
Towards Abductive Functional Programming

Koko Muroya, University of Birmingham

Abstract

Abductive reasoning is a form of logical inference which
seeks to uncover all possible causes of an observation. We
show how abduction has a computational counterpart,
like many other proof-theoretic concepts: namely the
identification and modification of certain constants in a
term. Abductive computation can be used to improve the
behaviour of a term in some programmer-defined sense,
like a typical workflow of optimisation problems includ-
ing some machine-learning tasks. The emphasis of this
progress report is a type system for abductive computa-
tion. It is intended to guarantee observably deterministic
behaviour of programs, even though abduction may in-
troduce a degree of computational nondeterminism.

1 Abduction in programming

In logic, abduction infers a possible cause A of a given ob-
servation B, knowing an implication A ⇒ B. Informally
speaking, this is opposite to deduction, which infers a
result B from a cause A—deduction goes along an impli-
cation A ⇒ B whereas abduction goes against it. Much
like induction, used carelessly abduction represents a fal-
lacy, namely that of affirming the consequent. But with
adequate restrictions in place we can show that abduction
can be both sound and useful.

Abductive logic programming (see [3, 2] for surveys)
extends logic programming by allowing a logic program
to contain undefined “abducible” predicates, with appli-
cations to artificial intelligence. These predicates are can-
didates of possible causes of particular observations in the
behaviour of a program. Inference in abductive logic pro-
gramming tells us which abducible predicates of a pro-
gram should hold to meet given constraints on the pro-
gram. Abductive reasoning has been used in the verifica-
tion of separation logic programs, allowing the improve-
ment of automatic shape analysis [1]. Facebook’s auto-
matic verification tool Infer1 is based on this technique.

We here propose a new use of abduction in functional
programming, aiming at programs that modify specified
constants of another program. Programs can contain nor-
mal definitive ground-type constants p, as well as provi-
sional ground-type constants {p} marked by curly brack-
ets. It is these provisional constants that could be changed
by abduction. The process of abduction itself detects all
provisional constants in a term; it yanks them out of the
abducted term, and turns the abducted term into a func-
tion that takes a collection of parameters as an argument.

1http://fbinfer.com/

2 Abductive computation

Abduction is expressed in programs as a function, writ-
ten as abd f@x -> u, which takes one argument and uses
it as two bound computations in a body expression u: a
parameter collection bound to the variable x and a param-
eterised term bound to the variable f . When applied to
some argument t, the abduction abd f@x -> u extracts all
the provisional constants from it, turns them into defini-
tive constants, and put them into the parameter collec-
tion x. Additionally it “lifts” the abducted term t into a
parameterised term f , a function that will plug new argu-
ments back at the sites where provisional constants used
to be in the abducted term t. For example, abduction of
a term 1 + {0} produces a parameter collection 0 and a
parameterised term fun x -> 1 + x.

The intended use of abduction is to recompute new
values of provisional constants, and to plug them back
as definitive ones into the original abducted term.
This is done simply by function application, thanks
to the parameterising of the abducted term, like this:
abd f@x -> f (t f x) where the term t computes new
values using the parameterised term f and the parameter
collection x.

A trivial but useful example of abduction is
abd f@x -> f x, which “deprecates” a given term, i.e.
transforms all its provisional constants into definitive
ones. For example, a term (abd f@x -> f x) (1 + {0}) is
evaluated to a definitive term 1+0, and further to a result
value 1. Abduction also works on functions, for example a
term (abd f@x -> f x) (fun w -> w + {0}) is deprecated
and evaluated to a function value fun w -> w + 0.

3 Types of collections

We have seen so far example terms that contain just one
provisional constant. If a term t has more than one pro-
visional constants, abduction of it produces a parameter
collection x that is literally a collection of several defini-
tive constants. Given the collection x, the parameterised
term f made out of the abducted one t has to plug them
back into the original t, in such a safe way that the appli-
cation f x yields exactly the deprecation of the abducted
term t. For example a term (abd f@x -> f x) ({1}−{2})
should be evaluated to 1 − 2, not to 2 − 1, which means
the parameter collection x has to be ordered. The size
of the collection also matters. If the parameter col-
lection is implemented as a list, one can write a term
(abd f@x -> f (1 :: x)) ({1}+ {2}) that tries to plug the
extended collection 1 :: x back to the abducted term.

To ensure the safe restoration of a term after abduction,
we use the type of a (fixed) field F as the ground type of
value, and use “vector types” Va over the ground type F.
Vectors Va are thus indexed by name a, in the sense of [5].

1



They are a type of finite-dimensional vector spaces Fn

over the field F with the standard basis. Typing judge-
ments are indexed by sets of names, in addition to the
usual sets of typed variables. The rules of the system are
those of the simply-typed lambda calculus, plus a new
rule for abduction:

∆, a | Γ, f : Va → T , x : Va ` u : T ′

∆ | Γ ` abd f@x -> u : T → T ′

where ∆ is a set of names and Γ is a set of typed variables
xi : Ti. We require the name a in the rule to be fresh, in
particular not to appear in ∆, T or T ′.

In the rule, the two bound variables f and x share the
same vector type Va. This ensures the parameterised term
f is always given a collection that has the same number
of elements as the parameter collection x. The number
of parameters, i.e. the dimension of the vector space Va,
is determined dynamically at runtime. For example, in
a term let y = {2} in (abd f@x -> f x) ({1} + y), the
abducted term {1}+y depends directly on the provisional
constant {1} and indirectly on {2} as well. It is only
at runtime when the actual abducted term {1} + {2} is
determined.

The (ordered) standard basis of the vector type Va en-
ables the parameterised term f to know which element
of a given collection fits to which place of the origi-
nal abducted term. Note that this does not immedi-
ately mean a canonical order in which parameters are
assigned; any order will do, as long as both the parame-
ter collection x and the parameterised term f respect it.
For example a term (abd f@x -> f x) ({1} − {2}) can
be evaluated to either (fun (p0, p1) -> p0 − p1) (1, 2) or
(fun (p0, p1) -> p1 − p0) (2, 1), informally.

The last remark is regarding the freshness requirement
of name a in the typing rule. It ensures that two param-
eter collections x and x′ generated by different abductive
functions abd f@x -> u and abd f ′@x′ -> u′ always live in
different vector spaces and they are never mixed together.
This is crucial because these collections may not have the
same number of elements, or even if they have the same
dimension they may be use a different assignment of pa-
rameters to coordinates.

4 Operations on collections

As there is no canonical order in which parameters
are assigned to bases/coordinates, implementation of
the language can opt for either a fixed order or a
non-deterministic order. In both cases the absence
of canonical order leads to further restrictions on how
parameter collections may be used, in other words,
what operations on these collections can be allowed.
The fixed order would be too intimately tied to the
concrete syntax of a program, and raise difficulty in
identifying terms (abd f@x -> f x) ({1} − {2}) and
(abd f@x -> f x) ((fun y -> y − {2}) {1}), for example.
The non-deterministic order would challenge the deter-
ministic result of program execution.

The desired restriction of operations on collections ap-
pears to be the symmetricity, i.e. being invariant under
permutation of the standard basis. In our intended form
of abduction abd f@x -> f (t f x), the symmetricity ap-
plies to the term t f , meaning that t f (1, 2) = (3, 4)

implies t f (2, 1) = (4, 3), for example. Usual opera-
tions of a vector space should be available, that is, vec-
tor additions +a : Va → Va → Va and scalar multiplica-
tions ×a : F → Va → Va for any name a. We can ad-
ditionally equip each vector type Va with inner products
·a : Va → Va → F.

What is desired but challenging is access to each co-
ordinate of a collection, which naturally occurs in some
optimisation algorithms. An example is numerical gradi-
ent descent for optimising the behaviour of a term relative
to identified parameters:

abd f@x ->

let g = fun v -> fun e ->

(f v)− (f (v + (ε× e)))
ε

× e+ v in

let y = foldr g x Ea in f y

(1)

where ε is a constant. It updates each element of the
parameter collection x by folding over the list of standard
basis Ea = [~e0; · · · ;~en−1].

Although the computation foldl g x Ea in (1) is sym-
metric, i.e. invariant under permutation of x or Ea, it
turns out that the arbitrary folding over Ea is not sym-
metric (a counterexample is the replacement of g to
fun v -> fun e -> (v · e)× v). This motivates us to ac-
commodate the following iterated vector operations, in-
dexed by the name a:

+L
a : (Va → Va)→ Va → Va

+R
a : Va → (Va → Va)→ Va

×L
a : (Va → F )→ Va → Va

which are three restricted versions of folding over the stan-
dard basis Ea.

f +L
a v0 := foldr (λeλv.f(e) + v) Ea v0

f +R
a v0 := foldl (λvλe.v + f(e)) v0 Ea

f ×L
a v0 := foldr (λeλv.f(e)× v) Ea v0.

Our limited access to the standard basis via the iterated
operations still enables us to implement some optimisa-
tion algorithms, e.g. generic combinatorial optimisations
such as simulated annealing. The code (1) for numeri-
cal gradient descent is indeed covered by the first iterated
operation +L.

References

[1] Cristiano Calcagno, Dino Distefano, Peter W.
O’Hearn, and Hongseok Yang. Compositional shape
analysis by means of bi-abduction. J. ACM,
58(6):26:1–26:66, 2011.

[2] Marc Denecker and Antonis C. Kakas. Abduc-
tion in logic programming. In Computational Logic:
Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part I, volume 2407 of Lect. Notes
Comp. Sci., pages 402–436. Springer, 2002.

[3] Antonis C. Kakas, Robert A. Kowalski, and Francesca
Toni. Abductive logic programming. J. Log. Comput.,
2(6):719–770, 1992.

2



[4] Koko Muroya and Dan R. Ghica. The dynamic Ge-
ometry of Interaction machine: a call-by-need graph
rewriter. In CSL 2017, 2017. To appear.

[5] Andrew M. Pitts. Nominal sets: names and symmetry
in computer science, volume 57 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University
Press, 2013.

A Operational Semantics

Operational semantics of the language is given by graph
rewriting. The use of graphs instead of terms makes it
easier to handle shared intermediate evaluation results,
especially shared provisional constants, that are raised
by multiple occurrences of bound variables. Sharing is
simply represented as connection of subgraphs, while its
syntactic representation would require introducing names
and stores.

Since provisional constants are subject to abduction
and change, they cannot be freely copied or discarded in
evaluation; in particular they should be shared instead of
being copied. For instance, a term (fun x -> x+ x) {0}
should not be evaluated to a term {0} + {0}, as the sin-
gle provisional constant is “split” into two independent
provisional constants.

The graph rewriting semantics is defined as an abstract
machine that graphically evaluates terms in the strict way,
i.e. function arguments are always evaluated before they
are passed to a function. The machine is an adaptation
of our graph-rewriting abstract machine of call-by-need λ-
calculus [4], that can deterministically reduce a graphical
representation of a term by passing a token on it. An
on-line visualiser of the graph-rewriting abstract machine
is implemented2.

2Link to on-line visualiser: http://www.cs.bham.ac.uk/~drg/

goa/visualiser/index.html

3


