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ABSTRACT
First-class continuations are a powerful computational ef-
fect, allowing the programmer to express any form of jump-
ing. Types and effect systems can be used to reason about
continuations, both in the source language and in the target
language of the continuation-passing transform. In this pa-
per, we establish the connection between an effect system for
first-class continuations and typed versions of continuation-
passing style. A region in the effect system determines a
local answer type for continuations, such that the continua-
tion transforms of pure expressions are parametrically poly-
morphic in their answer types. We use this polymorphism
to derive transforms that make use of effect information, in
particular, a mixed linear/non-linear continuation-passing
transform, in which expressions without control effects are
passed their continuations linearly.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages, Theory

Keywords
Continuations, control effects, type and effect systems, poly-
morphism

1. INTRODUCTION
The transformation of a program into continuation pass-

ing style (CPS) makes all control transfers, such as jumps
or procedure calls, explicit. CPS can be used as an interme-
diate language in compiling [2, 26]. Moreover, CPS makes
it easy to accommodate powerful control operators in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03,January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

programming language, including first-class continuations,
since these are easily transformed into CPS.

Modern programming languages tend to use advanced
type systems, and increasingly such type systems are used
in intermediate and even low level languages. For continua-
tions, there are two quite different levels at which types can
play a role: the source and the target language of the CPS
transform.

Types for continuation operators in the source, such as
call/cc in Scheme [16], were proposed by Griffin [12] and
incorporated into the New Jersey dialect of Standard ML [9].
A further refinement of types is given by type and effect
systems, as in the FX programming language, which super-
imposes a type and effect [17] discipline on a Scheme-like
language. While this effect system was originally concerned
with assignments, Gifford and Jouvelot [15] extended it to
control effects.

The output of the CPS transform is highly stylized; some
of this can be formalized with types [19]. Concretely, if an
expression M has type A, its CPS transform M has type
(A→ Ans)→ Ans, where the latter typing can be refined in
several ways (some of which are part of the continuations
folklore).

1.1 Answer type polymorphism
First, the answer type is abstract, in that we can assume

it to be a free type variable α:

Γ `M : (A→ α)→ α

Relatively little use seems to have been made of the ab-
stractness of the answer type, although it is used in a proof
in [25]. Furthermore, if there are no control operators, then
we can in fact ∀-quantify over the answer type variable:

Γ `M : ∀α.(A→ α)→ α

1.2 Naturality
Another, a priori quite different, property which an ex-

pression in CPS may enjoy, is given by equational reason-
ing (possibly in an untyped setting). Suppose we supply a
continuation K to an expression M in continuation passing
style. This may or may not be the same as supplying an
identity continuation and wrapping K around. We say that
M is natural if the equation

MK = K(M(λx.x))

holds. Naturality holds for expressions which simply return
to their current continuation, but it may fail for expressions



with control effects. For instance, if M jumps, thus dis-
carding its current continuation, it can discard K in MK;
whereas in K(M(λx.x)), it can only discard λx.x, with K
still being applied to the answer. Hence naturality is a possi-
ble notion of purity. A different perspective is given by con-
trol delimiters. Specifically, Felleisen [10] defines a control
delimiter, or “prompt”, that passes the identity continuation
and wraps the current continuation around the answer:

%M = λk.k(M(λx.x))

Naturality of M can then be read as M being insensitive to
the insertion of a prompt, in the sense of M = %M .

1.3 Linear continuation passing
Finally, an expression may use its continuation linearly:

Γ `M : (A→ α)( α

Here the linear function type ( indicates that the contin-
uation is passed linearly, so that M can neither discard its
current continuation, nor invoke it multiple times. Linear
continuation passing is not restricted to languages without
control: surprisingly many idioms of control, in which con-
tinuations are not first-class, adhere to linearity [4].

In the absence of control operators, local answer type
polymorphism, naturality and linearity are all easy to see
and to prove with a straightforward induction. The addition
of call/cc to the source language, however, seems to break
all these properties beyond repair: in the worst case, no
continuation would be used linearly, all answer types would
have to be the same (albeit still a free type variable), and
no expression would be natural.

1.4 Contribution
The main contribution of this paper is to recover, as far as

possible, the above properties of the CPS transform in the
presence of call/cc, if first-class continuations are tamed by
an effect system in the source language. On the technical
side, this opens the door to bring parametricity machinery
to bear on control effects. On a more practical side, it sug-
gests the use of effect systems for statically deriving linearity
of CPS code with the possibility of stack-allocation of acti-
vation records.

1.5 Outline
Section 2 presents the effect system for control which will

be used in the paper. We show how regions in the source
language relate to answer type polymorphism in the target
language of the CPS transform in Section 3. Building on the
answer type polymorphism, we modify the CPS transform
using parametricity arguments in Section 4. We can then
pass continuations of expressions without control effects lin-
early, as show in Section 5. Section 6 concludes.

2. A CONTROL EFFECT SYSTEM
We define a type and effect system for λ-calculus with

call/cc closely based on a subset of Jouvelot and Gifford’s
control effects [15].

2.1 Effect systems
Most of the effect system, given in Figure 1, is quite

generic in that it could be used for different kinds of effects.
A judgement Γ c̀ M : A ! e in a type and effect system

ascribes to an expression M in context Γ both a type A and

an effect e. Effects typically form a semilattice with a join
operation ∪ and a least element ∅ (usually just finite sets).
The least effect ∅ represents the absence of any effects, and
an expression with this effect is said to be pure.

The basic ideas are that an application, in rule (→E), un-
leashes all the effects that the operator, the operand and
the application itself may have. Conversely, λ-abstraction,
in rule (→I), delays all the effects that the body of the ab-
straction may have, turning them into latent effects that
happen later, when the procedure is applied.

We elide type and region abstraction and application in
expressions, using a Curry rather than a Church style sys-
tem. For example, the expression with type ∀α.A in the
rule (∀αI) is written as V , rather than an explicit type ab-
straction Λα.V . Since we only consider expressions in the
source language together with a type and effect derivation,
the term annotations could always be reconstructed.

We assume countable infinite sets of type and region vari-
ables. Let α range over type variables and ρ range over
region variables. The set of free type variables is defined as
follows:

Tyvar(α) = {α}
Tyvar(A

e→B) = Tyvar(A) ∪ Tyvar(B)

Tyvar(∀ρ.A) = Tyvar(A)

Tyvar(∀α.A) = Tyvar(A) \ {α}

Analogously, the set of free regions is defined as follows:

Reg(α) = ∅
Reg(A

e→B) = Reg(A) ∪ Reg(B) ∪ Reg(e)

Reg(∀ρ.A) = Reg(A) \ {ρ}
Reg(∀α.A) = Reg(A)

2.2 Control effects
The only inference rule specific to control is the one for

the call-with-current-continuation operator (call/cc
for short) in Figure 2. The call/cc operation is annotated
with effects in two places: where the continuation is seized,
and where it is thrown to. Jouvelot and Gifford [15] differen-
tiate between these, calling the latter goto ρ and the former
comefrom ρ. From our perspective here, both of these ef-
fects amount to non-linearity. Hence we drop the goto and
comefrom annotations, so that a control effect is simply a
finite set of regions.

As a further simplification, we only consider the fragment
of the effect system c̀ in which effects are at most singletons:
either the empty effect ∅, or a single region ρ. We write the
singleton {ρ} as ρ. This amounts to taking the effect joining
operation to be partial, defined only in these cases:

∅ ∪ ∅ = ∅
ρ ∪ ∅ = ρ

∅ ∪ ρ = ρ

ρ ∪ ρ = ρ

With the restriction to at most singleton effects, the type
rule for call/cc boils down to the following two cases, de-
pending on whether the argument of call/cc has a control
effect or not:

Γ c̀ call/cc : ((A
ρ→B)

ρ→A)
ρ→A



(→E)Γ c̀ M : A
e1→B ! e2 Γ c̀ N : A ! e3

Γ c̀ MN : B ! e1 ∪ e2 ∪ e3

(→I)
Γ, x : A c̀ M : B ! e

Γ c̀ λx.M : A
e→B ! ∅

(Var)
Γ, x : A,Γ′ c̀ x : A ! ∅

(∀ρI) Γ c̀ V : A ! ∅
Γ c̀ V : ∀ρ.A ! ∅ ρ /∈ Reg(Γ) (∀ρE)

Γ c̀ V : ∀ρ.A ! ∅
Γ c̀ V : A[ρ 7→ ρ′] ! ∅

(∀αI) Γ c̀ V : A ! ∅
Γ c̀ V : ∀α.A ! ∅ α /∈ Tyvar(Γ) (∀αE) Γ c̀ V : ∀α.A ! ∅

Γ c̀ V : A[α 7→B] ! ∅

(Masking)
Γ c̀ M : A ! ρ

Γ c̀ newregM : A ! ∅ ρ /∈ Reg(A) ∪ Reg(Γ) (Weaken)Γ c̀ M : A ! ∅
Γ c̀ M : A ! e

Figure 1: A type and effect system

(call/cc)
Γ c̀ call/cc : ∀ρ.∀α.∀β.((α ρ→ β)

e→ α)
ρ∪e→ α ! ∅

Figure 2: Type and effect rule for call/cc

and

Γ c̀ call/cc : ((A
ρ→B)

∅→A)
ρ→A

Here A and B can be any types; note in particular that A
may contain ρ free.

As shown by Harper and Lillibridge [13, 14], adding the
operator call/cc to the polymorphic λ-calculus makes the
type system unsound, unless the rules for polymorphism are
restricted; the value restriction, as found in Standard ML [20],
avoids this unsoundness. We restrict the rules dealing with
polymorphism in Figure 1 to apply only to values. As usual,
values V comprise λ-abstractions, variables and constants
(in this case only call/cc):

V ::= λx.M | x | call/cc

Note that while the operator call/cc on its own is a value,
its application to an argument, as in call/cc M , is of course
not a value. (We will briefly revisit the soundness issue in
Remark 2.3 below.)

2.3 Effect masking
One of the features that make an effect system with re-

gions work is effect masking, as in rule (Masking). Suppose
Γ c̀ M : A ! ρ, where ρ is not free in Γ or A. Intuitively,
there can then be no communication of this effect to the out-
side world, neither by shared variables in Γ, nor by return
values of type A. Hence the effect is private to M and can,
as far as the rest of the program is concerned, be masked:
seen from the outside, M appears not to have the effect.

This control effect system is very simple. Nonetheless,
it appears reasonably expressive regarding the masking of
control effects.

2.4 Examples
We consider some small examples to illustrate control ef-

fect masking. The first is an instance of a downward, the
second of an upward continuation.

Example 2.1 (Downward continuation) Consider the ap-
plication of a possibly jumping function h:

h : A
ρ→B c̀ V (hW ) : A ! ρ

The effect cannot be masked, since ρ appears in the context.
We supply the required h with an application of call/cc:

c̀ call/cc(λh.V (hW )) : A ! ρ

Assuming that ρ is not free in A, the control effect can then
be masked:

c̀ newreg (call/cc(λh.V (hW ))) : A ! ∅

Intuitively, W is thrown to the call/cc, while V is dis-
carded; but from the outside, we only see that the expression
evaluates to W , so it appears pure.

Example 2.2 (Upward continuation) Consider this ex-
pression, where ρ is not free in A:

c̀ call/cc(λk.λx.k(λy.x)) : A
ρ→A ! ρ

The control effect cannot be masked, since ρ is free in the
type of the expression. Suppose we apply the above to some
pure N : A. The control effect can then be masked:

c̀ newreg (call/cc(λk.λx.k(λy.x))N) : A ! ∅

Alternatively, suppose we λ-abstract the effectful expression:

c̀ λz. call/cc(λk.λx.k(λy.x)) : B
ρ→ (A

ρ→A) ! ∅

The region ρ can then be bound in the function type:

c̀ λz. call/cc(λk.λx.k(λy.x)) : ∀ρ.B ρ→ (A
ρ→A) ! ∅

Remark 2.3 The expression in Example 2.2 was used by
Harper and Lillibridge [13, 14] to show the unsoundness
of unrestricted ∀-introduction in the presence of call/cc.



Specifically, the type A could have been a fresh type vari-
able α:

c̀ call/cc(λk.λx.k(λy.x)) : α
ρ→ α ! ρ

However, in our type and effect system as defined in Fig-
ure 1, we could not ∀-quantify α, that is,

6 c̀ call/cc(λk.λx.k(λy.x)) : ∀α.(α ρ→ α) ! ρ

The ∀-introduction is not allowed by our type system, since
the application of call/cc is not a value; this restriction is
sufficient to avoid the unsoundness.

As discussed in Example 2.2, region polymorphism and
effect masking seem quite analogous. In the next section,
we will explain both in terms of answer type polymorphism.

3. FROM EFFECTS TO POLYMORPHISM
When we transform source language expressions into CPS,

we can use their effect judgements to give a more fine-
grained typing of the transformed expressions.

3.1 Basic CPS transform
Our starting point is the basic call-by-value CPS trans-

form, enriched with call/cc; such transforms are standard
in the continuations literature [9]. (We use a “Fischer-style”
variant of CPS, where the continuation comes first, as the
transform of function types becomes more symmetric that
way.)

Definition 3.1 The basic CPS transform (−) is defined as
follows:

x = λk.kx

λx.M = λk1.k1(λk2x.Mk2)

MN = λk.M(λm.N(λn.mkn))

call/cc = λk1.k1(λk2f.fk2(λk3x.k2x))

newregM = M

The basic CPS transform works irrespective of effects, so
that the newregM construct is ignored; we could as well
delete it before applying the CPS transform.

The operator call/cc is typically used together with a
λ-abstraction in the idiom call/cc(λh.M), which is trans-
formed as follows:

call/cc(λh.M) = λk1.M [h 7→λk2x.k1x]k1

The type system for the target language of the CPS trans-
form is the polymorphic λ calculus; see Figure 3.

Definition 3.2 We assume that for each region variable ρ
we have a unique type variable αρ. The CPS transform of
types is then defined as follows:

A
∅→B = ∀α.((B→ α)→ (A→ α)) (α fresh)

A
ρ→B = (B→ αρ)→ (A→ αρ)

∀α.A = ∀α.A
∀ρ.A = ∀αρ.A

α = α

A transform on types extends to contexts Γ in the evident
way (pointwise). It is easy to see the following lemma:

Lemma 3.3 If a region ρ is not free in a type A, then the
type variable αρ is not free in the CPS transformed type A.

Regions and answer type polymorphism are linked. More
precisely:

Proposition 3.4 If Γ c̀ M : A ! ρ, then:

Γ `M : (A→ αρ)→ αρ

If Γ c̀ M : A ! ∅, then (for some fresh α):

Γ `M : ∀α.(A→ α)→ α

Proof. The proof is by induction on the effect derivation,
the central step being the one for effect masking. Suppose
ρ can be masked in Γ c̀ M : A ! ρ, that is, ρ is not free in Γ
or A. But then αρ is not free in Γ or A. So by the induction
hypothesis,

Γ `M : (A→ αρ)→ αρ

hence

Γ `M : ∀αρ.(A→ αρ)→ αρ

By renaming the bound variable to some fresh α, we have
the required judgement:

Γ ` newregM : ∀α.(A→ α)→ α

Proposition 3.4 states that a region determines a local
answer type. Masking control effects by hiding a region
amounts to quantifying a local answer type.

Example 3.5 Let us revisit Example 2.2. The expression
and its type are transformed as follows:

λz. call/cc(λk.λx.k(λy.x))

= λk1.k1(λk2z.k2(λk3x.k2(λk4y.k4x)))

∀ρ.B ρ→ (A
ρ→A)

= ∀αρ.(((A→ αρ)→ (A→ αρ))→ αρ)

→ (B→ αρ)

Note how the shared effect ρ forces the answer types of
A → . . . and B → . . . to be the same, αρ. Thus the B-
accepting continuation k2 and the A-accepting continuation
k3 are given the same answer type, as is required to make
the CPS-transformed expression well typed.

Example 3.6 Consider an expression without control ef-
fects, such as:

c̀ λz.λx.x : B
∅→ (A

∅→A) ! ∅

Then the expression and its type are transformed as follows:

λz.λx.x

= λk1.k1(λk2z.k2(λk3x.k3x))

B
∅→ (A

∅→A)

= ∀α2.((∀α3.(A→ α3)→ (A→ α3))→ α2)

→ (B→ α2)

We have the following CPS-transformed judgement:

` λz.λx.x : ∀α1.(B
∅→ (A

∅→A)→ α1)→ α1



Γ, x : A ` x : A

Γ, x : A `M : P
Γ ` λx.M : A→ P

Γ `M : A→ P Γ ` N : A
Γ `MN : P

Γ `M : A
Γ `M : ∀α.A α /∈ Tyvar(Γ) Γ `M : ∀α.A

Γ `M : A[α 7→ B]

Figure 3: Polymorphic typing of the target language

Each continuation ki has its own (∀-bound) answer type αi;
there is no sharing of answer types, due to the absence of
control effects.

Example 3.7 Note that the answer type polymorphism does
not exclude latent control effects: the simplest example is a
variable with a latent control effect:

h : A
ρ→B c̀ h : A

ρ→B ! ∅

Then we have:

h : (B→ αρ)→ (A→ αρ)

` λk.kh : ∀α.(((B→ αρ)→ (A→ αρ))→ α)→ α

Example 3.8 Conversely, an effectful function may be ap-
plied to a pure argument:

g : (A
∅→A)

ρ→B c̀ g(λx.x) : B ! ρ

Then after CPS transformation, we have:

g : (B→ αρ)→ (∀α.(A→ α)→ (A→ α))→ αρ

` λk.gk(λk2x.k2x) : (B→ αρ)→ αρ

The CPS transform in this section only used the effect
information on types and judgements, but not on terms.
Our goal in the next sections is to use the effects, purity in
particular, to guide the transform of the terms themselves.

4. PARAMETRICITY AND ANSWER TYPE
POLYMORPHISM

Having established the answer type polymorphism of pure
expressions, we now aim to formalize the very restricted use
that a pure expression can make of its continuation.

Considering M as a map M : ∀α.(A→ α)
·→ α, where

α is a fresh answer type, the equality MK = K(M(λx.x))
amounts to naturality in α, with M being a natural trans-
formation from the covariant hom functor [A→ (−)] to the
identity functor [18].

[A→ α]
M
−−→ α

[A→K]

y yK
[A→ α′]

M
−−→ α′

Naturality is one of the fundamental notions of being uni-
form in α. However, the naturality square above is much too
weak as an induction hypothesis, since it is not even clear
what naturality in αρ is supposed to mean in a type like

(((A→ αρ)→ (A→ αρ))→ αρ)

from Example 3.5.

What we need is some more general notion of being “well-
behaved” in αρ that specializes to naturality whenever the
effect can be masked. Relational parametricity [24, 28] pro-
vides such a notion. The property we are aiming for is, in
essence, one of its basic instances, the Reynolds isomorphism
(∀α.(A→ α)→ α) ∼= A (where α is not free in A).

4.1 Some basics on parametricity
We recall some of the basics of parametricity [24] to prove

what Wadler calls “theorems for free” [28]: equational prop-
erties that follow from the type of an expression. We follow
Pitts [23] in working directly on the syntax.

We write R : A↔ A′ if R is a relation between A and A′.
Let R1 : A ↔ A′ and R2 : B ↔ B′ be relations. Then we
define a relation

R1→R2 : (A→B)↔ (A′→B′)

by (F, F ′) ∈ R1→R2 iff for all (M,M ′) ∈ R1, (FM,F ′M ′) ∈
R2.

Let R be a function that maps relations to relations. We
define a relation ∀R as follows: (M,M ′) ∈ ∀R iff for all
closed types A, A′, for all relations R : A ↔ A′, (M,M ′) ∈
R(R).

Given an environment η that maps type variables to rela-
tions, we interpret each type as a relation as follows:

Rel(α)η = η(α)

Rel(A→B)η = Rel(A)η→Rel(B)η

Rel(∀α.A)η = ∀(R 7→ Rel(A)(η[α 7→ R]))

We define

Γ |= M ∝M ′ : A

to hold if for all environments η mapping type variables to
relations on closed types, and for all substitutions σ and σ′

with (σ(x), σ′(x)) ∈ Rel(Γ(x))η for all x in Γ, it is the case
that (Mσ,M ′σ′) ∈ Rel(A)η.

We will need the following lemma when building up ex-
pressions:

Lemma 4.1 The relation ∝ is compatible [23] in the fol-
lowing sense:

• Γ, x : A |= x ∝ x : A

• If Γ |= M ∝ M ′ : A→ B and Γ |= N ∝ N ′ : A, then
Γ |= (MN) ∝ (M ′N ′) : B.

• If Γ, x : A |= M ∝ M ′ : B, then Γ |= (λx.M) ∝
(λx.M ′) : A→B.

• If Γ |= M ∝ M ′ : A, where α is not free in Γ, then
Γ |= M ∝M ′ : ∀α.A.



• If Γ |= M ∝M ′ : ∀α.A, then Γ |= M ∝M ′ : A[α 7→B].

Proof. Straightforward induction.

4.2 From polymorphism to naturality
We need the answer type polymorphism of pure expres-

sions to make the naturality even well-typed, because for a
pure expression it is meaningful to supply the identity as
the top-level continuation. Assume

Γ `M : ∀α.(A→ α)→ α

where α is not free in A. So we can instantiate α to A with-
out affecting A, so that we have Γ `M : (A→A)→A, hence
Γ ` M(λx.x) : A. In fact, the answer type polymorphism,
in connection with parametricity, is sufficient for naturality
to hold, in the following sense:

Proposition 4.2 If Γ c̀ M : A ! ∅ then

Γ |= M ∝ λk.k(M(λx.x)) : ∀α.(A→ α)→ α

That is, we can insert a control delimiter in front of a pure
term without affecting its meaning. If we consider prompts
as control operators, inserting them when they have no ef-
fect would seem rather pointless. However, another motiva-
tion for them is in terms of implementation, since a prompt
limits the amount of control information that can be ma-
nipulated by call/cc, thus facilitating stack allocation. We
could use Proposition 4.2 as the basis for a CPS transform
which inserts a control delimiter for each new region.

We will do that in the next section, but using a dif-
ferent version of control delimiters. Rather than using a
prompt that wraps the current continuation around the ex-
pression, we will use a control delimiter which works by in-
serting λxs.sx. In that connection, we will need the follow-
ing lemma.

Lemma 4.3 If Γ |= M ∝M ′ : ∀α.(A→ α)→ α, where α is
not free in A, then

Γ |= M ∝M ′(λxs.sx) : ∀α.(A→ α)→ α

Proof. Let η be an environment mapping type variables
to relations on closed types, and let σ and σ′ be substitutions
with (σ(x), σ′(x)) ∈ Rel(Γ(x))η. We need to prove that

(Mσ,M ′σ′(λxs.sx)) ∈ Rel(∀α.(A→ α)→ α)η

Let B and B′ be closed types and R a relation R : B ↔ B′.
Since α is not free in A, Rel(A)(η[α 7→R]) = Rel(A)η, so
that

Rel((A→ α)→ α)(η[α 7→R])

= (Rel(A)(η[α 7→R])→Rel(α)(η[α 7→R]))

→Rel(α)(η[α 7→R])

= (Rel(A)η→R)→R

Let (K,K′) ∈ Rel(A)η → R. Define a relation R1 : B ↔
((A→ B′)→ B′) by (N,F ) ∈ R1 iff (N,FK′) ∈ R. Then
(K,λxs.sx) ∈ Rel(A)η → R1. For whenever (N,N ′) ∈
Rel(A)η, we have (KN, (λxs.sx)N ′) ∈ R1, since

(λxs.sx)N ′K′ = K′N ′

and (KN,K′N ′) ∈ R.
Now since (Mσ,M ′σ′) ∈ Rel(∀α.(A→ α)→ α))η, we have

(Mσ,M ′σ′) ∈ Rel((A→ α)→ α))(η[α 7→R1])

Hence (Mσ,M ′σ′) ∈ (Rel(A)η→R1)→R1. Since (K,λxs.sx) ∈
Rel(A)→R1, this implies that

((Mσ)K, (M ′σ′)(λxs.sx) ∈ R1

By definition ofR1, ((Mσ)K, (M ′σ′)(λxs.sx)K′) ∈ R. Hence

(Mσ, (M ′(λxs.sx))σ′) ∈ (Rel(A)η→R)→R

as required.

4.3 An effect-based CPS transform
Instantiating the answer type in a polymorphic CPS trans-

form allows us to obtain more complex CPS transforms from
simpler ones. In particular, instantiating the answer type to
β→α gives us a form of continuation-passing, state-passing
transform. (The same observation has also been used by
Führmann [11] to generalize from a continuations monad to
a state and continuations monad.) Since the state is merely
passed along and not used for anything, it can be typed poly-
morphically. We do not need to change anything at all on
the transform of expressions, although a few η-expansions
may make it clearer how the state s is passed:

x = λks.kxs

λx.M = λk1s1.k1(λk2xs2.Mk2s2)s1

MN = λks1.M(λms2.N(λns3.mkns3)s2)s1

call/cc = λk1s1.k1(λk2fs2.fk2(λk3xs3.k2xs3)s2)s1

In particular, the type variable β could itself be specialized
to continuation type, giving us composable continuations
in the style that Danvy and Filinski call meta-continuation
passing style [7].

Using the answer type polymorphism, we can in fact switch
to meta-continuation passing style locally, each time an ef-
fect is masked, as we do in our next CPS transform.

Definition 4.4 The effect-based CPS transform [[−]] is de-
fined as follows:

[[x]] = λk.kx

[[λx.M ]] = λk1.k1(λk2x.[[M ]]k2)

[[MN ]] = [[M ]](λm.[[N ]](λn.mkn))

[[call/cc]] = λk1.k1(λk2f.fk2(λk3x.k2x))

[[newregM ]] = [[M ]] (λxs.sx)

The application to (λxs.sx) in the clause for [[newregM ]]
is related to Danvy and Filinki’s shift and reset control
operators [7]. We have not considered the issue of adminis-
trative reductions, but it would be straightforward to modify
the transform in the light of Danvy and Nielsen’s one-pass
CPS transform [8] to avoid generating administrative re-
dexes, which could be done by adding subclauses for values
in applications.

Proposition 4.5 If Γ c̀ M : A ! ρ then

Γ ` [[M ]] : (A→ αρ)→ αρ

If Γ c̀ M : A ! ∅ then

Γ ` [[M ]] : ∀α.(A→ α)→ α



To see in what sense the CPS transform [[−]] amounts to
meta-continuation passing, consider the typing of [[newregM ]]:
the answer type variable is instantiated to the type (A→α)→
α to get from Γ ` [[M ]] : (A→ αρ)→ αρ to [[M ]](λxs.sx) :
(A→ α)→ α.

The next result shows in what sense the effect-based CPS
transform agrees with the usual one.

Proposition 4.6 If Γ c̀ M : A ! ρ, then

Γ |= M ∝ [[M ]] : (A→ αρ)→ αρ

If Γ c̀ M : A ! ∅ then

Γ |= M ∝ [[M ]] : ∀α.(A→ α)→ α

Proof. The proof is by induction over the derivation of
Γ c̀ M : e, using Lemma 4.1. For the clause for effect
masking, we need Lemma 4.3.

The following example illustrates how the insertion of con-
trol delimiters based on effect information could be useful
in an implementation.

Example 4.7 Consider the transform of the following ex-
pression: call/cc (λh.λx.((λy.x)h)). If applied to some
huge continuation K, it could keep K live indefinitely, since
h in (λx.((λy.x)h)) keeps a reference to K. However, h is
never invoked, and in fact the control effect can be masked.
We can insert a new region, allowing the CPS transform to
delimit control:

[[newreg (call/cc (λh.λx.((λy.x)h)))]]K

= [[(call/cc (λh.λx.((λy.x)h)))]] (λxs.sx)K

Here h refers to (λxs.sx) rather than to K.

The benefit of using effect information to insert control de-
limiters will become more evident if we combine it with lin-
ear continuation passing in the next section.

5. EFFECT-BASED LINEAR/NON-LINEAR
CPS TRANSFORM

Building on the effect-based CPS transform, our aim in
this section is to use effect information to pass continuations
linearly whenever there are no control effects.

The target language with linear typing is defined as in Fig-
ure 4. It is essentially the same target language as was used
for studying linear continuation passing in earlier work [4],
based on Barber and Plotkin’s Dual Intuitionistic Linear
Logic.

In addition to the usual (intuitionistic) application and
abstraction, the target language contains linear application,
M N , and linear abstraction, δx.M ; the latter will only be
used for passing continuations. Continuations themselves
are not linear, in that they can use their arguments any
number of times. A pure expression is passed its continua-
tion linearly. An expression with control effects is passed its
continuation intuitionistically (that is, without restrictions
on copying and discarding). If a continuation is constrained
to be passed linearly, then we cannot pass it to a non-linear
function: the type system prevents that. To interface be-
tween the linear and non-linear continuation passing, we use
meta-continuations and control delimiters.

This effect-based CPS transform is defined on effect judge-
ments of c̀, rather than simply on terms. To be able to write
it concisely, we abuse notation as follows. We assume that
for each termM we are given the typeA and effect e ascribed
to M in the derivation by writing (|M : A ! e|). The effect
annotations on the right-hand side are meant to be read as
“guards”, determining which clause is chosen. For instance,
the transform of applications MN , (|MN : B ! e|), depends
on whether M , N , and the procedural value returned by M
are pure or not. Whenever any of these is pure, the cor-
responding continuation is passed linearly; otherwise it is
passed non-linearly. Hence there are 23 = 8 separate cases
for the transform of an application.

Definition 5.1 The CPS transform (|−|) is defined on terms
as in Figure 5. Here is the corresponding CPS transform of
types:

(|A ρ→B|) = ((|B|)→ αρ)→ ((|A|)→ αρ)

(|A ∅→B|) = ∀α.((|B|)→ α)( ((|A|)→ α) (α fresh)
(|∀α.A|) = ∀α.(|A|)
(|∀ρ.A|) = ∀αρ.(|A|)

(|α|) = α

Pure function types A
∅→ B are transformed as linear con-

tinuation transformers. For this transform, we have:

Proposition 5.2 If Γ c̀ M : A ! ρ, then

(|Γ|) ` (|M : A ! ρ|) : ((|A|)→ αρ)→ αρ

If Γ c̀ M : A ! ∅, then (for some fresh α):

(|Γ|) ` (|M : A ! ∅|) : ∀α.((|A|)→ α)( α

Proof. We only consider the case of effect masking, as
the most crucial part of the mixed linear/non-linear CPS
transform is the interfacing between unrestricted continua-
tion passing for effectful expressions and the linear continu-
ation passing for pure expressions. Suppose M has a control
effect that can be masked:

Γ c̀ M : A ! ρ

where ρ is not free in Γ or A. Then

(|Γ|) ` (|M : A ! ρ|) : ((|A|)→ αρ)→ αρ

Since αρ is not free in (|Γ|) or (|A|), we can specialize it (by
quantifying and then instantiating). We specialize αρ to
((|A|)→ α)( α, for some fresh α. Intuitively, this amounts
to introducing linear state-passing of an (|A|)-accepting con-
tinuation.

(|Γ|) ` (|M : A ! ρ|) : ((|A|)→ ((|A|)→ α)( α)

→((|A|)→ α)( α

Then, because ` λx.δs.sx : (|A|)→ ((|A|)→ α)( α, we have

(|Γ|) ` (|M : A ! ρ|)(λx.δs.sx) : ((|A|)→ α)( α

Since α is not free in (|Γ|) or (|A|), we can quantify over it:

(|Γ|) ` (|M : A ! ρ|)(λx.δs.sx) : ∀α.((|A|)→ α)( α

This is the type required for the pure expression

(|newregM : A ! ∅|) = (|M : A ! ρ|)(λx.δs.sx)



Γ, x : A; ` x : A Γ;x : P ` x : P

Γ; ∆, x : P `M : Q
Γ; ∆ ` δx.M : P ( Q

Γ; ∆1 `M : P ( Q Γ; ∆2 ` N : P
Γ; ∆1,∆2 `M N : Q

Γ, x : A; ∆ `M : P
Γ; ∆ ` λx.M : A→ P

Γ; ∆ `M : A→ P Γ; ` N : A
Γ; ∆ `M N : P

Γ; ∆ `M : A
Γ; ∆ `M : ∀α.A α /∈ Tyvar(Γ) ∪ Tyvar(∆)

Γ; ∆ `M : ∀α.A
Γ; ∆ `M : A[α 7→ B]

Figure 4: Target language with linear typing

(|MN : B ! ∅|) = δk.(|M : A
∅→B ! ∅|) (λm.(|N : A ! ∅|) (λn.m kn))

(|MN : B ! ρ|) = λk.(|M : A
∅→B ! ρ|)(λm.(|N : A ! ∅|) (λn.m kn))

(|MN : B ! ρ|) = λk.(|M : A
∅→B ! ∅|) (λm.(|N : A ! ρ|)(λn.m kn))

(|MN : B ! ρ|) = λk.(|M : A
∅→B ! ρ|)(λm.(|N : A ! ρ|)(λn.m kn))

(|MN : B ! ρ|) = λk.(|M : A
ρ→B ! ∅|) (λm.(|N : A ! ∅|) (λn.mkn))

(|MN : B ! ρ|) = λk.(|M : A
ρ→B ! ρ|)(λm.(|N : A ! ∅|) (λn.mkn))

(|MN : B ! ρ|) = λk.(|M : A
ρ→B ! ∅|) (λm.(|N : A ! ρ|)(λn.mkn))

(|MN : B ! ρ|) = λk.(|M : A
ρ→B ! ρ|)(λm.(|N : A ! ρ|)(λn.mkn))

(|λx.M : A
∅→B ! ∅|) = δk1.k1(δk2.λx.(|M : B ! ∅|) k2)

(|λx.M : A
ρ→B ! ∅|) = δk1.k1(λk2x.(|M : B ! ρ|)k2)

(|x : A ! ∅|) = δk.kx

(|call/cc : ((A
ρ→B)

∅→A)
ρ→A ! ∅|) = δk1.k1(λk2f.f k2(λk3x.k2x))

(|call/cc : ((A
ρ→B)

ρ→A)
ρ→A ! ∅|) = δk1.k1(λk2f.fk2(λk3x.k2x))

(|M : A ! ρ|) = λk.(|M : A ! ∅|) k
(|newregM : A ! ∅|) = (|M : A ! ρ|)(λx.δs.sx)

Figure 5: Effect-based linear/non-linear CPS transform



The application to λx.δs.sx amounts to a control delim-
iter, in that the expression M is only passed the composable
continuation (λx.δs.sx), which it is at liberty to discard of
copy. The outer portion of the continuation, however, is
unaffected by that, since it it merely passed along linearly.

To relate the mixed linear/non-linear CPS transform to
those that do not use linearity, we define a translation ()◦,
which simply forgets about linearity:

(δx.M)◦ = λx.M◦

(M N)◦ = M◦N◦

(A( B)◦ = A◦→B◦

On non-linear abstractions and applications, the translation
does nothing:

(λx.M)◦ = λx.M◦

(MN)◦ = M◦N◦

x◦ = x
(A→B)◦ = A◦→B◦

(∀α.M)◦ = ∀α.M◦
α◦ = α

If Γ; ∆ ` M : A, then Γ◦,∆◦ ` M◦ : A◦. Erasing the
linearity gives us the previous transform, [[−]].

Proposition 5.3 If Γ c̀ M : A ! ∅ then

Γ |= M ∝ (|M : A ! ∅|)◦ : ∀α.(A→ α)→ α

If Γ c̀ M : A ! ρ, then

Γ |= M ∝ (|M : A ! ρ|)◦ : (A→ αρ)→ αρ

Example 5.4 Consider transforming the expression

(newreg (call/cc(λh.V (hW ))))U

into continuation passing style, where V and W are val-
ues not containing h. Intuitively, when h is applied to W ,
control will jump past the application of V , but not the ap-
plication to U , so that we can mask the control effect of the
application of call/cc. Hence we would hope to pass the
continuation corresponding to the application of U linearly.
With the standard CPS transform, that is not possible. We
have:

(newreg (call/cc (λh.V (hW ))))U

= λk1.call/cc(λh.V (hW ))(λm.U(λn.mk1n))

= λk1.(λk2.λh.V (hW )(λf.fk2(λk3x.k2x)))

(λm.U(λn.mk1n))

Since k2 appears twice in the application fk2(λk3x.k2x)), we
cannot replace the abstraction λk2 with a linear abstraction
δk2.

However, if we use the mixed linear/non-linear CPS trans-
form, the effect masking inserts a control delimiter:

(|newreg (call/cc(λh.V (hW ))) : A ! ∅|)
= (|call/cc(λh.V (hW )) : A ! ρ|)(λx.δs.sx)

= (λk2.(|λh.V (hW ) : (A
ρ→B)

ρ→A ! ∅|)
(λf.fk2(λk3x.k2x)))

(λx.δs.sx)

Only the composable continuation (λx.δs.sx) is seized by
the call/cc and manipulated in a non-linear fashion. The

outer continuation corresponding to the application to U
will be passed linearly. This only works because the effect
system guarantees that the control effects do not extend as
far as the application to U .

6. CONCLUSIONS
This paper establishes the following:

• a connection between control effects on the source, and
answer type polymorphism on the target of the CPS
transform;

• equational properties (naturality) following from the
answer type polymorphism;

• a connection between polymorphism and linearity in a
meta-continuation passing transform.

Together, the above lets us define CPS transforms that use
effect information. The main ideas of linking effects and
CPS can be summarized as follows:

Effect system Polymorphic CPS

region answer type
effect sharing constraint for answer types
purity ∀-quantified fresh answer type
effect masking ∀-introduction for the answer type

The simplified control effect system and the CPS trans-
form into the polymorphic λ-calculus are also relevant to
the study of programming languages from a logical perspec-
tive, specifically the correspondence between control opera-
tors and classical logic [12]. At the logical level, it is known
that CPS transforms correspond to double-negation transla-
tions from classical to intuitionistic logic. These translations
use either falsity or some arbitrary proposition as the “an-
swer type”. Using the CPS transforms defined here, one can
be more precise, using different answer types, and quantifi-
cation over them, to delimit the extent of classical reasoning
in a proof.

6.1 Related work
Gifford and Jouvelot pioneered control effect systems [15];

they used a continuation semantics, but did not consider
typed CPS. By establishing some linearity even in the pres-
ence of call/cc, the present paper addresses one of the loose
ends left over by our earlier work on linear continuation pass-
ing [4]. Control delimiters, as studied by Felleisen [10] and
Danvy and Filinski [7] have a similar aim of confining control
to parts of a program.

Nielsen [22] has recently defined a selective CPS trans-
form that leaves expressions without control effects in direct
style. His effect system, however, contains neither regions
nor effect masking. Harper and Lillibridge [14] study CPS
transforms of polymorphic, ML-like languages. Their con-
cern is the polymorphism due to the source language, not
additional binders introduced by the transform, as we con-
sider here. (In fact, even if the source language had no poly-
morphism, we would still have answer type polymorphism
in the target of the CPS transform.) Banerjee, Heintze and
Riecke [3] encode Tofte and Talpin’s [27] region calculus into
a polymorphic λ-calculus. It remains to be seen whether
their approach could be combined with the one presented
here.



6.2 Directions for further work
We have considered only a very simple source language,

and it remains to extend the results to a more realistic lan-
guage. Effect masking would have to be extended to store-
passing. Typing the store in a continuation-passing, store-
passing transform would require the addition of recursive
types to the target language to accommodate the implicit
mutual recursion between procedure and store types (since
procedures are passed stores, which themselves contain pro-
cedures). In the presence of recursion, parametricity argu-
ments become more subtle [28], requiring strictness to be
taken into account. This should not be a problem, since
we only need such arguments for continuations, which could
be assumed to be strict. For establishing the connections
between polymorphic CPS and operational semantics, the
operational techniques developed by Pitts [23] could be use-
ful.

Besides extending the language, the other direction for
further research is to move closer to the machine. The poly-
morphic and linear typing of CPS code could be used for
deriving efficient representation of control in typed inter-
mediate or assembly languages [21, 1]. Linear continuation
passing could be used to eliminate dynamic checks in imple-
mentations using one-shot continuations [5]. Starting from
the mixed linear/non-linear CPS transform, it should be
possible to derive an implementation in which the contin-
uations of expressions without control effects are stack allo-
cated [6], while the continuations of expressions with control
effects are allocated in a stack of regions [27].
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