Towards abductive functional programming

Koko Muroya
Steven Cheung & Dan R. Ghica
(University of Birmingham)
Parameter tuning via targeted abduction

Koko Muroya
Steven Cheung & Dan R. Ghica
(University of Birmingham)
A programming idiom for optimisation & ML

Model: \(f_{a,b}(x) = a \times x + b \)

Input \(x_0 \)

Use model

Output \(f_{a,b}(x_0) \)

Data \(\{(x_i, y_i)\}_{i=1}^N \)

Train model

Updated model \(f_{a',b'} \)
Build inference graph.
Create and initialise variables W and b.

W = tf.Variable(...)
b = tf.Variable(...)

y = W * x_data + b

#NOTE: Nothing actually computed here!

Model: \(f_{a,b}(x) = ax + b \)
Example: parameter optimisation in TensorFlow

Model \(f_{a,b}(x) = a \times x + b \)

```python
# Create a session.
sess = tf.Session()
sess.run(init)
y_initial_values = sess.run(y)
# Compute some y values
```

\(W = \text{tf.Variable}(\ldots) \)
\(b = \text{tf.Variable}(\ldots) \)
\(y = W \times x_{\text{data}} + b \)

Input \(x_0 \)

Output \(f_{a,b}(x_0) \)
Build training graph.
loss = tf.some_loss_function(y, y_data)
Create an operation that calculates loss.
tf.train.some_optimiser.minimize(loss)
Create an operation that minimizes loss.
init = tf.initialize_all_variables()
Create an operation initializes variables.
sess = tf.Session()
sess.run(init)

Perform training:
for step in range(201):
 sess.run(train)
TensorFlow

● shallow embedded DSL
 ○ lack of integration with host language
 ○ cannot use libraries in graphs
 ○ difficult to debug / type graphs

● imperative “variable” update
TensorFlow

- shallow embedded DSL
 - lack of integration with host language
 - cannot use libraries in graphs
 - difficult to debug / type graphs
- imperative parameter ("variable") update

Proper *functional* language?

- simple & uniform programming language
 - full integration with base language
 - typed in ML-style
 - well-defined operational semantics
- funcional parameter update
Key idea:
Abductive reasoning
Abductive inference: background

- Logical inference
 - Deduction (specialisation)
 - Induction (generalisation)
 - Abduction (explanation)

- Previous applications
 - Abductive logic programming
 - Program verification (http://fbinfer.com/)
Abductive inference: background

- logical inference
 - deduction (specialisation)
 - induction (generalisation)
 - abduction (explanation)

- previous applications
 - abductive logic programming
 - program verification (http://fbinfer.com/)
Abductive inference: background

- logical inference
 - deduction (specialisation)
 - induction (generalisation)
 - abduction (explanation)

- previous applications
 - abductive logic programming
 - program verification (http://fbinfer.com/)
Abductive inference: our use

- possible deductive rule for abduction

\[
\Gamma \vdash A \\
\Gamma \vdash (P \Rightarrow A) \land P
\]

“abduct” explanation P of A in “targeted” way
“Parameter tuning via targeted abduction”

model \(f_{a,b}(x) = a \times x + b \)

let \(m \ x = \{2\} \times x + \{3\};; \)

use

output \(f_{a,b}(x_0) \)

m \ 0;;

train

updated model \(f_{a',b'} \)

let \(f \ @ \ p = m \) in
let \(q = \text{optimise} \ p \) in
\(f \ q;; \)
“Parameter tuning via targeted abduction”

model \(f_{a,b}(x) = a \times x + b \)

let \(m \ x = \{2\} \times x + \{3\} \);

provisional constants ("targets")

cf. definitive constants \(0,1,2,\ldots \)
Parameter tuning via targeted abduction

model $f_{a,b}(x) = a \times x + b$

let $m x = \{2\} \times x + \{3\};$

use

output $f_{a,b}(x_0)$

$m 0;;$

(* simply function application *)
“Parameter tuning via targeted abduction”

Model: \(f_{a,b}(x) = a \times x + b \)

let \(m \ x = \{2\} \times x + \{3\};; \)

provisional constants

abductive decoupling

Train

updated model: \(f_{a',b'} \)

let \(f @ p = m \) in (* “decouple” model \(f \) and parameters \(p \) *)
let \(q = \text{optimise} \ p \) in (* compute “better” parameter values *)
Let \(m' = f q \) in (* “improve” model using new parameters *)
Abductive decoupling: informal semantics

```
let m x = \{2\} * x + \{3\};;

let f @ p = m in
let q = optimise p in
f q;;
```

```
val m = fun x -> \{2\} * x + \{3\}

val f = fun (p1,p2) -> fun x -> p1 * x + p2

val p = (2,3)
```

model with provisional constants

parameterised model

parameter vector
Abductive decoupling: informal semantics

let m x = \{2\} \times x + \{3\};;

let f @ p = m in
let q = optimise p in
f q;;

val m = fun x -> \{2\} \times x + \{3\}

val f = fun (p1,p2) -> fun x -> p1 \times x + p2

val p = (2,3)

model with provisional constants

parameterised model

parameter vector

\[\Gamma \vdash A \]
\[\Gamma \vdash (P \Rightarrow A) \wedge P \]

abduction rule
Promoting provisional to definitive constants

```ocaml
let m x = \{2\} \times x + \{3\};;
let \(f @ p = m\) in
let q = p in
f q;;
```

<table>
<thead>
<tr>
<th>Code snippet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>val m = fun x -> \{2\} \times x + \{3\};;</code></td>
<td>Model with provisional constants</td>
</tr>
<tr>
<td><code>val f = fun (p1,p2) -> fun x -> p1 \times x + p2</code></td>
<td>Parameterised model</td>
</tr>
<tr>
<td><code>val p = (2,3)</code></td>
<td>Parameter vector</td>
</tr>
<tr>
<td><code>val q = (2,3)</code></td>
<td>(Trivially updated) parameter vector</td>
</tr>
<tr>
<td><code>let m x = \{2\} \times x + \{3\};;</code></td>
<td>Result: model with definitive constants</td>
</tr>
</tbody>
</table>

Muroya (U. B'ham.)
Parameter tuning via targeted abduction

\[f_{a,b}(x) = a \times x + b \]

let \(m \ x = \{2\} \times x + \{3\} \);

\[
\begin{align*}
\text{output} & \quad f_{a,b}(x_0) \\
m & \quad \Theta \\
\text{use} & \\
\text{provisional} & \text{constants} \\
\text{train} & \\
\text{updated model} & \quad f_{a',b'} \\
\text{let } f @ p & = m \text{ in} \\
\text{let } q & = \text{optimise } p \text{ in} \\
f & q \\
\text{abductive} & \text{decoupling}
\end{align*}
\]
Targeted abduction: syntax & types

(fixed) field

provisional constant

opaque vector space, representing \mathbb{F}^n

\[
\Delta, a \mid \Gamma, f : V_a \rightarrow T, x : V_a \vdash t : T'
\]

\[
\frac{
}{\Delta \mid \Gamma \vdash \text{abd } f @ x \rightarrow t : T \rightarrow T'}
\]

let $f @ x = u$ in $t \equiv (\text{abd } f @ x \rightarrow t) u$
Targeted abduction: syntax & types

(provisional) constant

opaque vector space, representing \(\mathbb{F}^n \)

\[
\begin{align*}
\Delta, a & \vdash \Gamma, f : V_a \to T, x : V_a \vdash t : T' \\
\Delta & \vdash \text{abd } f \circ x \to t : T \to T'
\end{align*}
\]

(* abduction of open terms *)
let \(m \ x = \{2\} \times x + n \) in
let \(f \ @ p = m \) in
...

Muroya (U. B'ham.)
Targeted abduction: opaque vectors

- size determined **dynamically**
- order of coordinates **unknown**
 - ... yet we want deterministic programs
 - always point-free (no access to bases/coordinates)
 - only **symmetric** operations (invariant over permutation of bases/coordinates)

- possible in theory
 - symmetric tensors
- reasonable in practice
 - not all, *but most*, optimisation algorithms are symmetric
Targeted abduction: *symmetric vector operations*

standard vector operations

\[+_a : V_a \rightarrow V_a \rightarrow V_a \]
(vector addition)

\[\times_a : \mathbb{F} \rightarrow V_a \rightarrow V_a \]
(scalar multiplication)

\[\bullet_a : V_a \rightarrow V_a \rightarrow \mathbb{F}, \]
(dot product)

iterated vector operations

\[+^L_a : (V_a \rightarrow V_a) \rightarrow V_a \rightarrow V_a \]
(left-iterative vector addition)

\[+^R_a : V_a \rightarrow (V_a \rightarrow V_a) \rightarrow V_a \]
(right-iterative vector addition)

\[\times^L_a : (V_a \rightarrow \mathbb{F}) \rightarrow V_a \rightarrow V_a \]
(left-iterative scalar multiplication)
Targeted abduction: example use

numerical gradient descent

```ocaml
let m x = \{2\} * x + \{3\};;

let f @ p = m in
let q = grad_desc f p loss 0.001 in
f q;;
```

(* least square on some reference data *)
let loss f p = ...;;

(* numerical gradient descent *)
let grad_desc f p loss rate =
 let d = 0.001 in
 let g e =
 let old = loss f p in
 let new = loss f (p ⊕ (d ⊠ e)) in
 ((old - new) / d) * rate) ⊠ e in
 g ⊕ p;;

folding over standard basis
\[f + \sum_a^L v_0 := \text{foldr} (\lambda e \lambda v. f(e) + v) E_a v_0 \]
Targeted abduction: syntax & types

(provisional constant)

\[\Delta, a \mid \Gamma, f : V_a \to T, x : V_a \vdash t : T' \]
\[\Delta \mid \Gamma \vdash \text{abd } f @ x \to t : T \to T' \]

opaque vector space, representing \(\mathbb{F}^n \)

\[\text{let } f @ x = u \text{ in } t \equiv (\text{abd } f @ x \to t) u \]
Targeted abduction: operational semantics

- provisional constants are linear!

\[
\begin{align*}
\text{let } m \ x &= \{0\} \ast x + \{0\};; \\
\text{vs } \text{let } p &= \{0\} \text{ in } \\
\text{let } m \ x &= p \ast x + p;;
\end{align*}
\]

- graph rewriting semantics
 - … based on Geometry of Interaction
 - http://www.cs.bham.ac.uk/~drg/goa/visualiser/
 - determinism
 - soundness of execution
 - safety of garbage-collection
 - call-by-value evaluation
Conclusions

● a fully-integrated language for parameter tuning
 ○ abductive decoupling “abd”
 ○ simply-typed + abduction rule
 ○ formal operational semantics
 ■ call-by-value
 ■ determinism
 ■ sound execution & safe garbage-collection

● open problems
 ○ actual ML compiler extension
 ■ abduction is dynamic & complex
 ■ … but not computationally dominant
 ○ stochastical machinery

http://www.cs.bham.ac.uk/~drg/goa/visualiser/