-based diversity

Multi-populations
- Closely related to speciation
- Self-organising Scouts (SOS; Branke)
Common Approaches

Diversity
- Constant or reactive
- **Hyper-mutations**, **Random immigrants**, Thermo-dynamic GA

Memory
- Implicit or **explicit**, direct or **indirect** (abstraction)
- Diploidy, external memory, memory-based diversity

Multi-populations
- Closely related to speciation
- Self-organising Scouts (SOS; Branke)

Adaptive variation operators
- Adapt operators to the current environment
- Operators sometimes able to capture dynamics
Hypermutations

Proposed by Cobb in 1990

Increase mutation rate after change

- Mutation probability p_m is usually $1/n$
- Increase rate for m generations

Pros and Cons?
Hypermutations

Proposed by Cobb in 1990

Increase mutation rate after change
- Mutation probability p_m is usually $1/n$
- Increase rate for m generations

Pros and Cons?
+ Does not interfere with ongoing search
+ Introduces diversity into a possibly converged population
 - Need to be able to detect change
 - How much diversity is needed?
 - May destroy valuable information
Hypermutations

Proposed by Cobb in 1990

Increase mutation rate after change

- Mutation probability p_m is usually $1/n$
- Increase rate for m generations

Pros and Cons?

+ Does not interfere with ongoing search
+ Introduces diversity into a possibly converged population
- Need to be able to detect change
- How much diversity is needed?
- May destroy valuable information

\[
i \leftarrow 0
\]
Initialise and evaluate $P(i)$

\[
\textbf{while } \text{terminate} \neq \text{true do}
\]
\[
i \leftarrow i + 1
\]
select $P(i)$ from $P(i - 1)$

\[
cross(P(i), p_c)
\]
if $i - \delta \leq m$ then
\[
\text{mutate}(P(i), p_d)
\]
else
\[
\text{mutate}(P(i), p_m)
\]
end if
evaluate $P(i)$
if change is detected then
\[
\delta \leftarrow i
\]
end if
end while
Random Immigrants

Proposed by Grefenstette in 1992
 ▶ Prevent complete convergence at all times

Replace γN individuals with random samples
 ▶ Replace random individuals or the weakest

Pros and Cons?
Random Immigrants

Proposed by Grefenstette in 1992

- Prevent complete convergence at all times

Replace γN individuals with random samples

- Replace random individuals or the weakest

Pros and Cons?

+ Prevents convergence of the population
+ May increase the rate of exploration of the search space
- May slow down process of optimisation
- Added diversity is uninformed
- Which individuals to replace and how many?
Random Immigrants

Proposed by Grefenstette in 1992

- Prevent complete convergence at all times

Replace γN individuals with random samples

- Replace random individuals or the weakest

Pros and Cons?

+ Prevents convergence of the population
+ May increase the rate of exploration of the search space
- May slow down process of optimisation
- Added diversity is uninformed
- Which individuals to replace and how many?

$$i \leftarrow 0$$
Initialise and evaluate $P(i)$

$$\textbf{while} \ \text{terminate} \neq \text{true} \ \textbf{do}$$
 $$i \leftarrow i + 1$$
 select $P(i)$ from $P(i - 1)$
 $\text{cross}(P(i), p_c)$
 $\text{mutate}(P(i), p_m)$
 Replace γN individuals in $P(i)$ with random samples
 Evaluate $P(i)$

$$\textbf{end while}$$
Abstract Memory I

Use explicit memory to memorise regions of high quality

- Need strategy to place individuals into memory
- Need strategy to retrieve individuals from memory
- This is known as a memory management scheme

Abstract memory due to Richter and Yang

- Information is stored indirectly, as an abstract approximation
- Continuous search space is discretised (grid size ϵ)
 - Memory matrix M filled with counters
- High quality individuals encountered are assigned to partition cells
- Frequency count of partition cells functions as probability distribution

Tested on a continuous problem

- n-dimensional “field of cones on a zero plane”
- Classical benchmark problem
Abstract Memory II

At each iteration
 ▶ Select the \(q \) best individuals from the population

For each selected individual
 ▶ Obtain the index for \(M \) and update count

Perform usual operators (selection, crossover, mutation)

If a change is detected
 ▶ Create adjunctive memory matrix \(M_{\mu} \)
 ▶ Fix number of individuals to be generated
 ▶ Calculate distribution of individuals across \(M_{\mu} \)
 ▶ Randomly fix position of individual in cell
 ▶ Merge generated individuals with population
Related Fields and Future Directions

Closely related fields
- Noisy optimisation, surrogate-assisted (approximated) optimisation, robust optimisation
- Also related is multi-objective optimisation and co-evolution

Modified offline performance is only one performance measure
- Solution similarity
 - For example, drivers prefer similar/identical routes for delivery
- Feasibility driven
 - Ensure you always have a feasible solution at all times
- Robustness
 - Small changes: Do not adapt; large changes: Adapt
Related Fields and Future Directions

Closely related fields
- Noisy optimisation, surrogate-assisted (approximated) optimisation, robust optimisation
- Also related is multi-objective optimisation and co-evolution

Modified offline performance is only one performance measure
- Solution similarity
 - For example, drivers prefer similar/identical routes for delivery
- Feasibility driven
 - Ensure you always have a feasible solution at all times
- Robustness
 - Small changes: Do not adapt; large changes: Adapt

Solutions have values
- \((16, 16, 18)\)
- \((24, 14, 25)\)
- \((24, 21, 26)\)
- First solution not always best, but reliable
Multi-Populations: Introduction

Almost all EAs use a single population
Any individual may reproduce with any other
Population may be seen as one species

In nature, one species may split into two
Geographical conditions (e.g., distance) may restrict mate selection
Individual groups evolve in different environments (Galapagos islands)

Impact of multiple species (populations):
Different niches are “explored” (and more quickly)
Even if sub-populations converge, there is still diversity across populations

Parallel implementation
Each population can have its own CPU/core
Multi-Populations: The Island Model

Components of the island model
- Overall population P divided into N sub-populations
 - $P = \{P_1, P_2, \ldots, P_N\}$
 - Each sub-population P_i is of size μ_i

Use “standard” GA for each sub-population
- Evolve population i for G_i generations
- Have well-defined means of interaction

Communication Topology
- Sub-populations may interact with one another after each epoch
- Need to decide magnitude and frequency of interaction
- Determines isolation of each sub-population
 - Fully connected graph versus edgeless graph

Need to strike a good balance between:
- Isolated exploitation and collaborative exploration
The Island Model: Pseudo-code

Initialise and evaluate all $P(i)$

\begin{verbatim}
while terminate \neq true do
 Evolve each P_i for G_i generations
 for $i = 1, 2, \ldots, N$ do
 for all neighbours j of i do
 migration(P_i, P_j)
 end for
 assimilate(P_i)
 end for
end while
\end{verbatim}

Migration
- Individuals are moved or copied to neighbouring populations

Assimilation
- Depends on model of migration and could include population size reduction

More in *Handbook of Evolutionary Computation*, section C.6.3.3
Multi-Populations: Other Algorithms

Many variations of these schemes:
- Dual Population Genetic Algorithm
- Forking Genetic Algorithm
- Self-organising Scouts (adaptation of FGA for DOPs)

Pros and Cons
+ Can be implemented in parallel
+ Helps maintain diversity
+ Can locate multiple optima simultaneously
+ Exploration versus exploitation
- Computationally expensive
- Parallel hardware often unavailable
- Numerous additional parameters require initialisation
 - Difficulty in choosing a model of migration
Student Projects

Field of evolutionary dynamic optimisation is relatively young
- Plenty of scope for new results

There are numerous possible student projects
- New problem benchmark generators
- Design of novel EAs for DOPs
 - Especially for dynamic networks / dynamic graphs
- Advance our understanding of dynamic optimisation
 - Analytical and empirical studies

For more details, see
- www.cs.bham.ac.uk/~pZR/student-projects.html
Dynamic Optimisation: Essential Reading

Exercise

Non-assessed exercise for all to try

Adapt (improve) provided Java code
 ▶️ Standard generational GA
 ▶️ 2 functions: oneMax and twoMax
 ▶️ Dynamic Framework: XOR

Implementations of Hypermutations and Random Immigrants
 ▶️ Test these methods and improve them
 ▶️ Implement and test more difficult binary functions

Some ideas
 ▶️ Generate non-uniformly random immigrants (See Shengxiang Yang)
 ▶️ Dynamically adjust hyper-mutation rate, etc.
 ▶️ Develop your own technique and test and compare with the others