
Geometry of Synthesis
A structured approach to VLSI design

Dan R. Ghica
University of Birmingham

drg@cs.bham.ac.uk

Abstract
We propose a new technique for hardware synthesis from higher-
order functional languages with imperative features based on
Reynolds’s Syntactic Control of Interference. The restriction on
contraction in the type system is useful for managing the thorny
issue of sharing of physical circuits. We use a semantic model in-
spired by game semantics and the geometry of interaction, and
express it directly as a certain class of digital circuits that form a
cartesian, monoidal-closed category. A soundness result is given,
which is also a correctness result for the compilation technique.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Denotational semantics; B.7.1 [Types and
Design Styles]: VLSI

General Terms Design, Languages, Theory

Keywords Syntactic Control of Interference, Geometry of Inter-
action, game semantics, synthesis

1. Introduction
In this paper we propose a new technique for VLSI design that
allows the synthesis of digital circuit specifications from a generic,
higher-order functional programming language with imperative
features.

The main innovative feature of this technique is the use of a se-
mantic model inspired by and related to game semantics [3, 11]
and Geometry of Interaction [10], a semantic model that can be ex-
pressed directly as a certain class of digital circuits. This source of
inspiration is acknowledged, but the paper is self-contained and fa-
miliarity with these two topics is not required. On the contrary, this
paper could serve as a motivating introduction to their theoretical
considerations.

Another innovation is the choice of the programming language,
Basic Syntactic Control of Interference (bSCI) [19, 16]. It is an
Algol-like language [20] with affine typing. This turns out to be
a highly suitable language for two reasons. First, the affine type
system is a precise tool for the control of sharing of resources
in the programming language, an issue which is highly relevant
in the context of hardware synthesis. Second, the call-by-name
procedure mechanism of Algol does not require closures and can
be, therefore, synthesised inexpensively.
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We present a class of digital circuits which we call handshake
circuits, and which are shown to form a closed monoidal category,
and therefore provide the appropriate structure for interpreting the
affine features of the language. We then show how a further refined
class of circuits which we call simple-handshake circuits forms a
Cartesian sub-category of the previous, and therefore has the right
structure for the interpretation of products. This feature is needed
for modelling sharing of resources in the language. We show that
this model of bSCI is sound relative to an operational definition of
the language. This is also a proof of correctness for the synthesis of
digital circuits from bSCI programs.

The most striking feature of this synthesis technique is the simplic-
ity of the resulting circuitry. Abstraction and application are syn-
thesised simply as wiring of the circuit representing the body of
the function to that of the argument. Some of the other operations,
such as sequential composition, assignment and dereferencing of
variables reduce also to wiring. The rest of the constructs of the
language require only a handful of basic circuits.

An important issue in hardware synthesis is that of concurrency.
Because hardware is naturally concurrent, the implementation of
concurrent programs is no more expensive than that of sequen-
tial programs. Concurrency in the framework of bSCI does not al-
low shared-variable inter-process communication, and we examine
several pragmatic options for overcoming this limitation. Some of
these techniques are potentially unsound.

As a proof of concept, we have implemented a prototype compiler
from bSCI to Verilog specifications of VLSI circuits, based on a
naive realisation of handshake circuits.

2. The base language
The issue of physical resource has long been recognised as crucial
in current approaches to programming languages. This notion most
commonly refers to memory locations, especially in conjunction
with heap management, but in its most general instance it refers to
any computationally and logically meaningful interaction between
software and the underlying machinery. Managing the use of re-
sources in programs, through type systems and logics, has been an
active area of research for some time.

The importance of resource management in hardware synthesis be-
comes paramount. Synthesis, in its purest form, represents a com-
plete shift from the logical realm of software to the physical world
of circuitry. Every sub-term of the program, when synthesised, be-
comes a physical resource which must be managed.

Physical resources, unlike their logical counterparts, cannot be as
easily created, duplicated and especially shared. This last point is
painfully obvious in writing programs that deal with dynamic mem-
ory. Writing such programs correctly is difficult precisely because
of the subtle issues that arise in sharing physical resources, memory



locations in this case. In synthesis, as every sub-term of a program
becomes a physical entity, every program interaction, more pre-
cisely every procedure call, involves some potentially dangerous
sharing of circuitry.

These considerations motivate our choice of Basic SCI (bSCI) [16,
Sec. 7.1]. We first introduce this language, then we show a different
but equivalent presentation intended to make the issues related to
sharing even more explicit.

The primitive types of the language are commands, memory cells
and (boolean) expressions: σ ::= com | cell | exp. The static
nature of hardware forces us to use a bounded data type. For
simplicity we only deal with booleans, but bounded integers can
be added in a straightforward way.

Additionally, the language contains function types and products:

θ ::= σ | θ × θ′ | θ → θ.

What is peculiar about the types above is that pairs of terms may
share identifiers but functions may not share identifiers with their
arguments. This is made explicit by the following typing rules (also
known as the affine λ-calculus).

Terms have types, described by typing judgments of the form Γ `
M : θ, where Γ = x1 : θ1, . . . xn : θn is a variable type
assignment, M is a term and θ the type of the term.

Identity
x : θ ` x : θ

Γ ` M : θ Weakening
Γ, x : θ′ ` M : θ

Γ, x : θ′ ` M : θ
→ Introduction

Γ ` λx.M : θ′ → θ

Γ ` F : θ′ → θ ∆ ` M : θ′ → Elimination
Γ, ∆ ` FM : θ

Γ ` M : θ′ Γ ` N : θ × Introduction
Γ ` 〈M, N〉 : θ′ × θ

The language also contains a number of (functional) constants for
state manipulation and (structured) control.

1 : exp constant
0 : exp constant

skip : com no-op
asg : cell× exp → com assignment
der : cell → exp dereferencing
seq : com× com → com sequencing
seq : com× exp → exp sequencing with boolean
op : exp× exp → exp logical operations
if : exp× com× com → com branching

while : exp× com → com iteration
newvar : (cell → com) → com local variable
newvar : (cell → exp) → exp local variable.

Product has syntactic precedence over arrow, which associates to
the right. This “functionalised” syntax may seem peculiar but a
more conventional syntax can be readily encoded into it.

For now we are omitting parallel composition of commands and
recursion, but we shall consider them in later sections.

2.1 Operational semantics

We call terms Γ ` M : θ semi-closed if all free identifiers are of
type cell. The operational semantics of the language is given by a
big-step rule of the form M, s ⇓ T, s′ where M is a semi-closed

term, s : domΓ → {0, 1} a state and T a terminal (0, 1, skip,
lambda abstraction).

B, s ⇓ b, s′ V, s′ ⇓ v, s′′

asg〈V, B〉, s ⇓ skip, (s′′ | v 7→ b)

V, s ⇓ v, s′

der V ⇓ s′(v), s′

C, s ⇓ skip, s′ M, s′ ⇓ T, s′′

seq〈C, M〉, s ⇓ T, s′′

M, s⊕ (v 7→ 0) ⇓ T, s′ ⊕ (v 7→ b)

newvar(λv.M), s ⇓ T, s′

B1, s ⇓ b1, s1 B2, s1 ⇓ b2, s2
b = b1 op b2

op〈B1, B2〉, s ⇓ b, s2

B, s ⇓ b, s′ Mi, s
′ ⇓ i, s′′

if〈B, M1, M0〉, s ⇓ T, s′′

B, s ⇓ 0, s′

while〈B, C〉, s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

M, s ⇓ λx.M ′, s

MM ′′, s ⇓ M ′[M ′′/x], s

If a term has no free variables we say it is closed. If for a closed
term M, ∅ ⇓ T, ∅ we write M ⇓.

3. A category of digital circuits
We give a denotational semantics for bSCI in terms of digital
circuits. The semantics is directly inspired by the game-semantic
model for similar languages [4], especially in its automata-theoretic
formulation [9]. There are, however important distinctions between
the game and digital-circuit semantics, which will be discussed
later.

We consider the common conceptual model of (especially asyn-
chronous) VLSI circuits as being defined by an interface and by
behaviour. The interface is a set of ports, designated either as in-
put or output. Ports consume (produce) signals, which are called
inputs (outputs). The behaviour of a circuit is defined by the way
it produces outputs in response to the inputs coming from its en-
vironment. Two circuits with the same interface and the same be-
haviour are considered equal. An input port can be connected to
an output port by a wire, wich propagates the signal after a non-
zero bounded delay. The notions above should be intuitive and it
will help the presentation to maintain a certain level of informality
about them. Full formalisations using CSP-like process calculi are
quite standard [27], but would make this presentation more opaque
for a minimum gain in rigour. We will present such a full formali-
sation elsewhere.

A handshake circuit (HC) is a digital circuit where each port has
two labels: r(equest) and a(cknowledgement), i(nput) and o(output)
〈P, l:P → {i, o} × {r, a}〉. By convention, we draw such circuits
with the r-ports on the left and a-ports on the right; we will denote
the input/output polarity by arrows.

P
P(ir)

P(or)

P(oa)

P(ia)



We write A(i) =
˘
p ∈ P | l(p) ∈ {ir, ia}

¯
and so on.

We define a closed-monoidal category of HCs in the following way:

• Objects are sets of ports with polarities as defined above.
• Morphisms f : A → B are circuits with sets of ports:

f (i) = A(o) ]B(i), f (o) = A(i) ]B(o),

f (r) = A(r) ]B(r), f (a) = A(a) ]B(a).

• Composition of HCs f : A → B and g : B → C is the circuit
g ◦ f : A → C defined by connecting f and g in the following
way:

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gC(ir) C(oa)

C(ia)C(or)

B(ir) B(oa)

B(ia)B(or)

Note that the ports labeled by B become internal channels and
are no longer part of the interface.

• Identity is a HC idA : A2 → A1 (we use tags 1 and 2 to
distinguish between argument ports and result ports) of the
following shape:

A1
(ir)

A1
(or)

A2
(ir)

A2
(or)

A1
(oa)

A1
(ia)

A2
(oa)

A2
(ia)

id

PROPOSITION 1. HCs form a category.

Proof :

• Composition is well defined, by inspecting the diagram.
• Composition is associative. f ◦ (g ◦ h) = (f ◦ g) ◦ h as they

are both equal to the circuit in Fig. 1.
• Identity is an idempotent. The diagram for f ◦ id shows that

immediately (straightening the wires):

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

A1
(ir)

A1
(or)

A2
(ir)

A2
(or)

A1
(oa)

A1
(ia)

A2
(oa)

A2
(ia)

id

id ◦ f has a similar diagram.

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gC(ir) C(oa)

C(ia)C(or)

B(ir) B(oa)

B(ia)B(or)

hD(ir) D(oa)

D(ia)D(or)

C(ir) C(oa)

C(ia)C(or)

Figure 1. Associativity

We call the category of handshake circuits HC.

The monoidal structure is defined by the functor−⊗− defined by:

• The unit object I is the empty set of ports.

• On objects, (A⊗B)(x) = A(x) ]B(x) where x ∈ {i, o, r, a}.
• On morphisms f ⊗ g : A⊗ C → B ⊗D is

fB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

gD(ir) D(oa)

D(ia)D(or)

C(ir) C(oa)

C(ia)C(or)

PROPOSITION 2. HC with ⊗ and I is a monoidal category.

The closed structure is defined as follows:

• On objects, let

(A ⇒ B)(i) = A(o) ]B(i), (A ⇒ B)(o) = A(i) ]B(o),

(A ⇒ B)(r) = A(r) ]B(r), (A ⇒ B)(a) = A(a) ]B(a).

• For each A, B let the evaluation morphism evalA,B : A1 ⊗
(A2 ⇒ B1) → B2 be the circuit:



A1
(ir)

A1
(or)

A2
(ir)

A2
(or)

A1
(oa)

A1
(ia)

A2
(oa)

A2
(ia)

evalB1
(ir)

B1
(or)

B2
(ir)

B2
(or)

B1
(oa)

B1
(ia)

B2
(oa)

B2
(ia)

PROPOSITION 3. HC with−⊗−, I, −⇒−, eval−,− is a monoidal
closed category.

Proof: The universal property property that for every morphism f :
A ⊗ X → B there exists an unique morphism h : X → A ⇒ B
such that f = evalA,B ◦ (idA ⊗ h) is immediate from the diagram
of the composition on the right-hand side:

A1
(ir)

A1
(or)

A2
(ir)

A2
(or)

A1
(oa)

A1
(ia)

A2
(oa)

A2
(ia)

evalB1
(ir)

B1
(or)

B2
(ir)

B2
(or)

B1
(oa)

B1
(ia)

B2
(oa)

B2
(ia)

A1
(ir)

A1
(or)

A2
(ir)

A2
(or)

A1
(oa)

A1
(ia)

A2
(oa)

A2
(ia)

id

hB(ir) B(oa)

B(ia)B(or)

A(ir) A(oa)

A(ia)A(or)

XX

It is obvious, after straightening the wires, that the only h that can
satisfy the equality is f itself, with appropriately relabeled ports,
and is unique. This relabeling is in fact the currying isomorphism
Λ(−).

The category HC is similar to other diagram-based models of
monoidal closed categories, for example in quantum computa-
tion [2].

Note that the axioms for a monoidal closed category are satisfied
in a purely “structural” way, by considering only the ports and the
wirings. The behaviour of the circuits is not important up to this
point, as it is safe to assume that structurally equal circuits are also
behaviourally equal.

3.1 Cartesian product

To model bSCI we also need a notion of product. We will find a
sub-category of HC for which:

• the unit of the monoidal product is a terminal object;
• for each object there is a diagonal morphism.

It is known that such categories have Cartesian products [17].

DEFINITION 4 (Diagonal). For an object Z in a monoidal cate-
gory where the unit is terminal, a diagonal is a morphism δZ :
Z → Z ⊗ Z such that the diagram below commutes:

Z

id

xxqqqqqqqqqqq

δZ

��

id

&&MMMMMMMMMMM

I ⊗ Z ∼= Z Z ⊗ Z
!⊗idoo id⊗! // Z ⊗ I ≡ Z

Structurally, this means that the circuits in this sub-category need
to satisfy the following equations:

!:Z→I

δ

=

=

In words, all circuits which are morphisms to I should be equiva-
lent to a circuit with no (open) ports: I does not have ports by de-
signs, and the circuits associated with the domain are left “discon-
nected.” A diagonal δA : A → A1 × A2 with the ports associated
with A1 disconnected (by composition with !) should behave like
the identity idA : A → A2 (similarly for A2). For these equations
to hold, the behaviour of the circuits becomes relevant.

Let δA : A → A1 ×A2 be defined by the circuit

A(ir)

A(or)

A(oa)

A(ia)

A1
(ir)

A1
(or)

A1
(oa)

A1
(ia)

A2
(ir)

A2
(or)

A2
(oa)

A2
(ia)

δ

That behaves in the following way:

1. after an input on a port associated with Ai remember the value
of i and produce an output on the equivalent port associated
with A

2. after an output on a port associated with A produce an output
on the equivalent port associated with the memorised i.

It is obvious that the diagonal construction is not well defined for
all HCs. What happens, for example, if two consecutive inputs
arrive from the two distinct components? Below we will identify
a restricted class of HCs, for which the behaviour of the diagonal is
well defined, and which form a Cartesian sub-category of HC.

Before we can prove this lemma we need the following definition.

DEFINITION 5. For object A there is a designated set of input
requests IA called initial, such that:

IA⊗B = IA×B = IA ] IB



IA⇒B = IB .

DEFINITION 6. We say that a circuit is a simple-handshake circuit
(SHC) if it satisfies the following conditions:

1. input and output actions must alternate;

2. requests and acknowledgments must be well-nested;

3. the outermost request is on an initial port;

4. there must be no consecutive actions on a given request port
without having an intervening action on the acknowledgment
port with the same label.

“Well-nesting” is the same property that well-formed languages of
brackets satisfy, with the request (acknowledgment, respectively)
on a port with a given label being seen as an open (closed, respec-
tively) bracket with that label.

Note that the assumptions above are both about the circuits them-
selves and about the environment in which the circuits operate.

PROPOSITION 7. Simple-handshake circuits form a Cartesian sub-
category of HC.

Proof: The identity is SHC: The first signal must be on A
(ir)
1 , by

Def. 6.3. The following signal is on A
(or)
2 , as Def. 6.1 assumes no

other inputs occur before it. After this interaction, there are two
possibilities:

• A
(ir)
2 , followed by A

(or)
1 (by Def. 6.1), then by A

(ia)
1 (by

Def. 6.2) and A
(oa)
2 (by Def. 6.1). This interaction can repeat

(by Def. 6.2), followed by

• a signal on A
(ia)
2 , propagated to A

(oa)
1 ,

After which the whole cycle can start again.

We need to show that the composition of SHCs is well defined, i.e.
the result is also a SHC. Consider a SHC of shape f : A → B.
If we tag any actions of the circuit with A(ir), A(oa), A(or), A(ia),
B(ir), B(oa), B(or), B(ia) then the restrictions on the behaviour of
the circuit mean that any trace of actions associated with f must
belong to the language represented by this automaton:

B(ir)

B(or) B(ia)

B(oa)

A(ir)A(or)

A(ia) A(oa)

A SHC g : B → C has similar traces with appropriately changed
labels. The composed circuit g ◦ f : A → C has traces in the
composite language given as in Fig. 2. Condition 3 in Def. 6 is
satisfied because it is satisfied by g.

Note that the actions associated with B are not externally observ-
able since they are no longer ports of the circuit (hence the i/o labels
indicate only the relative direction of the action), but they occur on
internal channels. This proves that condition 1 in Def. 6 is preserved
by composition, and it shows us the general shape of the resulting
behaviour.

C(ir) C(or)

C(ia)C(oa)

A(or) A(ir)

A(oa)A(ia)

B(i/or)

B(o/ir)B(i/oa)

B(o/ia)

f:A→B

g:B→C

Figure 2. Composition of SHC

For the other conditions, we need to make an additional argument:
from the shape of the resulting language we can see that if we
project it on the language associated with f (i.e. we remove all
other symbols) we must get a string in that language; if we project
it on the language associated with g we must get a string in the
iterated closure of the language. If the composite language violates
conditions 2 or 4 then the projected languages will violate the
conditions, which is a contradiction.

The monoidal closed structure is inherited from HC, we only need
to show that the product is well defined.

The diagonal morphism and the projections are SHCs (indeed, the
very idea of SHCs was intended to accommodate the diagonal
morphism!).

The unit I is terminal because all circuits of shape A → I are
equivalent and “inactive” because there is no initial input request
port. We denote such morphisms with ! : A → I .

We need to show that (id⊗!)◦δA = (!⊗id)◦δA = idA . The circuit
for the composition is shown in Fig. 3. We can see that this simply
equates to relabeling all A1 ports and “hiding” or “blocking” the
A2 ports. δ then propagates the actions between the corresponding
A and A1 ports, just like the identity. The SHC restrictions ensures
that δ is always well-behaved.

�

The projections are π0 = id⊗ ! : A0×A1 → A0 and π1 = !⊗id :
A0 ×A1 → A1.

We will refer to the Cartesian, monoidal-closed category of simple
handshake circuits as SHC. It offers all the necessary structure that
is required to interpret bSCI.

4. Interpreting bSCI
Types of bSCI are interpreted by objects in the category SHC. For
the base types, the interpretations are:

JcomK ={R 7→ (ir), D 7→ (oa)}



A(ir)

A(or)

A1
(ir)

A1
(or)

A(oa)

A(ia)

A1
(oa)

A1
(ia)

π1
A2
(ir)

A2
(or)

A2
(oa)

A2
(ia)

A(ir)

A(or)

A(oa)

A(ia)

A1
(ir)

A1
(or)

A1
(oa)

A1
(ia)

A2
(ir)

A2
(or)

A2
(oa)

A2
(ia)

δ

Figure 3. Projections

JexpK ={Q 7→ (ir), T 7→ (oa), F 7→ (oa)}
JcellK ={WT 7→ (ir), WF 7→ (ir), Q 7→ (ir), D 7→ (oa),

T 7→ (oa), F 7→ (oa)}.

with IJcomK = {R}, IJexpK = {Q}, IJcellK = {WT, WF, Q}. For
other types, the interpretations are:

Jθ → θ′K = JθK ⇒ Jθ′K, Jθ × θ′K = JθK× Jθ′K.

The reader familiar with game semantics will note that the notion of
“port” in a HC corresponds to that of a “move” in game semantics.
An action on a port corresponds to a “move occurrence.”

Terms x1 : θ1, . . . , xn : θn ` M : θ are interpreted by morphismsO
1≤i≤n

JθiK
Jx1:θ1,...,xn:θn`M :θK−−−−−−−−−−−−−−−−−−→ JθK.

The constants of the language are interpreted by the following
circuits:

Q T

F

Q F

T

R D

!1 : bool"

!0 : bool"

!skip : com"

Intuitively, the constant 1 (0, respectively) is interpreted by imme-
diately responding to an input request on the (only such) port Q
with an action on port T (F, respectively). The command skip is in-
terpreted by immediately responding to the request. Such behaviour
can be most simply interpreted by wires alone. These are proper

SHC circuits because Def. 6.1 guarantees that the input signal will
propagate to the output before the next input signal will occur.

Assignment has the following interpretation:

R3

T2

F2

!asg : (var1 × exp2) → com3"

Q2

WT1

WF1

D1

D3

Q1 T1

F1

Intuitively, an action on R3, indicating the beginning of execution,
leads to an evaluation of the second argument (output request on
Q2) which, by Def. 6.2, must followed by an acknowledgment
on T2 (F2, respectively) if the value of the expression is 1 (0,
respectively). The next output request is “write true”, WT, (“write
false”, WF, respectively) into the first argument variable. Once the
write operation is acknowledged, D1, the assignment acknowledges
completion, D3. The ports that manage reading from the variable
(Q1, T1, F1) are not used in the assignment.

Dereferencing, in contrast, ignores the ports writing to the variable
and simply relays the read request and the acknowledged value:

T2

F2

Q2

WT1

WF1

D1

Q1 T1

F1

!der : var1 → exp2"

Another functional constant which can be interpreted by wiring
only is sequential composition

R3 D3

R1 D1

R2 D2

!seq : (com1 × com2) → com3"

Intuitively, running the sequential composition is done as follows:
send a run request (R1) to the first argument. When the first argu-
ment acknowledges completion (D1) send a run request (R2) to the
second argument. When it completes (D2) the sequential composi-
tion acknowledges termination (D3).

In order to interpret branching and iteration we need an auxiliary
JOIN circuit with two inputs I1, I2 and one output O. Its behaviour
is simply to relay any action on I1 or I2 to O. We denote this circuit

by
+

I1

I2
O

.

Branching is:



+

!if : (exp1 × com2 × com3) → com4"
R4 D4

Q1 T1
F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1
F1

R2 D2

!while : (exp1 × com2) → com3"

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP
T2
F2

T1
F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1
F1

!op : (bool1 × bool2) → bool3"

OP

+Q2 T2
F2

Q3 T3
F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q CELL

R2 D2

!newvar : (cell1 → com2) → com3"

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / - 

S / - 

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

Jx : θ ` x : θK = idJθK

JΓ, x : θ′ ` M : θK = JΓ ` M : θK ◦ π1

JΓ ` λx.M : θ′ → θK = Λ(JΓ, x : θ′ ` M : θK)

JΓ, ∆ ` FM : θK = eval ◦
`
J∆ ` M :θ′K⊗ JΓ ` F :θ′→θK

´
JΓ ` 〈M, N〉 : θ × θ′K =

`
JΓ ` M :θK⊗ Jρ(Γ ` N :θ′)K

´
◦ δJΓK,

where ρ(Γ ` N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:

LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:

PROPOSITION 9 (Reset). For any SHC JΓ ` M : θK the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

�

We show that this compilation technique is correct through the
following soundness theorem.

THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then JM : comK is equivalent to Jskip : comK.

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.

LEMMA 11. If Γ ` M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : domΓ → B if M, s ⇓ c, s′ then circuit
JΓ ` M : σK◦

`
CELLB1

1 ⊗· · ·⊗CELLBn
n

´
is equivalent to Jc : σK

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:



!C ′"

δ1 δn

CELL
B1

1
CELL

Bn

n

!C"

We apply the induction hypothesis on C and obtain the equivalent
circuit, but with memory cells in new state B′

i.

!C ′"

δ1 δn

CELL
B

′

1

1
CELL

B
′

n

n

We then apply the induction hypothesis on C′ and obtain

δ1 δn

CELL
B

′′

1

1
CELL

B
′′

n

n

This proves the inductive step for sequential composition, as this
circuit is equivalent to skip and leaves the each cell i in state s′′(i).

In the case of the local-variable binder:
M, s⊕ (v 7→ 0) ⇓ T, s′ ⊕ (v 7→ b)

newvar(λv.M), s ⇓ T, s′

we can see that both the hypothesis and the conclusion turn out to
be modelled by the same circuit:

λx.M

δ

CELL(s)

R D

δ

CELL(v)

We also sketch out the case of iteration, which is more interesting.
The rules for iteration are:

B, s ⇓ 0, s′

while(B, C), s ⇓ skip, s′

B, s ⇓ 1, s′ C, s′ ⇓ skip, s′′ while〈B, C〉, s′′ ⇓ skip, s′′′

while〈B, C〉, s ⇓ skip, s′′′

Let us sketch the interpretation of iteration in state s:

+

B C

δ

CELL(s)

R

D

F
T

The reset property (Prop. 9) ensures that we can rewrite the circuit
as below, without changing its behaviour (δ here shares four copies
of an identifier):

B C

δ CELL(s)

R

D

F
T

C B
F
T

+

+

The equivalent circuit above is actually

JΓ ` if〈B, seq〈C, while〈B, C〉〉〉 : comK.

This leads to an immediate proof by applying the induction hypoth-
esis.

�

The soundness result is a proof of correctness for the compiler from
bSCI to SHCs.

5. Concurrency
5.1 Safe concurrency

The language bSCI also has a construct for concurrent composition
of commands, which we shall consider now:

par : com → com → com.

The contrast between its type and the type of sequential compo-
sition (com × com → com) reflects the restriction that the two
arguments may not share identifiers. The operational semantics for
this rule is

C1, s1 ⇓ skip, s′1 C2, s2 ⇓ skip, s′2

par C1 C2, s1 ⊕ s2 ⇓ skip, s′1 ⊕ s′2

Where by s ⊕ s′ we mean the union of two function with disjoint
domains. The rule makes it explicit that the two commands operate
on disjoint stores.

The circuit for Jpar : com → com → comK is:



R3 D3

R1 D1

R2 D2C

!par : com1 → com2 → com3"

Where the auxiliary circuit C produces output after both input ports
have received data (the behaviour of a Mueller C-element).

We can see that the circuit above is not a simple handshake cir-
cuit, because it sends two output signals (R1, R2) without any in-
tervening input. The semantic model is still sound, and therefore
the compiler is still correct, but the characterisation of circuits and
their environments is more complex and will not be given here.

Concurrency is very important for hardware synthesis. Computers,
even multi-processor versions, are essentially sequential devices,
and the execution of concurrent programs raises various theoretical
and engineering challenges. In contrast, hardware is inherently
concurrent and, as we can see from the circuit above, the synthesis
of the parallel execution operator does not raise any difficulties. In
fact, it is as easy to synthesise concurrent version of the logical
operators as well:

op|| : exp → exp → exp

synthesised as

Q1 T1
F1OP

Q2 T2
F2

Q3 T3
F3

!op|| : exp1 → exp2 → exp3"

Note that the concurrent version of the operator is even simpler than
the sequential version.

5.2 Unsafe concurrency

The bSCI type system prevents race conditions by preventing shar-
ing of identifiers between concurrent sub-programs. In compila-
tion and execution the dangerous consequence of sharing vari-
ables in concurrent contexts is that of race conditions: the value
stored in a variable is not well determined. For example, shared-
variable concurrency is commonly modelled so that programs
such as x := 1; (x := 7 ||x := x − 3) may leave variable x, non-
deterministically, with values 4, 7, or even -2 (e.g. [6]). More re-
alistic analyses that take into account low-level concurrency is-
sues [22] show that in such programs x may end up with any value
at all.

If race conditions have dire consequences in programs, they have
even more severe consequences in synthesis, because they affect
not just variables but whole terms! Consider for example the (unty-
pable) term for λc : com.par c c. It would lead to the synthesis of
circuit

R D

R1 D1

R2 D2

δcom
R3 D3

R1 D1

R2 D2C

The initial input request on R3 will lead to two simultaneous input
requests on δcom, which is illegal, so the behaviour of δ is unde-
fined, therefore the behaviour of the entire program is undefined!

However, programs that cannot be typed do not necessarily have
race conditions, and programs that have race conditions are not
necessarily misbehaved! Consider, for example, the synthesis of

λc : com.λd : com.(c; d) || (d; c)

which is both untypeable and it can introduce race conditions
between circuits bound to c and d.

R

δc

C

δd

D

However, as it can be seen in the circuit, if c and d are bound
to circuits that do not, in turn, share variables and c and d have
equal input/output delays (or are somehow synchronised) then the
diagonals δc, δd will function correctly and the circuit will behave
correctly.

The significant additional expressivity of shared-variable concur-
rency over “safe” concurrency probably justifies allowing it in the
language even at the risk of undefined behaviour in the presence of
racing conditions. The onus for correctness will lay heavier on the
programmer. Perhaps resource-management logics could be help-
ful in this regard [18].

It is also possible to find a middle way between totally unsafe
and totally safe concurrency. For example, the diagonal morphism
could be “safely” synthesised to function as a semaphore: if two
input requests arrive simultaneously one of them would have to
wait until the first input receives its acknowledgment. This, of
course, would restrict the amount of overall concurrency in the
presence of race conditions by replacing it with nondeterminism.
This solution would also require much more sophisticated and
expensive implementations of the diagonal morphism.

5.3 More on affine typing

In the previous section we have seen that concurrency raises im-
portant issues, and that affine typing is only one of the possible
solutions. It is a safe and elegant solution, but at the cost of greatly
reduced expressiveness, thus not entirely satisfactory.

So why is affine typing really needed?

The most serious problem to handle in synthesis, perhaps unsur-
mountable, is that of nested function self-application, as it involves
subtle interleavings of inputs and output on the same physical cir-



cuit. Consider this term (known as a Kiersetead term):

λf : (com → com) → com.f(λx : com.f(λy : com.x))

This term does not have affine typing. If we apply the synthesis
procedure and straighten all the loops in the wiring we obtain the
following circuit:

δf

1

2,6!
3

4

5

7

We label the ports of the diagonal circuit that shares the two occur-
rences of f : (com → com) → com with numbers indicating the
order in which various inputs and outputs are triggered. (The suc-
cession of events 2, 3 is allowed and it will happen if f the function
is applied to a term that is non-strict.) The problem is that output
requests 2 and 6 occur on the same port without any intervening
acknowledgment. This is a fundamental violation of the SHC or
DHC requirements and will lead to undefined behaviour in the cir-
cuit. Also, if event 7 occurs it is impossible to tell whether it is an
acknowledgment for 2 or for 6.

Unlike the problems related to concurrency, which can have prag-
matic solutions that make sense at least from an engineering point
of view, this seems to be a fundamental difficulty. The question is
open whether affine typing is not too strict, since there are terms
with nested self-application (e.g. λf.f(f(skip))) that seem to lead
to well-behaved circuits.

Finally, if one wishes to relax the constraints of the typing system
for concurrency but not for nested self-application it is possible to
replace the new-variable binder newvar : (cell → com) → com
with a family of new-variable binders

newvarn : (cell → · · · → cell → com) → com,

that bind n distinct variable-identifiers in (possibly concurrent)
contexts to the same physical memory cell. This trick can also allow
the introduction of semaphores (which must be shared between
concurrent contexts) without breaking the affine typing rules. The
behaviour is the usual one for a memory cell if the read and write
requests do not race, and some arbitrary behaviour if there are
race conditions. For example, the (Mealy-style) automaton below
illustrates such behaviour for a CELL circuit used to implement
Jnewvar2 : (cell1 → cell2 → com) → comK:

WT1 / D1
Q1 / F1

S / - 

S / - 

Q2 / F2
Q1 , Q2 / F1 , F2

Q1 / T1
Q2 / T2

Q1 , Q2 / T1 , T2WT2 / D2
WT1 , WT2 / D1 , D2
WT1 , WF2 / D1 , D2
WT1 , Q2 / D1 , T2

WF1 / D1
WF2 / D2

WF1 , WF2 / D1 , D2
WF1 , WT2 / D1 , D2
WF1 , Q2 / D1 , F2

The transitions that correspond to race conditions are highlighted.

6. Recursion
The restrictions of the type system together with the finite-state
restriction on the circuits allow only for limited forms of recursion:
mutual ground-type tail-recursion. The recursion construct is

recθ : (θ → θ) → θ,

where θ ::= σ | θ × θ.

Informally, tail-recursion means that the recursive call must occur
“last” in the body of the procedure. This effectively reduces the re-
cursion to iteration. We will not formalise the notion of tail recur-
sion, but will only make an informal argument for the soundness of
the recursion circuit:

R3 A3

A2R2

R1 A1

!recθ : (θ1 → θ2) → θ3"

+

The ground type restriction ensures that each type has only input (or
output) requests (or acknowledgments). Intuitively, the recursive
call is from R1 to R2 and the tail-return is from A2 to A3; it is a tail
return because termination of the argument results in immediate
termination of the recursion operator, rather than a return to the
calling function.

We can see how this recursion operator, applied to the circuit for

b : exp, c : com ` λx.if〈b, seq〈c, x〉, skip〉

gives a circuit equivalent to iteration (the grayed-out wires are never
active):

+

+

R D

Qb Tb

Rc Dc

Tf +
R D

Qb Tb

Tf

DcRc

Recursion is guaranteed to be sound only when applied to closed
terms. Informally, the argument for the soundness of the recursion
operator is similar to that for the soundness of the iteration rule: the
reset rule allows us to make a copy of the circuit being iterated over,
and we can apply the induction hypothesis on the resulting, equiv-
alent circuit. In the diagram below, note that a general recursion
operator (not tail recursive) would return (the output port marked
with an outline arrow) into the previous instance of the circuit rep-
resenting the body of the function, rather than make a global return.
Also note that it is important that the duplicated circuit does not
have open ports.



R3 D3

+

D

+

R +

An example of term that leads to unsound recursion is

b : exp, c : com ` λx.if〈b, par〈c, x〉, skip〉,

as it can lead to a race condition on the port associated with c.

It is an open question what kind of more expressive recursion
operators are compatible with hardware synthesis.

7. Hardware synthesis
For actual synthesis, the definition of HCs needs to be refined. We
need to define what constitutes a signal on a port and implement the
δ, CELL, OP and JOIN circuits accordingly. HCs can be designed
to be either synchronous or asynchronous; in the former case they
only need to be locally synchronous, i.e. HCs can be composed
without requiring a global clock. This class of circuits is especially
well suited for compositional designs, and their comparative advan-
tages and disadvantages are well studied [23].

We will take a naive and straightforward approach, refining the
notion of “action on port P ” to a voltage transition along P . This
naive approach has a series of well-documented disadvantages [26]
(it requires a circuit to remember the state of each input, which
is extravagantly expensive) but it is functionally correct, and it
gives a proof-of-concept for the technique. The circuits have locally
synchronous designs.

We make one simple optimisation in the representation of ports that
deal with boolean data (T and F, WT and WF). Instead of using two
data ports we use one data port (BD, WD) and one control port (BC,
WC). The data port indicates the value and the voltage transition on
the control port indicates an action. This is less expensive and can
be extended to integers in a simple way.

A naive Verilog implementation for JOIN is:

module hsJoin(I1, I2, O, clock);
input I1, I2, clock;
output O;
reg I1p, I2p, O;

always @(posedge clock)
begin

if (I1p != I1) begin O <= !O; I1p <= I1; end
if (I2p != I2) begin O <= !O; I2p <= I2; end

end
endmodule

A naive Verilog implementation for and is:

module hsAnd(BD1, BC1, BD2, BC2, BD, BC, clock);
input BD1, BC1, BD2, BC2, clock;
output BD, BC;
reg BC1p, BC2p, BC, BD;

always @(posedge clock)
begin

if (BC1 != BC1p)
begin BC1p <= BC1; BD <= BD1; end

if (BC2 != BC2p)
begin BC2p <= BC2; BC <= !BC;
BD <= BD && BD2; end

end
endmodule

Other logical and arithmetic operations are similar by replacing the
final and operation (&&) with the desired operation.

A naive Verilog implementation for CELL is:

module hsCell(WD, WC, D, Q, BD, BC, S, clock);
input WD, WC, Q, S, clock;
output D, BD, BC;
reg WCp, Qp, Sp, D, BC, BD;

always @(posedge clock)
begin

if (WC != WCp)
begin WC <= WCp; BD <= WD; D <= !D end

if (Q != Qp)
begin Q <= Qp; BC <= !BC; end

end
endmodule

For δ each type requires a different implementation, we only show
the simplest one, for com.

module hsDiagCom(R, D, R1, D1, R2, D2, clock)
output R, D1, D2, clock;
input D, R1, R2;
reg R1p, R2p, Dp, R, D1, D2, state;

always @(posedge clock)
begin

if (R1p != R1)
begin state <= 1; R1p <= R1; R <= !R; end

if (R2p != R2)
begin state <= 0; R2p <= R2; R <= !R; end

if (D != Dp && state)
begin Dp <= D; D1 <= !D1; end

if (D != Dp && !state)
begin Dp <= D; D2 <= !D2; end

end
endmodule

These circuits have the advantage that they do not need initialisa-
tion, often a problem in hardware design.

For realistic implementation it is required to use cleverer and more
efficient refinements for actions, such as multi-phase encodings as
well as various optimisations [26].

We have implemented a prototype compiler from bSCI to Verilog
using this technique. For example, the circuit synthesised for pro-
gram λf.λg.λx.f(g(x)); g(f(x)) has block-schematic and tech-
nology schematics as in Fig. 4. The two larger block circuits are
diagonals for com → com and the smaller block circuits are the
diagonal for com and the implementation of skip (it only contains
wires). Verilog synthesis has been executed using the Xilinx ISE
package.

8. Related work
Compilation techniques usually rely on operational semantic ideas,
but denotational-based techniques have been proposed before,



e.g. Reynolds’s work on compiling Algol using functor cate-
gories [21]. Although the two underlying models have little in
common, dissimilarity reflected by the target architecture, one of
the principal objectives is shared, providing a compelling and ac-
cessible computational intuition of the essential features of the
semantic model.

The category of simple-handshake circuits is obviously related to
and inspired by the idea of strategy in game semantics [3, 11], the
notion of action we use corresponds to that of move occurrence
and the notion of port to that of move. The main technical differ-
ence is that game models are usually targeted towards definability
results, ensuring that all semantic objects correspond to terms. This
requires tighter constraints on what is considered acceptable be-
haviour of the environment and also more precise descriptions of
what is the possible behaviour of a program. Many of these consid-
erations are not relevant if the aim is soundness only.

Although no precise connections are drawn in this work, there are
obvious parallels between our circuit semantics and work on ab-
stract machines based on game semantics (such as the Token Ab-
stract Machine [8]) and Geometry of Interaction [13]. The empha-
sis of this paper is more practical though. We aimed for a technique
that starts with a (fairly realistic) programming language and ends
with VLSI-synthesisable circuitry. However, a closer inspection of
these connection may be useful from an applied point of view, es-
pecially in regards to devising less restrictive type systems for the
programming language.

Even more closely related in this sense is Mackie’s work on com-
piling functional programs using ideas from the Geometry of In-
teraction [12, 13]. Also, Abramsky’s recent work on structural
approaches to reversible computation [1] and quantum computa-
tion [2] shares similar aims, although they all look at different target
architectures.

There is a vast amount of literature concerning hardware synthe-
sis from higher-level languages. One of the most successful ap-
proaches is Mycroft and Sharp’s work on statically allocated func-
tional languages [14, 15]. This line of work uses fundamentally dif-
ferent techniques than ours, but it shares an identical aim. It would
be a useful exercise to compare circuits synthesised from similar
programs using these two techniques.

Most of the rest of the work concerning higher-level synthesis tech-
niques is not directly comparable to this approach, as it involves
either structural layout techniques (such as Lava [5]), design lan-
guages based on process calculi (such as Balsa [25]) or lower-level
languages more similar in spirit to hardware description language
(such as Haendel-C [7] or SystemC [24]).
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Figure 4. Schematics


