Lecture 02: Architectural Models

Distributed Systems

Behzad Bordbar
School of Computer Science, University of Birmingham, UK
Recap

- Definition of DS
- Examples of DS
- Challenges of the design
 - Heterogeneity
 - Openness
 - Security
 - Scalability
 - Failure handling…
Outline

- Why models?
- models of e-business systems
- various architectures, client-server, p2p

Variations

- Multiple servers
- Proxy servers
- Mobile code

Design requirements
Why models?

\[
L_1 \times w_1 = L_2 \times w_2
\]

????? (more complex models required)

Abstraction to better understand, never real world!
Example: e-Business application

Architecture: structure in terms of separate specified component.

- **User:** client
 - **Presentation Layer**
 - **Application Logic Layer**
 - **Data Layer**

GUI, Webpage, …

Business rules, Operations, …

Layers might exist in the mind Of the designer
Presentation Layer

Facilitate interaction with the user (human or software)
- Service for price checking
- Currency converter

User of the presentation layer submits operations and get responses.

The boundary between P layer and client can be very thin. For example, Java Applet
Application Logic Layer (ALL)

Before the delivery of the result some data processing is required.
Processing is the implementation of the information required by the client of the P. layer
ALL are all those programs and module involved in processing the operation
Example: Bank Cash Machine
Application Logic also called Business process, Business logic
Single Tier: all three into a single component

Presentation

Application
Logic

Data

Dumb Terminal

Mostly in Mainframes from the days that: 640K ought to be enough for anybody.

- Microsoft Chairman Bill Gates, 1981

I think there is a world market for maybe five computers.

- IBM Chairman Thomas Watson, 1943
2-tier Architecture

Birth of PC:
Small computer (PC)
Large computers (Server, Mainframe)

Fat Client VS. Thin Client

The idea of API 😊

Remote Procedure Call

Presentation Layer

Application Logic Layer

Data Layer

user: client
Infrastructure that supports the development of ALL is called a middleware
Sun RPC
Java RMI (Remote Method Inv.)
SOAP (which is RPC based)
CORBA,
JMS (Java Messaging Services)
Data Layer resulted in better interfaces
ODBC (Open DB Connectivity)
JDBC (Java …)
N Tier

Many Distributed Systems (3-Tiers) interacting.

Notice: phrase Tier can also imply physical separation of components, i.e. on various hardware (Physical Tier vs. Logical Tier)

Now,

Question: what the underlying model?

Study of architecture to ensure the system meets preset and future demand
Basic Client/Server model

Client

invocation

result

Server

invocation

result

Global Time
Architectural models

Define

1. software components (processes, objects)
2. ways in which components interact
3. mapping of components onto the underlying network

Why needed?

- to handle varying environments and usage
- to guarantee performance
System architectures

Main
- Client-server
- Peer to peer (P2P)

Variations
- Multiple servers
- Proxy servers
- Mobile code
- Mobile agent (can have serious security problems)
- Network Computer
- Thin client (you have seen this)
Server1 acts as **client** for Server2
Peer processes

Application
Co-ordination code

Application
Co-ordination code

Application
Co-ordination code

Application
Co-ordination code

P2p file sharing

Lecture 02
Multiple servers

Servers may interact
Proxy servers for caching
Client requests results, applet code is downloaded:

Client interacts with the applet:
Design Requirements for DSs

Judging how good the architecture is...

Performance
 - how fast will it respond?

Quality of Service
 - are video frames and sound synchronised?

Dependability
 - does it work correctly?
Responsiveness
 - fast interactive response delayed by remote requests
 - use of caching, replication

Throughput
 - dependent on speed of server and data transfer

Load balancing
 - use of applets, multiple servers
Quality of Service (QoS)

Non-functional properties experienced by users:

Deadline properties

- hard deadlines (must be met within T time units)
- soft deadlines (‘there is a 90% chance that the video frame will be delivered within T time units)
 - multimedia traffic, video/sound synchronisation
 - depend on availability of sufficient resources

Adaptability

- ability to adapt to changing system configuration
Dependability

Correctness
- correct behaviour wrt specification
- e.g. use of verification

Fault-tolerance
- ability to tolerate/recover from faults
- e.g. use of redundancy

Security
- ability to withstand malicious attack
- e.g. use of encryption, etc
Summary

why models?
example of Tired systems. What is the underlying model?
Basic client server
Multiple servers, Proxy servers, P2P
The main requirements of DS are Performance, QoS, Dependability

Further reading: pages 29-47
Selected Exercises

2.1 Describe and illustrate the client-server architecture of one or more major Internet applications (for example, the Web, email or netnews).

2.2 For the applications discussed in Exercise 2.1 state how the servers cooperate in providing a service.

2.4 A search engine is a web server that responds to client requests to search in its stored indexes and (concurrently) runs several web crawler tasks to build and update the indexes. What are the requirements for synchronization between these concurrent activities?

2.9 Distinguish between buffering and caching.