1. Basic Data Structures
 • arrays, loops and invariants
 • lists, stacks, queues, sets and recursion
 • primitive operators
 • uses and algorithms

2. Complexity
 • space v. time
 • average case v. worst case
 • Big Oh notation
 • computation – exact and approximate

3. Trees – general, binary and quad trees
 • inductive definitions
 • primitive operators
 • uses and algorithms

4. Binary Search Trees
 • searching in general
 • definition of binary search trees
 • building, modifying and searching
 • tree rotations – why, what, how?

5. Heap trees and Priority queues
 • definition of heaps and priority queues
 • binary heap trees – insertions, deletions, building
 • bubbling up and bubbling down
 • Binominal trees and heaps

6. Sorting
 • general definitions and theoretical limits
 • $O(n^2)$ algorithms – bubble, selection, insertion
 • tree based algorithms – Treesort and Heapsort
 • divide and conquer algorithms – Quicksort and Mergesort
 • non-comparison algorithms – Radix sort
 • comparisons – average/worst speed, stability, only first $m << n$, …

7. Hash Tables
 • general definitions and implementations
 • load factors, efficiency, computational costs
 • dealing with collisions – buckets, direct chaining, open addressing
 • linear probing, secondary/double hashing
 • choosing good hash functions

8. Graphs
 • general definitions and implementations
 • planarity – definitions and theorems
 • traversals – depth first and breadth first
 • shortest paths – Dijkstra’s and Floyd’s algorithms
 • minimal spanning trees – Prim’s and Kruskal’s algorithm