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ABSTRACT
Geometric Semantic Genetic Programming (GSGP) is a re-
cently introduced form of Genetic Programming (GP), rooted
in a geometric theory of representations, that searches di-
rectly the semantic space of functions/programs, rather than
the space of their syntactic representations (e.g., trees) as in
traditional GP. Remarkably, the fitness landscape seen by
GSGP is always – for any domain and for any problem –
unimodal with a linear slope by construction. This has two
important consequences: (i) it makes the search for the op-
timum much easier than for traditional GP; (ii) it opens the
way to analyse theoretically in a easy manner the optimisa-
tion time of GSGP in a general setting. The runtime analysis
of GP has been very hard to tackle, and only simplified forms
of GP on specific, unrealistic problems have been studied so
far. We present a runtime analysis of GSGP with various
types of mutations on the class of all Boolean functions.

1. INTRODUCTION
Traditional Genetic Programming searches the space of func-
tions/programs by using search operators that manipulate
their syntactic representation, regardless of their actual se-
mantics/behaviour. For instance, subtree swap crossover
is used to recombine functions represented as parse trees,
regardless of trees representing Boolean expressions, math-
ematical functions, or computer programs. Although this
guarantees that offspring are always syntactically well-formed,
it is unclear why such a blind syntactic search should work
well for different problems and across domains.

In recent literature, there are a number of approaches that
use the semantics of programs in various ways to guide the
search of GP. Beadle & Johnson and Jackson use reduction
to a canonical representation, in which individuals encoding
the same function have a unique representation, to enforce
semantic diversity throughout evolution, by creating seman-
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tically unique individuals in the initial population [3, 6], and
by discarding offspring of crossover and mutation when se-
mantically coinciding with their parents [2].

The semantics of a program can be directly and uniquely
represented by enumerating the input-output pairs making
up the computed function, or equivalently, by the vector of
all output values of the program for a certain fixed order
of all possible input values. Uy et al. [21] have proposed
a probabilistic measure of semantic distance between indi-
viduals based on how their outputs differ for the same set
of inputs sampled at random. This distance is then used
to bias semantically the search operators: mutation rejects
offspring that are not sufficiently semantically similar to the
parent; crossover chooses only semantically similar subtrees
to swap between parents.

Geometric crossover and geometric mutation [17, 13] are for-
mal, representation-independent search operators that can
be, in principle, instantiated to any search space and repre-
sentation, once a notion of distance between individuals is
provided. Simply stated, the offspring of geometric crossover
are in the space-specific segment between parents, and the
offspring of geometric mutation are in a space-specific ball
around the parent. Many crossover and mutation opera-
tors across representations are geometric operators (w.r.t.
some distance). Krawiec et al. [7, 8] have used a notion of
semantic distance to propose a crossover operator for GP
trees that is approximately a geometric crossover in the se-
mantic space (i.e., a semantic geometric crossover). The
operator was implemented approximately by using the tra-
ditional sub-tree swap crossover, generating a large number
of offspring, and accepting only those offspring that were
sufficiently “semantically intermediate” with respect to the
parents. An analogous approach can be used to implement a
semantic geometric mutation, with offspring lying in a small
ball around the parent in the semantic space.

Whereas the semantically aware methods above are promis-
ing, as they have been shown to be better than traditional
GP on a number of benchmark problems [3, 6, 21, 7], their
implementations are very wasteful as heavily based on trial-
and-error: search operators are implemented via acting on
the syntax of the parents to produce offspring, which are
accepted only if some semantic criterion is satisfied. More
importantly from a theoretical perspective, these implemen-



tations do not provide insights on how syntactic and seman-
tic searches relate to each other. This drawback seems un-
avoidable. It was in fact believed [7, 8] that due to the com-
plexity of the genotype-phenotype mapping in GP, a direct
implementation of semantic operators that, acting on the
syntax of the parent programs, produce offspring that are
guaranteed to respect some semantic criterion/specification
by construction, is probably impossible.

Geometric Semantic Genetic Programming [16, 15] is a form
of genetic programming that uses semantic geometric crossover
and semantic geometric mutation to search directly the se-
mantic space of functions/programs. This is possible be-
cause, seen from a geometric viewpoint, the genotype-phenotype
mapping of GP becomes surprisingly easy, and allows us to
derive explicit algorithmic characterization of semantic ge-
ometric operators for different domains following a simple
formal recipe, which was used to derive specific forms of
GSGP for a number of classic GP domains (i.e, Boolean
functions, arithmetic functions and classifiers).

The fitness landscape seen by the semantic geometric opera-
tors is always unimodal with a linear slope (cone landscape)
by construction, as the fitness of an individual is its seman-
tic distance to the optimum individual. This has the conse-
quence that GP search on functions with semantic geometric
operators is formally equivalent to a GA search on the corre-
sponding output vectors with standard crossover and muta-
tion operators. For example, for Boolean functions, GSGP
search is equivalent to GA search on binary strings on the
OneMax landscape, for any Boolean problem.

This equivalence suggests that GSGP performs better than
standard GP. GSGP was compared with standard GP on
several well-known problems across domains (finding Boolean
functions, polynomial regressions, and classification tasks)
and it consistently found much better solutions with the
same budget of fitness evaluations [16, 15]. Furthermore,
GSGP has been found more efficient and generalising bet-
ter than standard GP on some initial studies on real-world
problems [4].

Genetic programming has been hard to analyse from a theo-
retical point of view. The current literature on GP theory is
heterogeneous. Perhaps the most developed theory of GP is
the schema theory [9]. There is also some work on Markov
models of GP search [12]. There are theory-laden methods
to combat bloat based on an exact formalisation of the dy-
namics of average program size [20]. Other works focus on
the analysis of some static structural features of the search
space of GP programs (e.g., proportions of programs encod-
ing the same function for different program sizes), and ex-
perimental hardness studies of fitness landscapes [9]. There
is also some theoretical works on GP from a semantic per-
spective. In [19], a notion of geometric mutation based on a
semantic distance was used to show that the No Free Lunch
theorem does not apply to GP. Furthermore, the work [11]
analyses traditional subtree crossover in terms of “semantic
building blocks” in Boolean functions, reporting that most
of the times this crossover does not make useful search in
the semantic space.

Runtime analysis is the standard approach to analyse ana-
lytically algorithmic performance. In the last decade it has
been applied, with an ever increasing success, to randomised
search heuristics and it is establishing itself as a leading
theory [18, 1]. Despite its success, the analysis is done
on a per-algorithm-and-per-problem basis. Obtaining in-
teresting, general runtime results holding on a large class of
problems for non-trivial search algorithms would be a major
progress. Due to the difficulty of analysing GP, there is only
very initial work on its runtime analysis. Durrett et al. [5]
present the runtime analysis of a mutation-based GP with
a tree representation on very simplified problems, in which
trees do not represent functions (i.e., objects that return dif-
ferent output values for different input values) but, rather,
structures (i.e., objects whose fitness depends on some struc-
tural properties of the tree representation). This deviates
quite significantly from the very essence of GP, which is
about evolving functions.

GSGP is very attractive from a theoretical point of view.
The equivalence of GSGP search to a GA search on cone
landscapes opens the way to a rigorous theoretical analy-
sis of the optimisation time of GSGP by simply extending
known runtime results for GAs on OneMax-like problems.
This analysis is not only relatively easy to obtain but it is
also remarkably general, as it applies to all problems of a cer-
tain domain (e.g., all Boolean functions are seen as OneMax
by GSGP). Furthermore, unlike existing runtime analysis
for GP, the solutions of the problem considered are func-
tions and not structures. Therefore, there is the potential
to develop a general runtime analysis of GSGP on interest-
ing problems. We start this line of theory and present a
runtime analysis of GSGP with various types of mutations
on the class of all Boolean functions.

Section 2 describes the theory of geometric semantic genetic
programming framework. Section 3 introduces a number
of mutation operators, and analyses their runtime. Section
4 reports experimental results comparing the various types
of mutation on randomly generated problems. Section 5
presents conclusions and future work.

2. GEOMETRIC SEMANTIC
GENETIC PROGRAMMING

Next, we describe the GSGP framework formally reporting
and expanding on the relevant results from [16]. We first
give abstract definitions of geometric semantic operators and
their properties. Then we explain how to construct these
operators in Section 2.2.

2.1 Abstract Geometric Semantic Search
A search operator CX : S × S → S is a geometric crossover
w. r. t. the metric d on S if for any choice of parents p1 and
p2, any offspring o = CX(p1, p2) is in the segment [p1, p2]
between parents, i.e., it holds that d(p1, o) + d(o, p2) =
d(p1, p2). A search operator M : S → S is a geometric
ϵ-mutation w. r. t. the metric d if for any parent p, any of
its offspring o = M(p) is in the ball of radius ϵ centered
in the parent, i.e., d(o, p) ≤ ϵ. Given a fitness function
f : S → R, the geometric search operators induce or see the
fitness landscape identified by the triple (f, S, d). Many well-
known recombination operators across representations are



geometric crossovers [13]. In particular for binary strings,
any type of homologous crossover is a geometric crossover
w. r. t. Hamming distance (HD), and point mutation is geo-
metric 1-mutation w. r. t. Hamming distance [13]. Geomet-
ric operators can also be derived for new spaces and repre-
sentations by using in their definitions a distance based on a
target representation (e.g., edit distance). If the distance be-
tween solutions is not directly linked to their representation,
the geometric operators are well-defined in an abstract sense
but their algorithmic description may be hard to derive.

For most applications, genetic programming can be seen as
a supervised learning method. Given a training set made of
fixed input-output pairs T = {(x1, y1), ..., (xN , yN )} (i.e., fit-
ness cases), a function h : X → Y within a certain fixed class
H of functions (i.e., the search space specified by the chosen
terminal and function sets) is sought that interpolates the
known input-output pairs. I.e., for an optimal solution h it
holds that ∀(xi, yi) ∈ T : h(xi) = yi. The fitness function
FT : H → R measures the error of a candidate solution h
on the training set T . Compared to other learning methods,
two distinctive features of GP are (i) it can be applied to
learn virtually any type of functions, and (ii) it is a black-
box method, as it does not need explicit knowledge of the
training set, but only of the errors on the training set.

We define the genotype-phenotype mapping as the function
P : H → Y |X| that maps a representation of a function
h (i.e., its genotype) to the vector of the outcomes of the
application of the function h to all possible input values
in X (i.e., its phenotype), i.e., P (h) = (h(x1), ..., h(x|X|)).
We can define a partial genotype-phenotype mapping by re-
stricting the set of input values X to a given subset X ′ as

follows: PX′ : H → Y |X′| with PX′(h) = (h(x1), ..., h(x|X′|))
with xi ∈ X ′. Let I = (x1, ..., xN ) and O = (y1, ..., yN )
be the vectors obtained by splitting inputs and outputs of
the pairs in the training set T . The output vector of a
function h on the training inputs I is therefore given by
its partial genotype-phenotype mapping PI(h) with input
domain restricted to the training inputs I, i.e., PI(h) =
(h(x1), ..., h(xN )). The training set T identifies the partial
genotype-phenotype mapping of the optimal solution h re-
stricted to the training inputs I, i.e., PI(h) = O.

Traditional measures of error of a function h on the training
set T can be interpreted as distance between the target out-
put vector O and the output vector PI(h) measured using
some suitable metric D, i.e., FT (h) = D(O,PI(h)) (to min-
imise). For example, when the space H of functions consid-
ered is the class of Boolean functions, the input and output
spaces are X = {0, 1}n and Y = {0, 1}, and the output vec-
tor is a binary vector of size N = 2n (i.e., Y N ). A suitable
metric D to measure the error as a distance between binary
vectors is the Hamming distance.

We define semantic distance SD between two functions
h1, h2 ∈ H as the distance between their corresponding out-
put vectors measured with the metric D used in the defini-
tion of the fitness function FT , i.e., SD(h1, h2) =
D(P (h1), P (h2)). The semantic distance SD is a geno-
typic distance induced from a phenotypic metric D, via the
genotype-phenotype mapping P . As P is generally non-
injective (i.e., different genotypes may have the same phe-

notype), SD is only a pseudometric (i.e., distinct functions
can have distance zero). This naturally induces an equiva-
lence relation on genotypes. Genotypes h1 and h2 belong to
the same semantic class h iff their semantic distance is zero,
i.e., h1, h2 ∈ h iff SD(h1, h2) = 0. Therefore the set of all
genotypes H can be partitioned in equivalence classes, each
one containing all genotypes in H with the same semantics.
Let H be the set of all semantic classes of genotypes of H.
The set of semantic classes H is by construction in one-to-
one correspondence with the set of phenotypes (i.e., output
vectors). Then, as D is a metric on the set of phenotypes, it
is naturally inherited as a metric on the set H of semantic
classes.

We define semantic geometric crossover and mutation as the
instantiations of geometric crossover and geometric muta-
tion to the space of functions H endowed with the distance
SD. E.g., semantic geometric crossover SGX on Boolean
functions returns offspring Boolean functions such that the
output vectors of the offspring are in the Hamming seg-
ment between the output vectors of the parents (w. r .t. all
xi ∈ X). I.e., any offspring function h3 = SGX(h1, h2) of
parent functions h1 and h2 meets the condition SD(h1, h3)+
SD(h2, h3) = SD(h1, h2) which for the specific case of Boolean
functions becomesHD(P (h1), P (h3))+HD(P (h2), P (h3)) =
HD(P (h1), P (h2)). The geometric crossover SGX can be
also seen as a geometric crossover on the space of semantic
classes of functions H endowed with the metric D. From
the definition of SGX above, it is evident that if h3 =
SGX(h1, h2) then it holds that h′

3 = SGX(h′
1, h

′
2) for any

h′
1 ∈ h1, h

′
2 ∈ h2, h

′
3 ∈ h3 because P (h1) = P (h′

1), P (h2) =
P (h′

2) and P (h3) = P (h′
3). In words, the result of the appli-

cation of SGX depends only on the semantic classes of the
parents h1, h2 and not directly on the parents’ genotypes h1,
h2, and the returned offspring can be any genotype h3 be-
longing to the offspring semantic class h3. Therefore, SGX
can be thought as searching directly the semantic space of
functions.

When the training set covers all possible inputs, the seman-
tic fitness landscape seen by an evolutionary algorithm with
semantic geometric operators is, from the definition of se-
mantic distance, a particularly nice type of unimodal land-
scape in which the fitness of a solution is its distance in the
search space to the optimum 1 (i.e., a cone landscape). This
observation is remarkably general, as it holds for any domain
of application of GP (e.g., Boolean, Arithmetic, Program),
any specific problem within a domain (e.g., Parity and Mul-
tiplexer problems in the Boolean domain) and for any choice
of metric for the error function. Furthermore, there is some
formal evidence [14] that EAs with geometric operators can
optimise cone landscapes efficiently very generally for most
metric. Naturally, in practice, the training set covers only a
fraction of all possible input-output pairs of a function. This
has the effect of adding a particular form of neutrality to the
cone landscape, as only the part of the output vector of a
function corresponding to the training set affects its fitness,
the remaining large part is “inactive”. The various forms of
mutations that will be introduced and analysed in Section 3

1Notice that the optimum in the space of function classes is
unique, as the output target vector is unique (since the train-
ing set is fixed prior to evolution), and it identifies uniquely
the target function class.



have different strategies to cope with this form of neutrality
and produce an efficient search.

GP search with geometric operators w. r .t. the semantic dis-
tance SD on the space of functions H is formally equivalent
to EA search with geometric operators w. r .t. the distance D
on the space of output vectors. This is because: (i) seman-
tic classes of functions are in bijective correspondence with
output vectors, as “functions with the same output vector”
is the defining property of a semantic class of function; (ii)
semantic geometric operators on functions are isomorphic
to geometric operators on output vectors, as SD is induced
from D via the genotype-phenotype mapping P (see also
diagram (1) and explanation in the next section). Despite
this formal equivalence, actually encoding a function in a
EA using its output vector instead of, say, a parse tree, is
futile: in the end we want to find a function represented in
an intensive form that can represent concisely “interesting”
functions and that allows for meaningful generalisation of
the training set.

For the specific case of Boolean functions with n input vari-
ables and a single output variable, GSGP search with a
training set of size N is equivalent to GA search with stan-
dard mutation and crossover on binary strings of length 2n

(i.e., the number of all possible inputs of n Boolean vari-
ables). When the training set covers all possible inputs,
the fitness landscape seen by the GA is OneMax because
minimising the error means minimising the Hamming dis-
tance between the output vector of candidate solutions and
the target output vector, which is the same as minimising
the number of wrong outputs, or equivalently as maximis-
ing the number of the right outputs, which on binary strings
is equivalent to maximising the number of ones. When the
training set covers only a subset of all possible inputs, the
fitness landscape seen by the GA is OneMax on τ “active”
bits that contribute to the fitness, and it is neutral on the
remaining bits that do not affect the fitness. The position
of the active bits are fixed but unknown, as we operate un-
der the black-box scenario in which the algorithm cannot
have direct knowledge of the training set but can only ac-
cess the errors on the training set of candidate solutions via
evaluation. Furthermore, all Boolean functions are seen as
equivalent from GSGP search. This is because, whereas any
distinct target training set gives rise to a different fitness
landscape whose optimum is a different target string, any
unbiased black-box search algorithm [10] does not assume
a priori the knowledge of the location of the optimum and
sees all these landscapes as equivalent.

2.2 Construction of Geometric Semantic
Operators

The commutative diagram below illustrates the relationship
between the semantic geometric crossover GXSD on geno-
types (e.g., trees) on the top, and the geometric crossover
(GXD) operating on the phenotypes (i.e., output vectors)
induced by the genotype-phenotype mapping P , at the bot-
tom. It holds that for any T1, T2 and T3 = GXSD(T1, T2)
then P (T3) = GXD(P (T1), P (T2)).

T1 × T2
GXSD

−−−−−−−−−−−→ T3yP

yP

yP

O1 × O2
GXD

−−−−−−−−−−−→ O3

(1)

The problem of finding an algorithmic characterization of se-
mantic geometric crossover can be stated as follows: given a
family of functions H, find a recombination operator GXSD

(unknown) acting on elements of H that induces via the
genotype phenotype mapping P a geometric crossover GXD

(known) on output vectors. E.g., for the case of Boolean
functions with fitness measure based on Hamming distance,
output vectors are binary strings and GXD is a mask-based
crossover. We want to derive a recombination operator act-
ing on Boolean functions that corresponds to a mask-based
crossover on their output vectors. Note that there is a differ-
ent type of semantic geometric crossover for each choice of
space H and distance D. Consequently, there are different
semantic crossovers for different GP domains. Furthermore,
note that as the semantic crossover works directly on the
semantic space of functions, it does not matter how func-
tions are actually represented as the representation does not
affect the search behaviour. For the sake of contrasting this
framework with traditional GP, we will represent functions
as trees.

Definition 1. Boolean semantic crossover: Given two
parent functions T1, T2 : {0, 1}n → {0, 1}, the recombi-
nation SGXB returns the offspring Boolean function T3 =
(T1 ∧ TR) ∨ (TR ∧ T2) where TR is a randomly generated
Boolean function (see Fig. 1).

Definition 2. Boolean semantic mutation: Given a
parent function T : {0, 1}n → {0, 1}, the mutation SGMB
returns the offspring Boolean function TM = T ∨ M with
probability 0.5 and TM = T ∧M with probability 0.5 where
M is a random minterm of all input variables.

Theorem 1. SGXB is a semantic geometric crossover
for the space of Boolean functions with fitness function based
on Hamming distance, for any training set and any Boolean
problem. SGMB is semantic 1-geometric mutations for Boolean
functions with fitness function based on Hamming distance.

The proof of the previous theorem can be found in [16]. In
the following, we give an example to illustrate the theorem
for the crossover. Let us consider the 3-parity problem, in
which, we want to find a Boolean function F (X1, X2, X3)
that returns 1 when an odd number of input variables is 1,
0 otherwise. Its truth table is in Table 1 (first 4 columns).
As we have 3 input variables, there are 23 possible input
combinations (first 3 columns of Table 1). In this example,
we consider the training set to be made of all 8 entries of the
truth table. However, normally the training set comprises
only a small subset of all input-output pairs. The target
output vector Y is the binary string 01101001 (column 4
of Table 1). For each tree representing a Boolean function,
one can obtain its output vector by querying the tree with



AND
T1 = / \

X1 X2

OR
T2 = / \

X2 X3

NOT
TR = |

X3

Crossover Scheme

OR
/ \

AND AND
T3 = / \ / \

T1 TR NOT T2
|
TR

Offspring

OR
/ \

AND X3
= / \

AND NOT
/ \ |
X1 X2 X3

Figure 1: T1 and T2 are parent functions and TR is a random function. The offspring T3 is obtained by
substituting T1, T2 and TR in the crossover scheme and simplifying algebraically.

Table 1: Truth table of 3-parity problem (first 4
columns). Output vectors of trees in Figure 1 (last
4 columns): of parents T1 and T2, of random mask
TR, and of offspring T3.

X1 X2 X3 Y P (T1) P (T2) P (TR) P (T3)
0 0 0 0 0 0 1 0
0 0 1 1 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 0 1

all possible input combinations. The output vectors of the
trees in Figure 1 are in the last 4 columns of Table 1. The
fitness f(T ) of a tree T (to minimise) is the Hamming dis-
tance between its output vector P (T ) and the target out-
put vector Y (restricted to the outputs of the training set),
e.g., the fitness of parent T1 is f(T1) = HD(P (T1), Y ) =
HD(00000011, 01101001) = 4. The semantic distance be-
tween two trees T1 and T2 is the Hamming distance between
their output vectors P (T1) and P (T2), e.g., the semantic
distance between parent trees T1 and T2 is SD(T1, T2) =
HD(P (T1), P (T2)) = HD(00000011, 01110111) = 4. Let
us now consider the relations between the output vectors of
the trees in Table 1. The output vector of TR acts as a
crossover mask to recombine the output vectors of T1 and
T2 to produce the output vector of T3 (in P (TR), a 1 in-
dicates that P (T3) gets a bit from P (T1) for that position,
and 0 that the bit to P (T3) is from P (T1)). This crossover
on output vectors is a geometric crossover w.r.t. Hamming
distance, as P (T3) is in the Hamming segment between
P (T1) and P (T2) (i.e., it holds that HD(P (T1), P (T3)) +
HD(P (T3), P (T2)) = HD(P (T1), P (T2))), as we can ver-
ify on the example:
HD(00000011, 01010111) +HD(01010111, 01110111) = 3+
1 = 4 = HD(00000011, 01110111). This shows that the
crossover on trees in Figure 1 is a semantic geometric crossover
w.r.t. Hamming distance.

Intuitively, the reason the theorem holds in general is that
the crossover scheme in Figure 1 describes, using the lan-
guage of Boolean functions, the selecting action of the re-
combination mask bit on the corresponding bits in the par-

ents to determine the bit to assign to the offspring (i.e., it
is a 1-bit multiplexer function piloted by the mask bit).

As the syntax of the offspring of semantic operators contain
at least one parent, the size of individuals grows quickly
in the number of generations. To keep their size manage-
able during evolution, we need to simplify offspring suffi-
ciently and efficiently (not optimally, as that is NP-Hard
on many domains) without changing the computed function.
The search of semantic crossover and semantic mutation
is completely unaffected by syntactic simplification, which
can then be done at any moment and in any amount. For
Boolean functions, there are quick function-preserving sim-
plifiers. For the other domains, computer algebra system
and formal methods can be used for these purpose.

3. RUNTIME ANALYSIS OF
SEMANTIC MUTATIONS

We consider two families of semantic mutations, pointwise
and blockwise mutations. They differ on the level of gran-
ularity of the changes to the output vector they can make.
Pointwise mutations can change single entries independently.
Blockwise mutations make the same change to entire blocks
of entries.

3.1 Pointwise Mutations
We design semantic mutations that correspond to traditional
mutations on the output vector. This will highlight a num-
ber of fundamental issues of semantic mutation and allow
us to identify the requirements a semantic mutation should
meet to be efficient.

Let us first consider the case in which the training set encom-
passes all possible input-output pairs of a Boolean function
with n input variables. The size of the output vectors is
N = 2n, which is also the number of examples in the train-
ing set. A natural definition of problem size is the number of
input variables n of the functions in the search space. Let us
also assume that we have a GSGP (e.g., searching the space
of functions represented as trees) that is exactly equivalent
to a (1+1) EA (with mutation probability 1/N) or to a RLS
on the space of output vectors. The runtime of GSGP would
be the same as of (1+1) EA or RLS on OneMax on the space
of output vectors, which is O(NlogN) = O(n2n). This high-
lights a first issue: although the fitness landscape seen by
GSGP is OneMax, since the size of the output vectors N
is exponentially long in the problem size n, the runtime of
GSGP is exponential.



A second issue is that with an exponential size of the training
set in n, each single fitness evaluation takes exponential time
as it requires to evaluate all the outputs of a function against
the target vector on exponentially many fitness cases. Nat-
urally, in practice, the training set encompasses only a small
fraction of all the input-output pairs of a function. To be
able to evaluate the fitness of a function in polynomial time
the size of the training set needs to be polynomial in n. In
the following, we will consider the size of the training set (τ)
to be linear in n (it is easy to extend the analysis to polyno-
mial size of the training set). This transforms the problem
seen by the EA on output vectors into a “sparse” version
of OneMax in which most of vector entries are neutral, and
the remaining entries, whose locations in the output vector
are unknown, give each a unitary contribution to the fitness.
Even with a training set of polynomial size, it is easy to see
that both RLS and (1+1) EA (with mutation probability
1/N) take exponential time to find the optimum. This is
because at each generation the probability of mutating a
non-neutral position of the output vector is exponentially
small, hence it takes exponential time to get an improve-
ment. What would it be then a mutation operator that
gives rise to a polynomial runtime on the sparse OneMax
problem?

3.1.1 Initialisation operator
Before attempting answering this question, let us consider
another issue with semantic mutation. Can we actually
implement semantic mutation operators corresponding to
(1+1) EA and RLS efficiently? Even implementing the ini-
tialisation operator that generates a function uniformly at
random in the sematic space takes exponential space and
time most of the time! This is because it is equivalent
to sampling its output vector uniformly at random, which
is a random binary string exponentially long in n. From
Kolmogorov complexity theory, we know that only a loga-
rithmically small fraction of random binary strings can be
compressed. So, most of the initial random functions are
exponentially long and take exponential time to generate.
Fortunately, the problem is easily solved by starting from
an arbitrary initial solution which admits a short represen-
tation (e.g., the True function) rather than from a random
one. This does not have a significant impact on the run-
time, and on the runtime analysis that will be done w.r.t.
the worst-case initial solution.

3.1.2 Point mutations
The original semantic mutation for Boolean functions [16]
can be implemented efficiently, and it is reported below.

Definition 3. Forcing point mutation: Given a par-
ent function X : {0, 1}n → {0, 1}, the mutation returns the
offspring Boolean function X ′ = X ∨M with probability 0.5,
and X ′ = X ∧M with probability 0.5, where M is a random
minterm of all input variables.

Seen it on the output vectors, this operator forces to a ran-
dom value exactly one randomly selected entry of the parent
output vector. This is because adding (∨) a minterm to a
Boolean expression has the effect of forcing the correspond-
ing single entry in the truth table to 1, and multiplying it (∧)

Table 2: First three columns from left: truth table
of 2-parity problem with inputs X1 and X2, and out-
put Y . Three rightmost columns: output vectors
of the random minterm M , of the parent P and of
the produced offspring O obtained by applying the
bit-flip point mutation.

X1 X2 Y M P O
1 1 0 1 1 0
1 0 1 0 1 1
0 1 1 0 1 1
0 0 0 0 0 0

by a negated minterm forces the corresponding entry to 0.
This operator can be also rephrased as: it flips a randomly
selected entry with probability 0.5 and it does not change
anything with probability 0.5. So, it can be looked at as a
semi-point mutation. Like point mutation, the runtime of
GSGP with this operator is exponential.

The semantic mutation below (bit-flip point mutation) in-
duces exactly point mutation on output vectors. This muta-
tion can be seen as crossover of the parent with the negation
of itself with a crossover mask which selects all bits but one
from the parent.

Definition 4. Bit-flip point mutation: Given a par-
ent function X : {0, 1}n → {0, 1} the mutation returns the
offspring Boolean function X ′ =

(
X ∧M

)
∨
(
M ∧ X

)
, where

M is a random minterm of all input variables.

Seen it on the output vectors, this operator flips the output
of the parent function corresponding to the combination of
the input variables that makes the random minterm M true.
Let us illustrate this mutation with an example. Let us
consider the 2-parity problem, so n = 2 input variables. Its
truth table is in Table 2, in the first three columns from left.
Let us consider the following application of the bit-flip point
mutation operator:

Random minterm: M = X1 ∧X2

Parent: P = (X1 ∧X2) ∨ (X1 ∨X2)
Offspring: O = (P ∧M) ∨ (P ∧M)

The three rightmost columns of Table 2 report the corre-
sponding output vector view of the application of the bit-flip
point mutation above. Note that the output vector of the
offspring is obtained by flipping the bit of the output vector
of the parent corresponding to the ’1’ in the output vector
of the random minterm (boldface in Table 2).

3.1.3 Bitwise mutation
Let us now consider bitwise mutation, which flips each bit
independently with a certain probability. Before considering
a semantic mutation that induces bitwise mutation on the
output vectors, we show that bitwise mutation with an ade-
quate mutation probability can lead to a polynomial runtime
on the sparse OneMax with exponentially long chromosome.



Theorem 2. On the sparse OneMax problem with an ex-
ponentially long chromosome with N = 2n entries and with
τ < N non-neutral entries, (1+1) EA with bitwise mutation
with p = Ω(1/τ) finds the optimum in time O (τ log τ). In
particular, when τ is polynomial in n, the runtime is poly-
nomial.

Proof. We define the potential k as the number of in-
correct bits. At each iteration the potential decreases if an
incorrect bit is flipped. This happens with probability

pk > k
1

τ

(
1− 1

τ

)N−1

> k
1

τ

(
1− 1

N

)N−1

>
k

eτ

Since the potential can decrease at most τ times and the
expected time for the potential to decrease is 1/pk, the ex-
pected time to reach k = 0 (an finding the solution to the
problem is)

E(T ) =

τ∑
i=0

1/pk =

τ∑
i=0

eτ

i
= O(τ log τ)

How can we implement a semantic mutation that corre-
sponds to bitwise mutation with mutation probability p on
the output vectors?

Definition 5. Bitwise mutation: Given a parent func-
tion X : {0, 1}n → {0, 1} the mutation do the following:

• Sample an integer number x from x ∼ Bin(p,N)

• Generate x minterms uniformly at random without rep-
etitions {M1, · · · ,Mx}

• The offspring is X ′ =
(
X ∧M

)
∨
(
M ∧ X

)
, where M =

M1 ∨ · · · ∨Mx.

Unfortunately, also this operator has a problem. Using a
probability of mutation p = Ω( 1

τ
), which by theorem 2

makes the runtime of GSGP efficient for a training set size
τ polynomial, this implementation becomes exponential in
space hence in time because the expected number of minterms
making upM is pN , which is exponential in n. So, by chang-
ing the probability p, what it is gained in terms of runtime
of GSGP, it is then lost in terms of efficiency of the imple-
mentation of a single application of the mutation operator,
and vice versa. The challenge is therefore finding a semantic
mutation operator that, at the same time, (i) can be imple-
mented efficiently and (ii) makes the runtime of GSGP poly-
nomial in n for any Boolean problem. Does such operator
even exist?

3.2 Blockwise Mutations
In this section, we consider four semantic mutations, which
extend the forcing point mutation introduced in the previ-
ous section in different ways. The extension is obtained by
replacing the mutating random minterm M with an incom-
plete minterm which may include only a subset of all the
input variables. The four mutations differ on the family of

Table 3: Example of FBM. First four columns: truth
table of 3-parity problem. Remaining columns:
output vectors of the drawn random incomplete
minterm M = X1 ∧X2, of the parent P = X2 ∨ (X1 ∧
X2 ∧ X3), and of the offspring O = P ∨ M = X1 ∧ X2.
Horizontal lines separate blocks of the partition of
the output vectors obtained by fixing variables X1

and X2.

X1 X2 X3 Y M P O
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 1 0 1
1 0 1 0 1 1 1
1 1 0 0 0 1 1
1 1 1 1 0 1 1

incomplete minterms considered and their probability dis-
tributions. Like the forcing point mutation, these mutation
operators can be implemented efficiently. The outstanding
issue is therefore to see if they lead to a polynomial runtime
for GSGP. Using an incomplete, rather than a full, minterm
in the forcing mutation has the effect to force more than an
entry of the output vector to the same value, i.e., it forces
a block of entries to the same value, hence the name block
mutations. These operators could work well on the sparse
OneMax problem on exponentially long strings. As a first
approximation, the idea behind these operators is that, by
using sufficiently few variables in the incomplete minterm,
the mutation would affect sufficiently many entries of the
output vector, so that typically a non-neutral bit will be
affected after a single application of the mutation operator.
This, in effect, would be equivalent to searching the OneMax
problem on the non-neutral entries, which are polynomi-
ally many, hence leading to a polynomial optimisation time.
However, the analysis of block mutations is complicated by
the fact that, unlike traditional mutations, they force depen-
dencies between values at different entries of the string, as
they cannot act separately on a single entry. In the follow-
ing, we propose four block mutations that are analysable.
These mutations are introduced in increasing order of the
complexity of dependency between entries they produce.

3.2.1 Fixed Block Mutation
Definition 6. Fixed Block Mutation (FBM): Let us

consider a fixed set of v < n variables (fixed in some arbi-
trary way at the initialisation of the algorithm). FBM draws
uniformly at random an incomplete minterm M comprising
all fixed variables as a base for the forcing mutation.

Fixing v of the n input variables induces a partition of the
output vector into b = 2v blocks each covering 2n−v en-
tries of the output vector (which has a total of 2n entries).
There is a one-to-one correspondence between the set of all
incomplete minterms M made up of the fixed v variables
and the set of all the blocks partitioning the output vector.
The effect of mutation FBM on the output vector is that
of selecting one block uniformly at random and forcing all



the entries belonging to the block to the same value, 0 or
1, selected at random with equal probability. Table 3 shows
an example of application of FBM.

GSGP with FBM is restricted to search the space of func-
tions whose output vectors have the same output values for
all entries of each block. This creates a difficulty: for some
training sets of some Boolean problems, the optimal function
satisfying the training set is not reachable for some choice of
the fixed variables, as it lies outside the search space. This
happens when at least two training examples with different
outputs belong to the same block (e.g., in Table 3 the values
of the entries in the first block of the optimum output vector
Y are 0 and 1. This solution is therefore not reachable as
reachable output vectors have both these entries set at zero
or at one).

The particular settings of the analysis are as follows. We
make the standard Machine Learning assumption that the
training set T is sampled uniformly at random from the set
of all input-output pairs of the Boolean problem P at hand.
The training set is sampled only once, before the search for
a function satisfying it has started, and, in particular, it
remains unchanged during evolution. Therefore, from an
optimisation viewpoint, the training set T defines the spe-
cific instance of the Boolean problem P being tackled by the
search. The reachability of the optimum is uniquely deter-
mined when the training set T of a problem P is fixed, and
when also the set V of variables inducing the partition of the
output vector is fixed. We are interested in the worst-case
probability across all Boolean problems that GSGP with
FBM initialised with a random fixed set of variables V can
reach the optimum on a training set sampled uniformly at
random from the problem at hand 2. Furthermore, when
GSGP with FBM can reach the optimum, we are interested
in an upper-bound w.r.t. all Boolean problems (any P ) and
all problem instances (any T of P ) of the expected runtime
to reach the optimum.

Theorem 3. For any Boolean problem P , given a train-
ing set T of size τ sampled uniformly at random on the set
of all input-output pairs of P , GSGP with FBM with an
arbitrarily fixed set of v variables finds the optimal Boolean
function satisfying the training set T in time O(b log b), with

probability p ≈ e−
τ2

2b for b >> τ , where b = 2v is the number
of blocks partitioning the output vector.

Proof. GSGP with FBM can reach the optimum pro-
vided that each distinct training example of the sampled
training set T belongs to a distinct block. This holds irre-
spective of the prescribed output of the training examples,
hence on any problem P . The optimum can be reached be-
cause with each training example in a different block, one
application of FBM can flip independently the output value
of each training example in the current solution. So, a func-
tion with any configuration of the outputs on the training
set can be reached by the search.

2This is different from the traditional notion of probabil-
ity of success of a search algorithm, as the source of the
probabilistic outcome is the randomisation on the sampled
problem instance (i.e., sampled training set T from P ), and
not the randomisation of the search algorithm.

The τ training examples are sampled uniformly at random
on the set of all input-output pairs, i.e., uniformly on the
output vector. The output vector is partitioned in b blocks of
equal size. The probability of having each training example
in a distinct block can be calculated by looking at it as a
balls and bins process: blocks are bins of equal size, training
examples are balls thrown uniformly at random on the bins.
The probability of having at most one ball in each bin is
the probability of throwing the first ball in an empty bin (1)
times the probability of throwing the second ball in a bin
left empty after the first throw ((b− 1)/b), and so on, until
all balls have been thrown. So we have:

P (b, τ) =

τ∏
i=1

b− (i− 1)

b

When the number of bins is much larger than the number
of balls, i.e., b >> τ , i−1

b
is very small, as ex ≈ 1 + x for x

close to 0, then P (b, τ) ≈
∏τ

i=1 e
− i−1

b = e−
τ(τ−1)

2b ≈ e−
τ2

2b .

When each example of the training set belongs to a distinct
block, GSGP with FBM, which at each generation creates
an offspring by forcing all the entries of an entire block to
the same value, can modify independently each single output
value of the current solution corresponding to an entry in the
training set. This search is therefore equivalent to that of
RLS with point forcing mutation on binary strings of length
b on a sparse OneMax problem with τ non-neutral entries.
As point forcing mutation makes no change half of the time,
else it makes a point mutation, RLS with point forcing muta-
tion takes twice the time of standard RLS with point muta-
tion. With a routine argument, we obtain that the runtime
of RLS on the sparse OneMax problem is O(b log τ), which
is bounded from above by O(b log b) as b > τ .

The number of blocks b partitioning the output vector is
critical for the performance of the search. On one hand,
from the theorem above, the runtime of GSGP with FBM
becomes larger for a larger number of blocks. Therefore, we
would like to have as few blocks as possible. On the other
hand, the probability of success becomes higher as b gets
larger 3. So, in this respect, the more blocks the better. The
number of blocks b is an indirect parameter of the algorithm
that can be chosen by choosing the number v of variables in
the initial fixed set, as b = 2v. Furthermore, the number of
blocks b should be chosen relative to the size of the training
set τ (e.g., we must have b ≥ τ to have enough bins to host
all balls individually). The question is therefore if we can
always choose the number of blocks relative to the number
of training examples such that we have both a polynomial
runtime and high probability of success. It turns out that
this is always possible, as stated in the theorem below.

Theorem 4. Let us assume that the size of the training
set τ is a polynomial nc in the number of input variables n,
with c a positive constant. Let us choose the number of fixed
variables v logarithmic in n such that v > 2c log2(n). Then,

3This can be intuitively understood, as increasing the num-
ber of bins (i.e., blocks) while keeping the number of balls
unchanged (i.e., training examples) increases the chance of
getting each ball in a separate bin.



GSGP with FBM finds a function satisfying the training set
in polynomial time with high probability of success, on any
problem P, and training set T uniformly sampled from P.

Proof. The number of blocks b = 2v is then a polyno-
mial in n with degree strictly larger than 2c, i.e., b = n2c+ϵ

for some ϵ > 0. From Theorem 3, we have a success proba-

bility of p ≈ e−
τ2

2b = e
− n2c

2n2c+ϵ = e−
1
2
n−ϵ

. As the argument
of the exponent approaches 0 as n grows, we can use the
expansion ex = 1+x obtaining p = 1− 1

2
n−ϵ, which tells us

that the runtime holds with high probability for any ϵ > 0.
Again for Theorem 3 the running time is O

(
n2c logn

)
, that

is polynomial in the size of the problem.

3.2.2 Varying Block Mutation
The Fixed Block Mutation operator is an unnaturally“rigid”
operator as it requires to fix a set of variables at the be-
ginning of the search in some arbitrary way (e.g., selecting
them at random), which are then used throughout evolu-
tion as sole components of the incomplete minterms used
in the forcing mutation. On one hand, this operator is ap-
pealing because it fixes a partition structure on the output
vectors that remains unchanged during evolution, and that
makes it particularly suitable for theoretical analysis. On
the other hand, fixing the partition structure may restrict
the search space too much and make the the optimum func-
tion lie outside the search space, hence unreachable. In the
following, we introduce a more “flexible” mutation opera-
tor that extends the Fixed Block Mutation, and enlarges its
search space.

Definition 7. Varying Block Mutation (VBM): Let
v < n be a parameter. VBM draws uniformly at random an
incomplete minterm M made of v of the n input variables
as a base for the forcing mutation.

The VBM operator can be thought as constructing an in-
complete minterm in two stages. First, it draws uniformly
at random v distinct variables from the set of n input vari-
ables to form a set V variables. Then, it draws uniformly at
random an incomplete minterm M comprising all variables
in V as a base for the forcing mutation. The effect on the
output vector of a single application of the VBM operator
is, therefore, as follows: first, it draws uniformly at random
a partitioning of the output vector with b = 2v blocks, each
covering 2n−v entries of the output vector; then, it selects
one block of the current partitioning uniformly at random
and it forces all the entries belonging to the block to the
same value, 0 or 1, selected at random with equal probabil-
ity.

Since when using VBM the partition structure on the output
vector is not fixed, the search space seen by GSGP with this
operator is larger than that with FBM, and in particular,
the former search space covers completely the latter. The
reason for that is that GSGP with VBM has always a chance
to select the fixed variable set used by FBM to feed to VBM,
and explore this part of the search space.

We say that an operator is more expressive than another
when the search space covered by the former includes the

search space covered by the latter. In this case VBM is
more expressive than FBM. When the optimum of a cer-
tain Boolean problem is within the search space of a less
expressive operator is also within the search space of a more
expressive search operator, but the viceversa is not true in
general. From its definition, the probability of success of
an operator is higher than the probability of success of all
operators less expressive than it. We say that an operator is
completely expressive when its search space covers all solu-
tions of all Boolean problems and all training sets, thus its
probability of success is 1. Since VBM is more expressive
than FBM its probability of success is higher. However, as
FBM, also VBM is not able to always reach the optimum for
any choice of Boolean problem and training set: there exists
certain training set configurations such that for all parti-
tionings induced by any choice of v input variables, there
are always at least two training examples with different out-
put values belonging to the same block.

Proposition 1. Consider GSGP with VBM using v < n.
Then there exists a training set of size τ = n + 1 of the
Boolean parity problem on which this algorithm cannot find
the optimum.

Proof. Consider the training set with input entries T =
{x ∈ {0, 1}n | ∃!i ∈ {1, ..., v} xi = 1} ∪ {(0, . . . , 0)} and
as output values those of the parity problem (i.e., (0 · · · , 0)
has output 0, while all the other vectors have output 1, as
in Example 1).

Let M be an incomplete minterm of v < n variables. If
the all-zero vector satisfy M , then there exists a vector with
output value 1 in T that satisfy M . Since VBM is a forcing
mutation and every incomplete minterm that is satisfied by
the all-zero vector is always satisfied also by another vector
in τ with different output value, it is not possibile to obtain
a perfect score on the training set τ .

Example 1. We will illustrate the training set of Propo-
sition 1 for n = 3 variables. In this case the training set
is:

v1 v2 v3 f(v1, v2, v3)
x1 = 0 0 0 0
x2 = 1 0 0 1
x3 = 0 1 0 1
x4 = 0 0 1 1

where v1, v2, v3 are variables and x1, . . . , x4 elements of the
training set. Note that for any choice of two variables we
cannot separate x1 from another element of the training set:
with v1 and v2 we cannot separate x1 and x4, with v1 and v3
we cannot separate x1 and x3, and with v2 and v3 we cannot
separate x1 and x2.

In the previous section, we have shown that GSGP with
FBM, when it can reach the optimum, it finds it, quite re-
markably, in polynomial time in the worst case w.r.t. all
Boolean problems and training sets. Unfortunately, GSGP
with VBM requires exponential time to find the optimum in
the worst case.



Proposition 2. Consider GSGP with VBM using v =
c logn < n variables for some constant c > 0. Then there
exists a training set of size τ = nc of the Boolean parity
problem on which this algorithm needs superpolynomial time
to find the optimum.

Proof. Consider the training set with input entries T =
{x ∈ {0, 1}n | ∀i ∈ {v + 1, ..., n} xi = 0} and as output
values those of the parity problem (see Example 2). Note
that the number of entries in the training set is τ = 2v = nc.

For every selection of variables different from the first v vari-
ables, any incomplete minterm M made with those variables
will be such that the subset T ′ of T of all train instances
that satisfy M contains exactly |T ′|/2 instances with output
value 1 and |T ′|/2 instances with output value 0. Since VBM
is a forcing mutation, usingM as the incomplete minterm for
the mutation it is not possible to increase the fitness (i.e., if
all output are forced to 1 then we obtain the incorrect value
for half of the instances in T ′, the same if we force 0).

There is only one selection of variables that allows to in-
crease the fitness (i.e., the first v variables). As the selection
is uniform across all the subsets of v variables, in expectation

only one step every
(
n
v

)
≥

(
n
v

)v
= nc log n

(c logn)c log n can produce

an individual with a better fitness and that can be accepted
by the mutation.

Example 2. Consider the following training set in four
variables:

v1 v2 v3 v4 f(v1, v2, v3, v4)
x1 = 0 0 0 0 0
x2 = 1 0 0 0 1
x3 = 0 1 0 0 1
x4 = 1 1 0 0 0

where v1, . . . , v4 are variables and x1, . . . , x4 elements of the
training set. Note that the only choice of variables that al-
low us to select elements of the training set with equal out-
put value (and thus increase the fitness) is {v1, v2} However
there are

(
4
2

)
= 6 different possible subsets of two variables.

Hence the fitness increase just once every 6 generations, in
expectation.

3.2.3 Fixed Alternative Block Mutation
In the following we introduce a mutation operator which is
half-way between FBM and VBM, which has higher proba-
bility of success than FBM and finds the optimum in poly-
nomial time in the worst case.

Definition 8. Fixed Alternative Block Mutation
(FABM): Let v < n be a parameter. Let us consider a fixed
partition of the set of the n input variables (fixed in some
arbitrary way at the initialisation of the algorithm) into n/v
groups of v variables each. These groups of variables are
the set of fixed alternatives of the mutation operator. FABM
selects uniformly at random a group of variables among the
fixed alternatives, and then draws uniformly at random an
incomplete minterm M comprising all the variables in that
group as a base for the forcing mutation.

The FABM operator is half-way between FBM and VBM: as
FBM, it fixes the choice of (groups of) variables at the ini-
tialisation, however, as VBM, it can use each time different
(groups of) variables to construct the incomplete minterm
to feed to the forcing mutation. From their definitions we
have that FABM is more expressive than FBM, but less ex-
pressive than VBM. So, the probability of success of FABM
is bounded below by the probability of success of FBM, and
bounded above by the probability of success of VBM. We
saw in the previous section that VBM is not completely ex-
pressive as there are some problems it cannot solve. There-
fore, FABM is also not completely expressive as it is less
expressive than VBM. The following theorem relates the
performance of GSGP with FABM to those with FBM.

Theorem 5. For any Boolean problem of size n on which
GSGP with FBM with v fixed variables finds an optimal
solution with probability p in time T , GSGP with FABM
with groups of v variables finds an optimal solution in time
T ′ = O

(
n
v
T
)
with success probability p′ ≥ 1− (1− p)n/v.

Proof. For GSGP with FABM with groups of v fixed
variables, it holds that:

• if FBM finds the optimum for a given problem and
training set then it exists a group of variables among
the alternatives for which we can always improve any
current non-optimal solution;

• the worst case happens when there is only one group
of variables that can be used to improve on the cur-
rent solution. In this case the runtime is n/v times
slower than the runtime of GSGP with FBM as, in ex-
pectation, the algorithm can draw a group of variables
that allows for an improvement only once every n/v
trials. Thus the running time of GSGP with FABM is
T ′ = n

v
T .

GSGP with FABM tries to find the optimum using n/v dis-
joint groups of the input variables. The probability that
the optimum cannot be found using any of those subsets is
bounded above by (1−p)n/v, thus the probability of success

of FABM is p′ ≥ 1− (1− p)n/v.

As a corollary, as GSGP with FBM finds an optimal solu-
tion in polynomial time with high probability, GSGP with
FABM finds it with higher probability and higher, but still
polynomial, time.

3.2.4 Multiple Size Block Mutation
The block mutation operators considered so far cannot guar-
antee to find the optimum in all cases, but when they do they
may find it in polynomial time. Instead, pointwise mutation
operators can always find the optimum as they can act on the
value of any entry of the output vector independently from
any other entry. However, they need exponential time to
find the optimum on any problem and any choice of training
set. In the following, we introduce a mutation operator that
combines both blockwise and pointwise mutations, which
attempts to preserve the benefits of both.



Definition 9. Multiple Size Block Mutation (MSBM):
The operator MSBM samples the number of variables v to
consider uniformly at random between 0 and n. Then, it
selects v variables at random from the set of n input vari-
ables, and it generates uniformly at random an incomplete
minterm M using those variables, which is then used as a
base for the forcing mutation.

The effect on the output vectors of the feature of MSBM
that the number of variable v is not fixed but it can be any
number between 0 to n at each application is that the num-
ber of blocks partitioning the output vectors can vary from
1 block with 2n entries to 2n blocks with a single entry each.
On one hand, as for pointwise mutation, this allows GSGP
with MSBM to always reach the optimum as each single en-
try of the output vector can be acted upon independently by
the mutation. On the other hand, GSGP with MSBM can
solve efficiently any problem that can be solved efficiently
by GSGP with the block mutation VBM. This is because
MSBM can simulate VBM on v variables in time which is in
the worst case n times larger (as the probability of selecting
exactly v variables by MSBM is 1/n). However, the time
needed by GSGP with MSBM to reach an optimal solution
can be exponential on some training set, as shown below.

Proposition 3. There exists a training set for which GSGP
with MSBM takes expected exponential time to find the op-
timum.

Proof. Consider the training set with input entries T =
{x ∈ {0, 1}n | ∃!i ∈ {1, ..., v} xi = 1} ∪ {(0, . . . , 0)} and as
output values those of the parity problem. Except for the
all-zero vector, that has output value 0, all the others output
values are 1 (See Example 1).

By the same reasoning as the proof of Proposition 1, the
only way to reach the optimum is to obtain a minterm M
that is satisfied by the all-zero vector and no other vector.
Note that there exists only one minterm of n variables with
this property.

Since there are 2n complete minterm and we select each of
them with equal probability, selecting the correct one re-
quires an exponential number of trials in expectation.

The training set of Example 1 is also a training set in which
MSBM takes expected exponential time to find the opti-
mum.

On Boolean problems whose solutions can be written as
Boolean formulas with a small number of conjunctions, and
each conjunction uses few variables, it is possible to find the
optimum in polynomial time.

Theorem 6. Let ϕ be a DNF formula with α = Poly (n)
conjunctions and every conjunction with at most β = O (1)
variables. Then ϕ can be obtained by GSGP with MSBM in
expected polynomial time.

Proof. The time to select a correct conjunction is bounded
by the number of conjunctions of β variables, i.e., by

(
n
β

)
2β =

O(nβ2β) conjunctions, and the time to select the correct
conjunction size, i.e., O(n).

The action of selection preserves correctly selected conjunc-
tions, thus α is only a multiplicative factor, since only α
conjunctions must be selected. Therefore, the time needed
to reach the optimum is O

(
αnβ+12β

)
. Since β is a constant

and α is polynomial in n, the resulting time is polynomial
in n.

It is interesting to note that the previous result is indepen-
dent from the choice of the training set, and it depends solely
on the class of Boolean problem.

Note that for all the block mutation considered, the length of
the Boolean function found as optimum is bounded above by
the time complexity. In fact, as all the block mutations con-
sidered add a single (incomplete) minterm at each generation
of GSGP, the number of minterms forming the optimum is
bounded from above by the runtime, so it is polynomial.
Thus, when the time complexity is polynomial, the length
of the Boolean function found is also polynomial .

4. EXPERIMENTS
In this section, we present an experimental investigation
of the time to reach the optimum and the success rate for
GSGP with the four block mutations introduced in this pa-
per. The theoretical analysis has focused on worst case anal-
ysis and asymptotic behaviour. The empirical investigation
complements the theoretical one focusing instead on the av-
erage case for growing finite problem size.

A problem instance is a pair of a Boolean function P and a
training set T . We set the size of the training set τ equal to
the number on input variables n of the Boolean function, i.e.,
the problem size. At each run, a randomly selected training
set of a randomly selected function is generated and tested
on GSGP with the four mutations. For each problem size
from 8 to 48 with step 8, 100 runs were performed. For all
mutations except MSBM, the number of variables selected
was v = 2⌈log2 n⌉. We used a GP with population of one,
initialised with a random minterm, mutation applied with
probability 1, and the offspring replaced the parent only if it
had better fitness (i.e., a higher number of correct outputs
on the training set). A run was stopped when either the
optimal solution was found or 105 generations had passed 4.

The results on the success rates for the different mutations is
presented in Table 4. As for FBM, with the chosen v theory
says that asymptotically GSGP has a constant probability
of success different from 1. The fluctuations and deviations
from constancy for growing problem size seen experimen-
tally are due to the rounding in the used expression for v
and to the fact that the theory does not apply for “small”
problem size. As for both VBM and FABM, from theory
we expect an asymptotical rate of convergence higher than

4The choice of using a limit as high as 105 generations was
due to the necessity to avoid stopping a run too early, thus
decreasing our estimates of both the success rate and the
expected time to reach an optimal solution. The value 105

was empirically chosen both to reach that goal and to allow
a reasonable completion time for the experiments.



Table 4: Success rate of GSGP on random Boolean
problems for different problem sizes and mutations.

Problem Size
8 16 24 32 40 48

FBM 0.95 0.76 0.93 0.74 0.87 0.88
VBM 0.95 0.99 1.00 1.00 1.00 1.00
FABM 1.00 1.00 1.00 1.00 1.00 1.00
MSBM 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 2: Average number of generations GSGP
took to attain an optimal solution on random
Boolean problems. The error bars represents one
standard deviation above and below the average.

for FBM. This is confirmed experimentally. It is also not
surprising that the rate of convergence approaches 1 for in-
creasing problem size for these two mutations, as the chosen
v is a threshold point for the asymptotic behaviour of FBM
between constant probability of success different from one,
and probability of success one. As expected from the theory,
MSBM converged to the optimum at all times given enough
time.

The results on the number of generations to reach an optimal
solution are presented in Table 5. A plot of the optimisa-
tion time for increasing problem size is presented in Fig. 2.
Experimentally FBM, VBM and FABM have very similar
performance. The experiments estimate the average-case
performance which draw quite a different picture from the
worst-case performance determined theoretically in which
FBM and FABM have a polynomial worst case, and VBM
an exponential worst case. The rather non-smooth shape of
the performance curves for these three mutations is caused
by the rounding effect in the used expression for v. Fur-
thermore, it is striking that MSBM performs significantly
better than the other mutations, and, unlike those, MSBM
seems to present a linear trend between optimisation time
and problem size. Again, the experimental average-case pic-
ture is different from the theoretical one, which prescribes
an exponential worst case for this mutation.

5. SUMMARY AND FUTURE WORK
Geometric semantic genetic programming searches directly
the semantic space of functions. Seen from a geometric view-
point, the genotype-phenotype mapping of GP becomes very

Table 5: Minimum (min), median (med) and max-
imum (max) number of generations for GSGP to
reach the optimum on random Boolean problems.

Problem Size
8 16 24 32 40 48

FBM
Min 34 294 1659 2353 14445 10434
Med 207 1330 5862 6544 28456 27916
Max 649 4959 14229 17068 69617 61842

VBM
Min 44 471 1815 1736 11970 11225
Med 235 1531 5406 6432 29358 28437
Max 759 3841 17355 22863 60965 56365

FABM
Min 18 438 2316 2289 9900 11901
Med 254 1244 5756 6719 25827 28499
Max 863 3925 13675 16792 81845 66043

MSBM
Min 5 117 182 477 1072 2291
Med 115 547 1053 2222 3333 4928
Max 450 2174 2677 8229 11907 14044

simple, and allows us to derive explicit algorithmic charac-
terizations of semantic operators for different domains. The
search of GP with semantic operators on functions (geno-
types) is formally equivalent to the search of a GA with stan-
dard search operators on their output vectors (phenotypes).
Remarkably, the landscape seen by the equivalent GA, hence
by GSGP, is always a cone by construction, for any problem
and any domain. This, at the same time, makes the search
for the optimum much easier than for traditional GP, and it
opens the way to analyse theoretically the runtime of GP in
a general settings – an important open challenge – in an easy
manner by extending known results for GA on one-max-like
problems. In this paper, we have started this line of the-
ory and presented a runtime analysis of GSGP with various
types of mutation on the class of all Boolean functions.

There are a number of peculiar issues arising with GSGP,
which required a careful design of mutation operators to ob-
tain an efficient algorithm. The fitness landscape seen by
GSGP is a heavily neutral extension of OneMax on expo-
nentially long bit strings, in which only a polynomial number
of entries contribute to the fitness. Standard GA mutation
operators, i.e., point mutation and bitwise mutation, give
rise to an exponential runtime. Furthermore, some seman-
tic mutation operators do not admit an efficient implemen-
tation on Boolean functions (i.e., may require exponential
time for generating a single offspring). Blockwise mutations
are mutation operators that can be implemented efficiently
and that at each application force a whole block of bits to
a random value. We proposed four block mutations, two of
which (i.e. FBM and FABM) reach the optimum in poly-
nomial time with high probability on any Boolean problem.
This is a surprisingly general positive result about the worst
case performance of GSGP. Experimental results testing the
average-case complexity of the block mutations have shown
that one of the mutation (i.e. MSBM) seems, on the average
case, much superior to the others, as it finds the optimum all
the times and its runtime grows only linearly in the problem
size.



There is plenty of future work. As training sets, which de-
fine specific problem instances, are sampled at random, it
would be interesting to analyse theoretically the average-
case complexity beside the worst-case as done in the current
paper. We also would like to do further experimental investi-
gations of GP with the new semantic operators on standard
GP benchmarks, to see how they perform on more practical
problems. As there are now a number of runtime results
for GA with crossover, we intend to extend those to analyse
GSGP with semantic crossover. At present, how functions
trained by GP generalise on unseen inputs is a big mystery.
As the effect of semantic operators on the output vectors
is transparent, this may allow us to explicitly characterise
the dependencies between training and testing sets reveling
exactly what the inductive bias of GSGP is. Finally, we
want to analyse GSGP on other domains. This seems to
be within reach as, e.g., semantic operators for arithmetic
functions and classifiers give rise to cone landscapes on real
vectors and integer vectors, which have been studied already
for traditional GA and ES, and whose analysis may be ex-
tended to GSGP.
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