Jun He


      Selected Publications


2011
1.
Y. Chen, X. Zou and J. He. Drift Conditions for Estimating the First Hitting Times of Evolutionary Algorithm.  International Journal of Computer Mathematics.  88(1): 37-50, 2011.

2010
2.
T. Friedrich, J. He , N. Hebbinghaus, F. Neumann and C. Witt. Approximating Covering Problems by Randomized Search Heuristics using Multi-Objective Models.   Evolutionary Computation. 18(4): 617-633, 2010.
3.
T. Chen, J. He, G. Chen and X. Yao. Choosing selection pressure for wide-gap problems. Theoretical Computer Science. 411(6):926-934,2010. 
4
J. He. A Note on the First Hitting  Time of (1+N) Evolutionary Algorithm  for Linear Functions with Boolean Inputs. In Proceedings of 2010 IEEE Congress on Evolutionary Computation, pp.527-532. IEEE Press, 2010.
5.
L. Shen and J. He. A Mixed Strategy for Evolutionary Programming Based on Local Fitness Landscape. In Proceedings of 2010 IEEE Congress on Evolutionary Computation, pp. 350-357. IEEE Press, 2010.
6.
J. He. Complexity in Adaptive Systems. In Encyclopedia of Machine Learning, Springer, 2010.

2009
7.
P. S. Oliveto, J. He , and X. Yao.  Analysis of the (1+1)-EA for Finding Approximate Solutions to Vertex Cover Problems.  IEEE Transactions on Evolutionary Computation, 13 (5):1006 -1029, 2009. 
8.
T. Chen,  J. He,  G. Sun, G. Chen, and X. Yao,  A New Approach for Analyzing Average Time Complexity of Population-based Evolutionary Algorithms on Unimodal Problems.   IEEE Transactions on Systems, Man and Cybernetics, Part B,  39 (5):1092-1106, 2009.  
9.
J. He, and L. Kang. A Mixed Strategy of Combining Evolutionary Algorithms with Multigrid Methods. International Journal of Computer Mathematics, 86(5):837-849, 2009.
10.
Y. Zhou, J. He, and Q. Nie. A Comparative Runtime Analysis of Heuristic Algorithms for Satisfiability Problems.   Artificial Intelligence,  173(2):240-257, 2009.
11.
T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt. Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem.  Evolutionary Computation,  17 (1):3-19, 2009.

2008
12.
S. Powers and J. He. A Hybrid Artificial Immune System and Self Organising Map for Network Intrusion Detection. Information Sciences,  178 (15): 3024-3042, 2008.
13.
A. Bennett, R. Johnston, E. Turpin and  J. HeAnalysis of an Immune Algorithm for Protein Structure Prediction. Informatica,  32 (3): 245-251, 2008.
14.
P.S. Oliveto, J.He and X.Yao. Analysis of Population-based Evolutionary Algorithms for the Vertex Cover Problem. In   Proceedings of IEEE CEC 2008, pp.1563-1570. IEEE Press 2008. 

2007
15.
J. He, C. Reeves, C. Witt and X. Yao. A Note on Problem Difficulty Measures in Black-Box Optimization: Classification, Existence and Predictability. Evolutionary Computation, 15 (4):435-443, 2007
16.
Y. Zhou and J. He. A runtime analysis of evolutionary algorithms for constrained optimization problems. IEEE Transactions on Evolutionary Computation, 11(5):608-619, 2007.
17.
P. S. Oliveto, J. He, and X. Yao. Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results. International Journal of Automation and Computing, 4 (3):281-293, 2007. 
18.
H. Dong, J. He, H. Huang and W. Hou. Evolutionary programming using a mixed mutation strategy. Information Sciences. 177 (1): 312-327, 2007.
19.
H. Dong, J. He, H. Huang and W. Hou. Evolutionary programming using a mixed mutation strategy. Information Sciences. 177 (1): 312-327, 2007.
20.
J. He and Y.Zhou. A Comparison of GAs using Penalizing Infeasible Solutions and Repairing Infeasible Solutions on Average Capacity Knapsack. In Proceedings of ISICA'2007(LNCS 4683), pp.102-110.  Springer Verlag. 2007.
21.
T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, C. Witt. Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. In Proceedings of GECCO'2007, pp.797-804. 2007. 

2006
22.
X. Yao, Y. Liu, J. Li, J. He, and C. Frayn. Current developments and future directions of bio-inspired computation and implications for ecoinformatics. Ecological Informatics. 1 (1): 9--22, 2006.
23.
J. He and X. Yao. Analysis of Scalable Parallel Evolutionary Algorithms. In Proceedings of IEEE CEC'2006, pp.120- 127 . IEEE Press.  2006.

2005
24.
J. He, X. Yao and J. Li. A Comparative Study of Three Evolutionary Algorithms Incorporating Different Amount of Domain Knowledge for Node Covering Problems, IEEE Transactions on Systems, Man and Cybernetics, Part C. 35(2):266- 271, 2005.
25.
J. He and X. Yao. A game-theoretic approach for designing mixed mutation strategies. In Proceedings of ICNC'05 ( LNCS 3612) ,  pp.279-288. Springer Verlag. 2005.
26.
Y. Zhou and J. He. The Convergence of a Multi-objective Evolutionary Algorithm Based on Grids. In Proceedings of ICNC'05 (LNCS 3611), pp.1015-1024. Springer Verlag. 2005. 
27.
H. Dong, J. He , H. Huang and W. Hou. A Mixed Mutation Strategy Evolutionary Programming Combined with Species Conservation Technique. In Proceedings of MICAI 2005 (LNCS 3789), pp.593-602. Springer Verlag. 2005.

2004
28.
J. He and X. Yao. A Study of Drift Analysis for Estimating Computation Time of Evolutionary Algorithms. Natural Computing, 3 (1):21-35, 2004. 
29.
J. He and X. Yao. Time complexity analysis of an evolutionary algorithm for finding nearly maximum cardinality matching. Journal of Computer Science and Technology, 19 (4):450--458, 2004. 
30.
X. Zou, M. Liu, L. Kang and J. He. A High Performance Multi-objective Evolutionary Algorithm Based on the Principles of Thermodynamics. In Proceedings of PPSN VIII (LNCS 3242), pp.922-931. Springer Verlag. 2004.
31.
J. He, X. Yao, and Q.F. Zhang. To understand one-dimensional continuous fitness landscapes by drift analysis. In Proceedings of IEEE CEC'2004, pp.1248 - 1253. IEEE Press. 2004. 

2003
32.
J. He and X. Yao. Towards an Analytic Framework for Analysing the Computation Time of Evolutionary Algorithms. Artificial Intelligence, 145 (1-2):59-97, 2003. 
33.
J. He and X. Yao. Drift analysis in studying the convergence and hitting times of evolutionary algorithms: An overview. Wuhan University Journal of Natural Sciences, 8 1:143-154, 2003.
34.
J. He and X. Yao. An analysis of evolutionary algorithms for finding approximation solutions to hard optimisation problems. In Proceedings of IEEE CEC'2003, pp.2004-2010. IEEE Press. 2003. 

2002
35.
J. He and X. Yao. From an Individual to a Population: An Analysis of the First Hitting Time of Population-based Evolutionary Algorithms.  IEEE Transactions on Evolutionary Computation, 6(5):495-511, 2002. 

2001
36.
J. He and X.  Yu. Conditions for the convergence of evolutionary algorithms. Journal of Systems Architecture, 47 (7):601-612, 2001.
37.
L.   Kang, Y. X. Li, Z.  Pan, J. He, and D. J. Evans. Massively parallel algorithms from physics and biology. International Journal of Computer Mathematics, 77 (2):201--250, 2001. 
38.
J. He and X. Yao. Drift Analysis and Average Time Complexity of Evolutionary Algorithms Artificial Intelligence, 127 (1):57-85, 2001. (Erratum in Artificial Intelligence, 140 (1):245-248, 2002). 

2000
39.
J. He, J. Y. Xu, and X. Yao. Solving equations by hybrid evolutionary computation techniques. IEEE Transactions on Evolutionary Computation, 4 (3):295-304, 2000.

1999
40.
J. He and L. S. Kang. On the convergence rate of genetic algorithms. Theoretical Computer Science, 229 (1-2):23-39, 1999. 

1997
41.
D. H. Ji, J. He , and C. Huang. Learning new compositions from given ones. In Proceedings of CoNLL-97 , pp.25-32. Association for Computational Linguistics. 1997.

1996
42.
J. He, L. Kang and Y. Chen. Multiple structure computational model and its application in optimization.  Wuhan University Journal of Natural Sciences,  1 (3-4):593-598, 1996.

1995
43.
J. He, L. Kang and Y. Chen Convergence of Genetic Evolution Algorithms for Optimization. Parallel Algorithms and Applications, 5 (1):37-56, 1995.