Reasoning about Idealized ALGOL
Using Regular Languages

Dan R. Ghica'** and Guy McCusker?

! Department of Computing and Information Science, Queen’s University, Kingston,
Ontario, Canada, K7L 3N6; Fax: +1 (613) 533-6513; ghica®@cs.queensu.ca
2 School of Cognitive and Computing Sciences, University of Sussex at Brighton,
Falmer, Brighton, UK, BN1 9QH; Fax: +44 (1273) 671320; guym@cogs.susx.ac.uk

Abstract. We explain how recent developments in game semantics can
be applied to reasoning about equivalence of terms in a non-trivial frag-
ment of Idealized ALGOL (IA) by expressing sets of complete plays as
regular languages. Being derived directly from the fully abstract game
semantics for IA, our method of reasoning inherits its desirable theoret-
ical properties. The method is mathematically elementary and formal,
which makes it uniquely suitable for automation. We show that reason-
ing can be carried out using only a meta-language of extended regular
expressions, a language for which equivalence is formally decidable.

Keywords: Game semantics, ALGOL-like languages, regular languages

1 Introduction

Reynolds’s Idealized ALGOL (IA) is a compact language which combines the
fundamental features of procedural languages with a full higher-order procedure
mechanism. This combination makes the language very expressive. For example,
simple forms of classes and objects may be encoded in TA [14]. For these reasons,
TA has attracted a great deal of attention from theoreticians; some 20 papers
spanning almost 20 years of research were recently collected in book form [10].

A common theme in the literature on semantics of IA, beginning with [5], is
the use of putative program equivalences to test suitability of semantic models.
These example equivalences are intended to capture intuitively valid principles
such as the privacy of local variables, irreversibility of state-changes and repre-
sentation independence. A good model should support these intuitions.

Over the years, a variety of models have been proposed, each of which went
some way towards formalizing programming intuition: functor categories gave an
account of variable allocation and deallocation [11], relational parametricity was
employed to capture representation-independence properties [9], and linear logic
to explain irreversibility [8]. Recently, many of these ideas have been successfully
incorporated in an operationally-based account of IA by Pitts [12].

* This author acknowledges the support of a PGSB grant from the Natural Sciences
and Engineering Research Council of Canada. This paper was written while visiting
University of Edinburgh, Laboratory for Foundations of Computer Science.

A frustrating situation was created with the development of a fully abstract
game semantics for TA [1]. The full abstraction result means that the model
validates all correct equivalences between programs, but unfortunately the model
as originally presented is complicated, and calculating and reasoning within the
model is difficult.

In this paper, we show that if one restricts attention to the second-order
subset of TA, the games model can be simplified dramatically: terms now de-
note regular languages, and a relatively straightforward notation can be used to
describe and calculate with the simplified semantics. The fragment of TA which
we consider contains almost all the example equivalences from the literature,
and we are therefore able to validate them in a largely calculational, algebraic
style, using our semantics. We also obtain a decidability result for equivalence
of programs in this fragment.

The approach of game semantics, and therefore of this paper, has little
in common with the traditional semantics of TA. Intuitively it comes closest
to Reddy’s “object semantics” [13] and Brookes’s trace semantics for shared-
variable concurrent ALGOL [2]. Identifiers are not interpreted using an environ-
ment, variables are not interpreted using a notion of store and functions in the
language are not interpreted using a mathematical notion of function. Instead,
we are primarily concerned with behaviour, with all the possible actions that
can be associated with every such language entity. Meanings of phrases are then
constructed combinatorially according to the semantic rules of the language.

We believe our new presentation of game semantics is elementary enough to
be considered a potential “popular semantics” [16]; it should at least provide a
point of entry to game semantics for those who have previously found the subject
opaque. Moreover, the property of full abstraction together with the fact that
reasoning can be carried out in a decidable formal language suggest that our
approach constitutes a good foundation on which an automatic program checker
for TA and related languages can be constructed. The idea of using game se-
mantics to support automated program analysis has already been independently
explored in a more general framework by Hankin and Malacaria [3,4]. They used
such models to derive static analysis algorithms which can be described without
reference to games.

2 The IA Fragment

The principles of the programming language IA were laid down by John Reynolds
in an influential paper [15]. IA is a language that combines imperative features
with a procedure mechanism based on a typed call-by-name lambda calculus;
local variables obey a stack discipline, having a lifetime dictated by syntactic
scope; expressions, including procedures returning a value, cannot have side ef-
fects, i.e. they cannot assign to variables. We conform to these principles, except
for the last one. This flavour of TA is known as TA with active expressions and
has been analyzed extensively [18,1, 8]. We consider only the recursion-free sec-
ond order fragment of this language, the fragment which has been used to give

virtually all the significant equivalences mentioned in the literature. In addition,
we will only deal with finite data sets.

The data types of the language (i.e. types of data assignable to variables)
are a finite subset of the integers, and booleans:

7= int | bool

The phrase types of the language are those of commands, variables and expres-
sions, plus function types.

o= comm | var[r] | exp[r], 0:=0|oc—0

Note that we include only first-order function types here. We will consider only
terms of the form

t1:01,.. 0k FM:o

that is, terms of ground type with free variables of arbitrary first-order type.
For the sake of simplicity in this paper, we also assume that M is S-normal,
so that it contains no A-abstractions. Function application is restricted to free
identifiers ¢. This last restriction can easily be removed, but at the expense of
undue notational overhead in the semantics.

The terms of the language are as follows. In type comm there are basic
commands skip, to do nothing, and {2 to diverge; in type exp[int] the finitary
fragment contains constants n belonging to a finite subset A of the set of integers;
and in type exp[bool] there are the constants true and false. There are term
formers for assignment to variables, V' := E, dereferencing variables, !V, sequen-
tial composition of commands C; C’, and sequential composition of a command
with an expression to yield a possibly side-effecting expression C; E. We have a
conditional operation if B then C else C', a while-loop while B do C, appli-
cation of first-order identifiers to arguments tMj ... My, and the local-variable
declaration new[7] « in C. Here, the free variable ¢ : var[r] of C' becomes bound.
Finally, we assume the usual range of binary operations on integer and boolean
expressions.

3 Game Semantics of Idealized ALGOL

In game semantics, a computation is represented as an interaction between two
protagonists: Player (P) represents the program, and Opponent (O) represents
the environment or context in which the program runs. For example, for a pro-
gram of the form

¢ : exp[int] - comm + M : comm |,

Player will represent the program M; Opponent represents the context, in this
case the non-local procedure ¢. This procedure, if called by M, may in turn call
an argument, in which case O will ask P to provide this information.

The interaction between O and P consists of a sequence of moves, alternating
between players. In the game for the type comm, for example, there is an initial
move run to initiate a command, and a single response done to signal termi-
nation. Thus a simple interaction corresponding to the command skip might

be
O: run (start executing)

P: done (immediately terminate).
In more interesting games, such as the one used to interpret programs like

¢ : exp[int] - comm ¢(0) : comm ,

there are more moves. Corresponding to the result type comm, there are the
moves run and done. The program needs to run the procedure ¢, so there are
also moves run, and done, to represent that; here the run, move is a move for
P, and done, is a move for O. Finally, the procedure ¢ may need to evaluate its
argument. For this purpose, O has a move ¢!, meaning “what is the value of the
first argument to +?”, to which P may respond with an integer n, tagged as n}
for the sake of identification.

Here is a sample interaction in the interpretation of the above term.

O: run (start executing)

P: run, (execute ¢)

O:¢q! (what is the first argument to ¢?)
P: 0! (the argument is 0)

O: done, (. terminates)

P: done (whole command terminates).
In the above interaction, at the third move, O was not compelled to ask for the
argument to ¢: if O represented a non-strict procedure, the move done, would
be played immediately. Similarly, at the fifth move, O could repeat the question
q, to represent a procedure which calls its argument more than once.

Strategies. Using the above ideas, each possible execution of a program is repre-
sented as a sequence of moves in the appropriate game. A program can therefore
be represented as a strategy for P, that is, a predetermined way of responding to
the moves O makes. A strategy can also choose to make no response in a partic-
ular situation, representing divergence, so for example there are two strategies
for the game corresponding to comm: the strategy for skip responds to run
with done, and the strategy for (2 fails to respond to run at all.

Strategies are usually represented as sets of sequences of moves, so that a
strategy is identified with the collection of possible traces that can arise if P
plays according to that strategy. The fact that O can repeat questions, as we
remarked above, means that these sets are very often infinite, even for simple
programs. The strategy for the program ¢(0), for example, is capable of supplying
the argument 0 to ¢ as often as O asks for it.

Interpretation of Variables. The type var[r] is represented as a game in
the following way. For each element x of 7 there is an initial move write(z),
representing an assignment. There is one possible response to this move, ok,

which signals successful completion of the assignment. For dereferencing, there
is an initial move read, to which P may respond with any element of 7.
Here is an interaction in the strategy for

v : var[int] - v :=lv + 1.

O: run

P: read, (get the value from v)

0:3 (O supplies the value 3)

P: write(4), (write 4 into v)

O: ok, (the assignment is complete)

P: done (the whole command is complete)

In these interactions, O is not constrained to play a good variable in v, i.e. to
exhibit the expected causal dependency between reads and writes. For example,
in the game for terms of the form

¢:comm,v : var[int] - M : comm ,
we find interactions such as
Tun-ready, -3, - write(4), - ok, -runc- done.-read, -7, - - -

Here O has not played a good variable in v, but this freedom is necessary. Our
semantics must take care of the case in which ¢ is bound to a procedure which
also uses v, for example, the procedure v := 7.

There is one situation in which this kind of interference cannot happen:
when the variable v is made local. This has two effects. The local interaction
with v is guaranteed to exhibit “good variable” behaviour, and the interaction
with v is not an observable part of the programs behaviour. Therefore, the games
interpretation of new v in M is given by taking the set of sequences interpreting
M, considering only those in which O plays a good variable in v, and deleting
all the moves pertaining to v, to hide v from the outside.

Full abstraction. In [1], it was shown that games give rise to a fully abstract
model of TA, in the following sense. Say that an interaction is complete if and
only if it begins with an initial move and ends with a move which answers that
initial move. Thus, for example, run-run, is not complete but run-run,-done,-done
is. Then we have the following theorem:

Theorem 1 (Full Abstraction for IA). For any I' F P,Q : 6, programs
P and Q are contextually equivalent in IA (P = Q) if and only if the sets of
complete plays in the strategies interpreting P and Q) are equal.

Note. In the above account, a very simple notion of game has been used. In
fact, games models require a great deal more machinery, including the notions
of justification pointer and questions and answers, in order for full abstraction
to be achieved. The key observation which makes the present paper possible is
that, for the interpretation of TA up to second-order types, this extra machinery
is redundant; it only comes into play at third-order and above.

4 Regular Language Game Semantics

We will now give a simple presentation of the game semantics of our fragment of
TA. The key idea is that the set of complete plays in a strategy forms a regular
language, which leads to a compact notation for defining and manipulating these
infinite sets of sequences. We define a metalanguage based on regular expressions,
extended with two handy operations: intersection and hiding. Of course, these
extensions do not change the regular nature of the languages being defined.

Definition 1. The set R 4 of extended regular expressions over o finite alphabet
A is defined inductively as the smallest set for which:

Constants: L,e € Ra; ifa € A, thena € R4;
Tteration: if R€ R4, R* € Ry;

Operators: if R,S € R, then R-S, R+ S,RNS € R;
Hiding: ifR€Ra, A C A, then R|4€ Ra;

The constant L denotes the empty language, while € is the language consisting
only of the empty string. The constant a is the language consisting of the sin-
gleton sequence a. Hiding represents the operation of restricting a language to a
subset A\ A’ of the original alphabet A: the language £(R |4/) is the set of se-
quences in £(R), with all elements of A’ deleted. The other operations (iteration,
concatenation, union, intersection) are defined as usual.

Proposition 1. Every extended regular expression denotes a regular language.

We now give a regular language representation of the game semantics for TA.
An alphabet is associated with every type in TA. They represent a semantic “do-
main” over which regular languages will be constructed, using extended regular
expressions:

Alint] =N, A[bool] = {true, false}
A[comm] = {run, done},
Alexp[r]] = {¢q,v | v € A[r]},
Alvar[r]] = {read, v, write(v), ok | v € A[r]},
Aoy 503 = ... =5 op = 0] ={a* | a € AJo;],1 <i < k}U Afo].
By a* we mean a lexical operation: the creation of a new symbol by tagging the

symbol a with the numeral k.
For a term of the form

t1:01,00:05,. .00 FM 0

we define the context alphabet to be the set

U fa,, la€ A1}

1<j<k

that is, the union of the A[6;] alphabets, every symbol tagged with the corre-
sponding identifier.

The semantics of a term M as above is then a regular language of a certain
form, defined as follows.

— If 0 = comm, [M] = run-Rar-done.
— If o = exp[7], [M] = X c 4y ¢ Ris-v

— If o = var[7],

[M] = Z (read-RY;-v) + Z (write(v)- Sy, - ok)
UE-A[T]] ’Ue.AlIT]]

where Ry, RY, and S}, are regular languages over the context alphabet of the
term M. The idea is that, for M of type comm, for example, the regular language
Ry is the set of interactions with the environment that need to take place for
M to terminate. Similarly, R3, is the set of interactions that an expression M
must have with the environment to return a value of 3, and so on. For M of type
var[r], RY, denotes the interactions required for a value v to be read from M,
and S}, denotes the interactions needed to write v into M.

These regular languages, denoted by Ry, R}, S}y, form the substance of
our interpretation of the language; the moves that bracket them, such as run,
done for commands, are merely delimiters to indicate that a complete play has
occurred. The definitions needed to interpret most of our language are given in
Table 1.

Roxip = € Ro=1 R, =c¢ Ry =1 (v#£47)
R,.comm = Tun, - done, R} explr] =4 -0

R} var[r) = read, - v, Siivar[r] = write(v), - ok,

¢ 1
Ruwhile Bdoc = (R5" - Ru)* - Ri™ R +m, = E Ry - R

ni1+na=n

true _ n n false _ ny no
RE1=E2 - E RE'1 'RE2 RE1:E2 - E REI 'RE‘2
neN nl#n2

true Jfalse
Rif BthenCelsec' = Rp Rc+ Rg™ - Ror Rg,cr = Rc - Rer

R =Ry Rv.—u = Z Ry - SY

v

Table 1. Some semantic valuations

For instance, a trace of V' := E consists of run and done surrounding the
effects of the assignment: first R} which is the regular language denoting the

interaction which leads the expression E to return value v, and then S}, which
is the regular language denoting the interaction required to write value v into
variable V.

A trace of a while-loop has the form: some number of repetitions of a trace
of the guard which produces true followed by a complete trace of the loop body,
then, finally, a single trace of the guard producing false. Using our semantics,
we can easily demonstrate the validity of a typical while-loop equivalence:

[while true do (]
= run- (RIS -Rc) ™RI5 . done

rue rue
= run-(e-R¢)*-L-done
=[]

The semantics of a free identifier ¢ consist simply of querying the identifier. There
is no need to look up the identifier in an environment, because the tagging of the
trace with the name of the identifier ensures the proper correspondence between
each identifier and its effects. Therefore, a notion of environment is not needed
here at all.

The semantics of application and of local variables have been omitted from
Table 1 because they deserve additional explanation.

Application. Let ¢+ be a free variable of type 01 = 09 — ... = 0 = comm,
and My, ..., My be terms of type oy, ..., 0. The interpretation of the appli-
cation ¢M; ... My, depends on the moves available, which depends on the types
01, ..., 0. In the simplest case, when every o; is the type comm, we define

*

k
Ry .m, = Tum, - Z run{ -Ru; - done{ - done,.
=1
To illustrate a more complex case, we give the definition of the interpretation of
1M where : has type var[int] — exp[int].

Ry =a- (Z 1"6ad1 n + Z write(n -SJT(,I - oki) -,

The large sums in this expression show that the environment chooses how to
read and write from the argument to ¢, and that the term M determines what
behaviour results from such reading and writing.
In general, for a variable ¢ : 07 — 092 — ...0r = comm:
*

k
Ropy.. v, = TUN,- Zp{[[M]]] -done,
j=1

where pJ is a relabeling operation that tags the initial and final moves of the
arguments M;, the bracketing indicating a complete play, with the identifier
which is calling them and the position in which they are used:

P/ (R) = R[w’ Jw], for w € {run, done, q,v, read, write(v), ok | v € A[7]}.

Local variables. For the semantics of a local variable block, as in the original
game semantics, there are two things to do: restrict O’s behaviour to that of a
good variable, and hide the interaction with the local variable.

The regular language] stipulates that the moves corresponding to + have
good-variable behaviour. First, let A[7], be that part of the alphabet which
concerns the variable ¢ : var[r], that is,

A[r]. = {read,, v,, write(v),, ok, | v € A[7]}.

Let B, = (3_,¢ AL z)* be the regular language containing all strings which
do not contain any elements of A[7],. If we assume that variables initially hold
some default value a”, then good-variable behaviour is stipulated as follows.

*
v: = B,-(read,-a; -B,)*- | B,- Z (wm’te(v)b-ok-Bb-(readL-UL-Bb)*)
vEA[T]
For the sake of completeness, ai™ = 0 and aP°°!
semantics of blocks as

= false. We can then give the

Rnew[r] cin M~ (%T n RM) |A[[T]]L .

Note that the same intersection and hiding can be used to define [new[7] ¢ in M]
directly from [M]: the bracketing moves, run and done, make no difference.

[new[r] v in M] = (v; N [M]) |apy. -

Theorem 2. Full abstraction. Two terms of the recursion free second order
finitary fragment of IA are equivalent (in full IA) if and only if the languages
denoted by them are equal:

For any ' P,Q : 6, P=Q < [P] =[]

Proof. We can show that the regular language denoted by a term of TA is equal
to the set of complete plays in the fully abstract game semantics [1], therefore the
full abstraction property is preserved. Note that language equivalence is asserted
outside the fragment we describe here; witnesses to some inequivalences may
belong to TA but not to the presented fragment. O

5 Examples of Reasoning

At this point a skeptical reader may entertain doubts concerning our earlier claim
of simplicity. We have set up a formal notation of extended regular expressions
which includes rather complicated operations. However, the complications are
notational and not conceptual. Also, all the operations involved are defined effec-
tively so carrying them out is a mechanical process. We hope that the simplicity
of our approach will become clearer when we show examples of reasoning about
putative equivalences.

Locality. This most simple of equivalences invalidates models of imperative
computation relying on a global store, traceable back to Scott and Strachey [17].
It says that a globally defined procedure cannot modify a local variable, and
it was first proved using the “possible worlds” model of Reynolds and Oles,
constructed using functor categories [11].

P:commt new z in P=P
Proof.
[new z in P] = (¥* N[P]) | a,

= (¥* Nrun-runp-donep-done) |4,

= (run-runp-donep-done) |4,
because no moves are tagged by x

= run-runp-donep-done

— (7]

Snapback. This example captures the intuition that changes to the state are in
some way irreversible. A procedure executing an argument which is a command
inflicts upon the state changes that cannot be undone from within the procedure.
This is why, in the following, if procedure P uses its argument both sides will
fail to terminate; if procedure P does not use its argument the behaviour of each
side will be identical because of the locality of x, as seen above. The first model
to address this issue correctly was O’Hearn and Reynolds’s interpretation of
TA using the polymorphic linear lambda calculus [8]. Reddy also addressed this
issue using a novel “object semantics” approach [13], but in a particular flavour
of TA known as interference-controlled ALGOL [6]. A further development of this
model, that also satisfies this equivalence, is O’Hearn and Reddy’s [7], a model
fully abstract for the second order subset.

P : comm — comm -
new z in P(z :=1); if lz =1 then (2 else skip = P(2)

Proof.

[z := 1] = run-write(1), - ok, - done

[P(z :=1)] = run-runp- (run};-write(l)z-okz-done}g)*-donep-done

[if !z =1 then 2 else skip] = Z run-read, -ng-done

n#l
[P(z :=1); if lx =1 then 2 else skip]

= run-runp- (runp- write(1), - ok, - donep) " - donep- Z read, n, | -done
n#l
¥ N [Pz :=1); if lz =1 then {2 else skip]

= run-runp-donep-read,-0,-done,

because the only possibility to complete a trace in) 1 ready-n, is if the trace

in (run},-wm’te(l)z-okw-done}g) * is the empty trace. Otherwise, the good variable
property of z requires n, = 1, which is banned by the set to which n is restricted
(n # 1). The meaning of the left hand term of the equivalence is therefore:

(" N[P(z:=1); if lx =1 then 2 else skip]) |4,

= run-runp-donep-done = [P(12)]

Parametricity. The intuition of parametricity is one of representation inde-
pendence. Procedures passed different but equivalent implementations of a data
structure or algorithm are not supposed to be able to distinguish between them.
Several such motivating examples are given by O’Hearn and Tennent [9], who
introduce a model constructed using a certain relation-preserving functor cate-
gory.

The specific example we give is of the equivalence of two implementations
of a toggle-switch: one which uses 1 for “on” and —1 for “off”, and one which
uses true and false. The semantic equations for negation and the inequality test
have not been spelled out but are the obvious ones.

P : comm — exp[bool] -+ comm |-
new[int] z in z := 1; P(z := —!z)(!z > 0)

= new[bool] z in z := true ; P(z := not z)(!z)

Proof.
[z :=—-12] = Z run-ready Ny - write(—n) - 0k, - done
neN
[lz > 0] = Z q-ready-ng-true + Z q-ready-ng-false
n>0 n<0
[z :=1; P(xz := —lz)(lz > 0)] = run-write(1);- ok,
runp- (Z runb-read, ng - write(—n)g - ok, - doneb+
neN
*
Z qf;-readz-nw-true% + Z qf)-readz-nz -false?; -donep-done
n>0 n<0
YoaeNz =1, P(z:= —lz)(lz > 0)] =

= run-write(1) ;- ok -runp-(e + X + X-Y + X-Y-X + ...)-donep- done

= run-write(1), ok -runp- (X + (X-Y)*-(X +€)) - donep- done

where X = run}-read, -1, write(—1),- ok, - donep- (qb-read, -(—1), - falsed) "
and Y = run}-read, -(—1), - write(1), - ok, - donep- (qf)-readz-(l)z-true%g)*

Why this is the case should be intuitively clear. A value of 1 is written into z,
followed by negation only, which constrains all the plays to (+1), and (-1),

only. The reads and writes have to match with the good variable behaviour.
A fully formal proof is lengthier but trivial and mechanical. Restricting with
| A[int]. gives the following trace for the left hand side:

run-runp- (X' + (X"-Y")*-(X' +€))-donep-done
where X' = runb-donep- (¢b-falsed)” and Y’ = runk-donep- (g5 trueb)”

A similar calculation on the right hand side leads to the the same result.

6 Decidability and Complexity Issues

As we have seen, regular languages provide a semantics for the fragment of TA
described here. To manipulate regular languages we have introduced a formal
meta-language of extended regular expressions, which preserves regularity of the
language. All the operations we have used in formulating the semantic valuations
have been effectively given. Therefore, we can formulate the following obvious
result:

Theorem 3 (Decidability). Equivalence of two terms of the recursion free
second order finitary fragment of IA is decidable.

For the general problem of term equivalence the complexity bound appears to
be at least of exponential space, as is the case for regular expressions with in-
tersection [19]. However, the complexity bound for the general problem may not
be relevant for the kind of terms that arise in the model of IA, and particularly
for those that would be checked for equivalence in practice. This point, which
will be investigated in future work, is of the utmost importance if a tool is to be
developed based on our ideas.

Acknowledgments We are grateful to Robert Tennent, Samson Abramsky and
Mark Jerrum for suggestions, questions and advice. We thank Peter O’Hearn and
Pasquale Malacaria for a stimulating discussion on the paper, and our anony-
mous referees for their insightful comments.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions (extended abstract). In
Proceedings of 1996 Workshop on Linear Logic, volume 3 of Electronic notes in
Theoretical Computer Science. Elsevier, 1996. Also as Chapter 20 of [10].

2. S. Brookes. Full abstraction for a shared variable parallel language. In Proceed-
ings, 8th Annual IEEE Symposium on Logic in Computer Science, pages 98-109,
Montreal, Canada, 1993. IEEE Computer Society Press, Los Alamitos, California.

3. C. Hankin and P. Malacaria. Generalised flowcharts and games. Lecture Notes in
Computer Science, 1443, 1998.

4. C. Hankin and P. Malacaria. A new approach to control flow analysis. Lecture
Notes in Computer Science, 1383, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables:
preliminary report. In Conference Record of the Fifteenth Annual ACM Sympo-
stum on Principles of Programming Languages, pages 191-203, San Diego, Cali-
fornia, 1988. ACM, New York. Reprinted as Chapter 7 of [10].

P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic con-
trol of interference revisited. Theoretical Computer Science, 228:175-210, 1999.
Preliminary version reprinted as Chapter 18 of [10].

P. W. O’Hearn and U. S. Reddy. Objects, interference and the Yoneda embed-
ding. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors, Mathematical
Foundations of Programming Semantics, Eleventh Annual Conference, volume 1 of
Electronic Notes in Theoretical Computer Science, Tulane University, New Orleans,
Louisiana, Mar. 29-Apr. 1 1995. Elsevier Science (http://www.elsevier.nl).

P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. Journal of the Association for Computing Machinery, to appear.

P. W. O’Hearn and R. D. Tennent. Relational parametricity and local variables.
In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 171-184, Charleston, South
Carolina, 1993. ACM, New York. A version also published as Chapter 16 of [10].

P. W. O’Hearn and R. D. Tennent, editors. ALGOL-like Languages. Progress in
Theoretical Computer Science. Birkh&user, Boston, 1997. Two volumes.

F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Lan-
guages. Ph.D. thesis, Syracuse University, Syracuse, N.Y., 1982.

A. M. Pitts. Reasoning about local variables with operationally-based logical rela-
tions. In 11th Annual Symposium on Logic in Computer Science, pages 152-163.
IEEE Computer Society Press, Washington, 1996. A version also published as
Chapter 17 of [10].

U. S. Reddy. Global state considered unnecessary: Introduction to object-based
semantics. Lisp and Symbolic Computation, 9(1):7-76, 1996. Published also as
Chapter 19 of [10].

J. C. Reynolds. Syntactic control of interference. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, pages 3946,
Tucson, Arizona, Jan. 1978. ACM, New York.

J. C. Reynolds. The essence of ALGOL. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, Proceedings of the International Symposium on
Algorithmic Languages, pages 345-372, Amsterdam, Oct. 1981. North-Holland,
Amsterdam. Reprinted as Chapter 3 of [10].

D. A. Schmidt. On the need for a popular formal semantics. ACM SIGPLAN
Notices, 32(1):115-116, Jan. 1997.

D. S. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. In J. Fox, editor, Proceedings of the Symposium on Computers and Au-
tomata, volume 21 of Microwave Research Institute Symposia Series, pages 19-46.
Polytechnic Institute of Brooklyn Press, New York, 1971. Also Technical Mono-
graph PRG-6, Oxford University Computing Laboratory, Programming Research
Group, Oxford.

K. Sieber. Full abstraction for the second order subset of an ALGOL-like language.
In Mathematical Foundations of Computer Science, volume 841 of Lecture Notes
in Computer Science, pages 608-617, Kosice, Slovakia, Aug. 1994. Springer-Verlag,
Berlin. A version also published as Chapter 15 of [10].

L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. Technical Report MIT/LCS/TR-133, Massachusetts Institute of Technology,
Laboratory for Computer Science, July 1974.

