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Abstract—Du-Vote is a new remote electronic voting protocol
that eliminates the often-required assumption that voters trust
general-purpose computers. Trust is distributed in Du-Vote be-
tween a simple hardware token issued to the voter, the voter’s
computer, and a server run by election authorities. Verifiability
is guaranteed with high probability even if all these machines
are controlled by the adversary, and privacy is guaranteed as
long as at least either the voter’s computer, or the server and
the hardware token, are not controlled by the adversary. The
design of the Du-Vote protocol is presented in this paper. A new
non-interactive zero-knowledge proof is employed to verify the
server’s computations.

Du-Vote is a step towards tackling the problem of internet
voting on user machines that are likely to have malware. We
anticipate that the methods of Du-Vote can be used in other
applications to find ways of achieving malware tolerance, that is,
ways of securely using platforms that are known or suspected to
have malware.

1 Introduction

Electronic voting—especially remote voting over the
internet—is very challenging to secure [39], [13], [10], [24],
[51], [41], [52]. Nonetheless, internet voting systems are being
deployed for national elections [35], [30] and organizational
elections [4], [50], [8], [33]. This deployment has been en-
abled, in part, by improvements in cryptographic protocols that
ensure ballot privacy as well as verifiability of the election
outcome, even when the authorities and servers running the
election cannot be trusted. Yet these protocols typically assume
that the computer used by the voter to submit her vote is
trusted for privacy [3], [35], [30], or for both privacy and
verifiability [38], [23]. This assumption might seem necessary,
because humans cannot compute the encryptions and other
cryptographic values necessary to run such protocols. But the
assumption is problematic, because a voter’s computer might
well be controlled by an attacker [27].

Our aim in this paper is to show how attacks by malware
on the voter’s computer can be avoided, but this is achieved
at some cost of usability. More research to improve the user
interface of Du-Vote is needed before it could be deployed in
real elections.

Server S 

Token H 

Voter V Platform P 

Fig. 1. Du-Vote architecture.

1.1 Du-Vote

Du-Vote (Devices that are Untrusted used to Vote), intro-
duced in this work, is a protocol (described in Section 4) that
eliminates the need for voters to trust their computers. As
depicted in Figure 1, a voter V interacts with her computing
platform P and a simple hardware token H to cast a vote
on server S. The encryption of candidates takes place on P ,
and the voter’s choice of encrypted candidate is made with H ,
such that neither P nor H learns the voter’s plaintext choice.
The server S verifies that P is behaving honestly and anyone
(e.g. observers and voters) can verify the computations done
by S, to check its honesty.

Moreover, Du-Vote requires very little functionality from H .
It needs only
• to accept short inputs (e.g., twenty decimal digits) and

produce very short outputs (e.g., four decimal digits),
• to store a secret value, similar to a cryptographic key, that

can be pre-installed before delivery to the voter, and
• to compute modular exponentiations and multiplications.

H does not need any connection to another computer, so
there are no requirements for a general-purpose operating
system, drivers, etc. Indeed, Du-Vote requires H to be unable
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Fig. 2. Hardware tokens used in banking. These devices store secret information into a tamper-resistant hardware. One on the left, has device with screen
and keyboard; on the right, a device with screen and just one key.

to communicate with anyone other than V . The only means
for H to communicate with the outside world should be
by using a built-in keyboard and screen. H can even be
software closed, such that its software cannot be modified.
These requirements can be satisfied by hardware tokens similar
to those shown in Figure 2, which are used by banks for two-
factor authentication. Such tokens have a decimal keypad, an
LCD screen that can display a few digits, and a command
button that causes the device to compute an output.

Du-Vote is the front end of a voting system: it is designed
to collect encrypted votes and post them on a bulletin board.
The back end used to tally the bulletin board is a separate
module; it could be instantiated with verifiable reencryption
mixnets [16], [36] or verifiable homomorphic tallying [25],
[4].

1.2 Trustworthiness of H

Our initial verifiability and privacy analysis is based on
the assumption that H is trustworthy. Later, we consider the
possibility that the manufacture of H might be controlled by
an adversary: for example, the H devices might be made in a
foreign nation state. Therefore, we also carry out verifiability
and privacy analysis based on the assumption that H is not
trustworthy. We briefly discuss these two here:

1.2.1 If token H is trustworthy

Given a trustworthy H , Du-Vote does not need to make any
assumptions about P , either for privacy or for integrity. Our
analysis (in Section 5) shows that, when H is trustworthy,
Du-Vote guarantees verifiability of the election outcome and
of individual votes even if both P and S are controlled
by the adversary. Du-Vote guarantees privacy of votes if at
least one of P and S is not controlled by the adversary.
So one contribution of Du-Vote is the relocation of trust
from a large computational device (the voter’s general-purpose
computer) into a small computational device (a token). Al-
though other systems (including SureVote [15], Pretty Good
Democracy [47], and Helios [3]—all discussed in Section 7)
have similarly worked to relocate trust, Du-Vote is the first to
ensure both privacy and verifiability with a trusted computing

base that consists only of a hardware token like that used in
real-world banking applications. In fact, because of its simple
design, the trustworthiness of H could be established through
verification and/or testing.

1.2.2 If token H is untrustworthy

Surprisingly, verifiability of the vote is assured with high
probability even if the manufacture of H is controlled by
an adversary, and P and S are controlled by the adversary
in real time. However, to achieve this result, we assume
that a certain fraction of the platforms P are trustworthy.
Privacy is guaranteed if either P , or H and S, are not
controlled by the adversary. Another contribution of Du-Vote
is, therefore, a voting system that achieves verifiability and
privacy without requiring trust in the computers used by voters.
The assumptions we make to achieve privacy are justifiable
because voters who are technically competent can protect their
privacy by making sure that their own computer (P ) is free
from any election related malware. The voters who don’t trust
their computers can rely on trustworthiness of devices (H and
S) provided by the election authorities.

1.3 Malware tolerance

Methods to use an untrustworthy general-purpose com-
puter for security-sensitive purposes would be useful in many
contexts besides voting. The aim of malware tolerance is
to prevent some kinds of attack, and to make other kinds
detectable, recognising that it is not possible to have perfect
platform security. This paper provides malware tolerance for
internet voting.

Our contributions: (1) We introduce Du-Vote, a new voting
system that addresses the long standing problem of voting
using untrusted voting machines and untrusted servers. Du-
Vote is the first voting system to ensure both privacy and
verifiability with a TCB that consists only of a hardware token
like that used in real-world banking applications. (2) We show
that even if this TCB is in fact untrusted (Section 5.1.2), it
is practically impossible for it to change some voters’ votes
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without detection. (3) We develop a novel non-interactive zero-
knowledge proof (Section 4.6), that enables a server to prove
that it correctly selects and reencrypts the ciphertext chosen
by the voter, without revealing it.

2 Security Goals

Du-Vote is designed to satisfy the following security prop-
erties:
• Universal and individual verifiability. Anyone can

check that all votes cast are counted, that only authorized
votes are counted, and that no votes are changed during
counting. Each voter can check that their own vote is
included in the tally.

• Privacy. The association between voters and votes is not
revealed.

Universal and individual verifiability are integrity properties.
Together, they assure all voters that the election outcome is
computed correctly. Any attempt to corrupt the integrity of the
election must be detected and correctly attributed. Privacy is a
confidentiality property. It assures voters that no one can learn
how they voted. As shown in section 5, Du-Vote assures these
properties with high probability, depending on which machines
(H , P , or S) are controlled by the adversary. Verifiability holds
even if all machines are controlled. But for privacy either P ,
or H and S, must remain uncontrolled.

Some election schemes satisfy stronger confidentiality prop-
erties, such as receipt-freeness [9] or coercion resistance [38].
But systems that provide these properties, such as Helios [3]
and Civitas [23], require voters’ machines to be trusted for
confidentiality. It is currently an open problem how to satisfy
these confidentiality properties with a completely untrusted
voter platform under realisable trust assumptions [32].

In Du-Vote, there is some protection against vote selling and
coercion: an adversary who cannot observe V ’s interaction
with H will be unable to determine V ’s vote, as long as
either P or S is not controlled by the adversary. To prevent
that observation, we must assume that voters do not give or
sell their tokens to the adversary. Unfortunately, any credential
used in remote voting—in any scheme, not just Du-Vote—is
inherently salable. So to realise that assumption, voters would
have to be disincentivised to sell tokens. Associating the token
with the voter’s legally binding digital signature, as is done in
Estonia,1 might suffice.

3 Voter Experience

We begin by describing Du-Vote from the voter’s point of
view. No cryptography is involved in this description, in part to
illustrate that the voter experience is straightforward. Section 4
details all the cryptographic protocols.

Registration. Voter V registers to vote with the authority
running the election. This registration may occur online.

1Use of the Estonian National ID card for internet voting is described on
Estonia’s website at http://vvk.ee/voting-methods-in-estonia/engindex/.

Candidate Column A Column B
Alice 3837 7970
Bob 6877 2230

Charlie 5525 1415
Dave 9144 2356

Enter your vote code here

Ballot ID: JSAhVEVYIFRTLXByb2dyYW

Fig. 3. An example code page as displayed by P .

Please follow these instructions to cast your vote:
• Check that your computer has displayed the candi-

dates in alphabetical order and has displayed two
codes (in column A and B) for each candidate.

• Flip a coin.
• If the coin landed heads:

– Enter all the codes, from top to bottom, from
column A into your token.

– Find the code for the candidate for whom you
wish to vote in column B. Enter that code into
your token.

• If the coin landed tails:
– Enter all the codes, from top to bottom, from

column B into your token.
– Find the code for the candidate for whom you

wish to vote in column A. Enter that code into
your token.

• You should now have entered a total of 20 digits
into your token. Press the command button on your
token. Your token will display a new, four-digit vote
code. Enter that vote code into your computer.

• Record your ballot id and vote code to later double-
check that your vote was received.

Fig. 4. Voting instructions, assuming n = κ = 4. The voter is in possession
of a hardware token similar to that of Figure 2(left), and a computer P
displaying a code page similar to Figure 3 .

V establishes a username and password for server S. The
authority issues to V a hardware token H , either in person
or by postal mail (perhaps in tamper-evident envelopes).

Voting. Using her computing platform P , voter V authenti-
cates to server S using her voter ID and password. 2 P displays
a code page to V , as shown in Figure 3.3

The instructions in Figure 4 are conveyed to the voter by P .
These instructions are also widely publicised—for example, in
newspapers, TV channels, and online media—so that they are

2Neither privacy not integrity of the election depend on the security of the
password. It is present only to prevent data disruption that could anyway be
detected in the verification stage.

3Du-Vote’s code pages appear superficially similar to Chaum’s code
sheets [15]. But Du-Vote constructs and uses code pages in a different way,
as we describe in Section 4.
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common knowledge among voters. Following them, V enters
five codes into H , obtains a new vote code from H , and enters
that vote code into P . Then V records her ballot ID and vote
code.

Auditing. A log of all the votes and other data received by
S is made available for review by all voters. To double check
that her vote was correctly received and recorded, V confirms
that her ballot ID and vote code are in that log.

The cryptography behind the curtain. Although voters
don’t need to know this, the codes on the code page are trun-
cated probabilistic encryptions of candidate names—that is,
the last four digits of a decimal representation of a ciphertext.
P computes those ciphertexts. That leads to three problems,
that are solved with the help of H:
• P might try to cheat in constructing the ciphertexts. So V

is required to enter an entire, randomly chosen column to
H . The vote code output by H is based on that column.
S uses the vote code to verify that the column was
encrypted correctly.

• P might try to change the order of codes displayed to V .
Therefore, the vote code output by H is also based on
the order in which V has seen codes in the audit column.
This later informs S in what order V saw the codes.

• P might try to learn the voter’s plaintext vote. Clearly,
since P knows the plaintexts, V cannot reveal its chosen
candidate code directly to P . So V makes her selection on
H . The vote code output by H is based on that selection.
S uses the vote code to recover the voter’s encrypted
candidate.

Moreover, S is not able to see the candidate inside the
voter’s vote, because that candidate is encrypted. (As is stan-
dard, the encrypted votes can be homomorphically combined
or shuffled with a mix network, such that S cannot link
decrypted votes with ciphertexts.) How S uses the vote code,
and all the other cryptographic details, we explain, next.

4 Voting Scheme

In addition to the principals already introduced (hardware
token H , voter computing platform P , and server S), Du-
Vote uses a set T of decryption tellers, who are principals
entrusted with shares of the decryption key under which votes
are encrypted. Du-Vote also uses a bulletin board BB and a
cryptographic hash function hash(·).

4.1 Setup

Du-Vote employs a distributed El Gamal encryption
scheme [11]. Each decryption teller has a private key zj and
a corresponding share of the public key yj , where yj = gzj .
The product

∏
j yj of all the public keys can itself be used as

a public key, denoted y. Decryption of a ciphertext encrypted
under y requires participation of all the tellers, each using their
own private key.

The scheme works over a cyclic group G with generator
g. Encryption of a message m with a public key y using

randomness r is denoted enc(m; y; r), where enc(m; y; r) =
(gr,myr). We omit y when it is clear from context. And
when the particular random value r is not relevant, we omit
it. Decryption of a ciphertext c with a private key z is denoted
dec(c; z). We omit z when it is clear from context.

Du-Vote also employs exponential El Gamal encryption [2],
in which during encryption another group generator h is
raised to the power of the plaintext message. Exponential
encryption of message m with public key y using randomness
r is denoted enc-exp(m; y; r), where enc-exp(m; y; r) =
(gr, hmyr). Sometimes we omit parameters to enc-exp, as
with enc. Exponential El Gamal [29] satisfies the homo-
morphic property enc-exp(m1; y; r1) · enc-exp(m2; y; r2) =
enc-exp(m1 + m2; y; r1 + r2). The security of the scheme
relies on the standard DDH assumption, and also that logg h
is unknown to anyone [46].4

4.2 Registration

The electoral roll of authorized voters is determined by
the election authority in advance. Each authorized voter V
may register to establish a voter ID and password for server
S. Du-Vote does not require any particular protocol for this
registration.

As part of registration, the election authority issues to V a
hardware token H . Each H is configured with its own, unique
value K, where K = yk for a randomly chosen k.5 At the
time H is issued to V , the authority causes server S to record
an association between k and V . Note that S can, therefore,
derive the K stored on V ’s token. We assume that H is issued
over a private channel.

Given a sequence of decimal digits as input, H interprets
that input as an integer d. When the command button is
pushed, H outputs (Khd)∗, where ∗ denotes a truncation
operator that produces short representations of large values,
as follows. Let κ be a security parameter of Du-Vote. Given
a large value L, let L∗ denote the final κ digits of some
canonical representation of L as a decimal integer. Therefore
(Khd)∗ denotes the final κ digits of the decimal representation
of group element Khd. Here are two other examples of how
to form L∗:
• If L is a bit string, then convert that bit string to an integer

and yield its final κ decimal digits.
• If L is an El Gamal ciphertext (γ1, γ2), first represent

(γ1, γ2) as a bit string γ1||γ2, where || denotes concate-
nation, then proceed as in the previous example.

Denote the output (Khd)∗ of H on input d as H(d).

4One way to realize this assumption is based on a Schnorr group. Let p
and q be large prime numbers, such that p = `q + 1 for some `. Define
Schnorr group G to be an order-q subgroup of Z∗

p. To construct g and h
from G, first choose any two bit strings a and b, such that a 6= b. Then let
g = (hash(a) mod p)` and h = (hash(b) mod p)`. Check that g 6= 1 and
g 6= −1, and likewise for h. Also check that g 6= h. If any checks fail (which
happens with low probability), then try again with some other values for a
and b.

5Our notation is meant to suggest keys, and indeed k will be used in
Section 4.6 to compute a value that resembles an El Gamal encryption.
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Candidate Column A Column B
a1 A∗1 B∗1
a2 A∗2 B∗2
a3 A∗3 B∗3
a4 A∗4 B∗4

Enter your vote code here

Ballot ID: hash(A,B)

Fig. 5. The cryptographic construction of a code page. Each entry A∗
i denotes

the truncation of an encryption Ai = enc-exp(ai) of candidate ai. Likewise,
each B∗

i is also the truncation of an encryption Bi = enc-exp(ai) of ai.
In the ballot ID, value A denotes the lexicographically sorted sequence of
ciphertexts A1, . . . , A4 in column A, and likewise for B in column B.

Typically, we assume κ = 4. More digits would require
more typing into H , affecting the usability of Du-Vote. Fewer
digits would affect the security of Du-Vote by reducing re-
sistance to randomization attacks (discussed in Section 5.1.2,
Remark 4) in which H causes V ’s vote to change to an
unpredictable candidate.

4.3 Opening of election

In advance of an election, the set Cand of n candidate
names {a1, . . . , an} is published on BB. An algorithm for
generating a publicly verifiable but unpredictable election
nonce I is also declared and published. This election nonce
I could be generated by using stock market data [14], [20],
[21]. The nonce I must be generated after the hardware tokens
H have been manufactured. It is critical for integrity that
tokens H are unable to learn I (that is why they have no
input interface except the short value keypad).

4.4 Voting: preparation of vote by P

To vote, V first authenticates to S through P using her voter
ID and her password. P retrieves candidate names Cand and
nonce I from BB .

Second, P prepares a code page for the voter. The essential
idea in preparing that code page is that P creates two different
encryptions of each candidate name. The two encryptions
will be used later to verify that P computed the candidate’s
encryptions honestly. The construction of a code page with
four candidates is shown in Figure 5. Each candidate’s name
is encrypted once in column A, and again in column B. To
defend against an attack (cf. Section 5.1.2, Remark 5) in
which a malicious H and P conspire to violate integrity,
those encryptions must be chosen by P in a specific way,
detailed below. This method is designed to prevent a dishonest
P from having a covert channel with which to communicate
to a dishonest H .
• P computes a set {c1, . . . , c2n} of distinct decimal codes

determined by I and voter ID, each code having κ digits
(recall that n is the number of candidates). To achieve
this, P generates a bit stream seeded by hash(I, voter ID)

H P S

Display
a1 A∗

1
B∗

1

.

.

.

.

.

.

.

.

.
an A∗

n B∗
n

Ballot ID

V types codes

Compute C∗

V types C∗

C∗
{A1, . . . , An}
{B1, . . . , Bn}

Produce re-encryption E
of chosen ballot, proofs
Px′ ||PD||PE ||PF and
Ballot ID

1

Fig. 6. Du-Vote voting protocol. Platform P displays the candidates and
the codes. Token H computes vote code C∗ from the codes entered by the
voter. The server S later produces re-encryption E of the chosen candidate’s
encryption and NIZKPs to prove its honesty.

and repeatedly consumes an appropriate number of bits
from it to form each of the codes in turn. If any code
would be identical to a previous one, P discards it and
produces a new one, until it has the required 2n distinct
codes.

• P chooses a random α such that 1 ≤ α ≤ n and
cyclically assigns the subset {c1, . . . , cn} of codes to
candidates: cα to a1, cα+1 to a2, etc., wrapping around
and assigning cα−1 to an. Let codeA(i) denote the code
assigned to ai according to α.

• Likewise, P chooses a random β such that n+ 1 ≤ β ≤
2n and assigns the subset {cn+1, . . . , c2n} of codes to
candidates: cβ to a1, cβ+1 to a2, etc. Let codeB(i) denote
the code assigned to ai according to β.

• For each candidate ai, platform P chooses a random
r and computes enc-exp(ai; y; r + j) for each j ∈
{0, 1, 2, . . .} until the ciphertext Ai = enc-exp(ai; y; r +
j), satisfies A∗i = codeA(i). 6

• Likewise, P finds ciphertexts Bi such that B∗i =
codeB(i).

• P generates a code page as depicted in Figure 5. This
code page also contains a ballot ID where P commits to

6This is efficient, because if enc-exp(ai; y; r + j) = (α, β) then
enc-exp(ai; y; r + j + 1) can be computed as (αg, βy). See section 6.
Moreover, it is secure; we prove the security of this variant of Elgamal in
Appendix A.
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the ciphertexts. The ballot ID is defined as hash(A,B)
where A denotes the lexicographically sorted sequence of
ciphertexts A1, . . . , An in column A, and likewise for B
in column B. Due to this ballot ID P cannot later choose
different ciphertexts (with different plaintexts) that match
the codes.

Third, P invites V to vote with the code page. Figure 6
depicts this part of the protocol. To vote, V follows similar
instructions as in Figure 4. For example, if V ’s coin flip
yields tails and V wants to vote for a candidate whose
ciphertext is x, then V enters B∗1 || . . . ||B∗n||x∗ into H , where
x∗ ∈ {A∗1, . . . , A∗n}, and presses the command button. Let d be
the decimal representation of what the voter enters. In response
to the command button, H outputs vote code H(d), which is
the final four digits of Khd. Let C∗ = H(d). The voter enters
C∗ into P . Finally, P sends C∗, along with {A1, . . . , An} and
{B1, . . . , Bn}, to S in lexicographic order of ciphertext.

4.5 Voting: processing of vote by S

First, to verify P ’s honesty, S checks that P computed the
codes in A and B correctly. To do so, S computes bit string
hash(I, voter ID) and—just as P should have—produces a set
{c1, . . . , c2n} of codes from it. Then S checks that A contains
the first half of that set, and B the second half (both in some
cyclic order). S posts C∗, A, and B on BB . S also generates
ballot ID (just as P should have) and posts that on BB as
well. V matches this ballot ID with the one shown by P at
the time of voting.

Second, S does a brute-force search to determine what code
V entered as a candidate choice. The input space for this
search is the set of inputs V could have entered into H , given
that V ’s code page was constructed from A and B. Anyone
who knows I and voter ID can compute those inputs. The size
of the input space is 2n2: the full column entered by the voter
is 1 of 2 columns; the cyclic permutation of that column starts
at 1 of n candidates; and the candidate chosen by the voter is
also 1 of n.

Computing the output of H , however, requires knowledge
of value K stored in H . Recall (from Section 4.2) that S can
derive that value. Therefore, S simulates the voter’s token to
find the code x∗ that produces C∗. Next, S recovers the full
ciphertext for that code from the ciphertexts received from A
or B; and S determines which column was fully entered by
the voter (call that the audit column) and post it on BB.

Third, S requests from P the random coins used to en-
crypt each candidate in the audit column. P checks if S
has published the audit column on BB before sending the
random coins. S posts those on BB , then checks whether the
encryptions for each candidate in that column were computed
correctly by P (note that S knows the order in which V has
seen the audited codes as voter entered them into H in the
order codes were seen). If that check fails (or if the brute
force search previously failed), then one or more of P , H ,
and V is faulty or dishonest. In that case, S refuses to do any
further processing of V ’s vote.

Fourth, S reencrypts x to a new ciphertext E and posts E
on BB as V ’s vote. The reencryption is necessary, because
P (having generated the encryptions) knows the plaintext
corresponding to x. So if S directly posted x to BB , then
P would easily be able to violate V ’s privacy.

Fifth, S produces a non-interactive zero knowledge proof
that it followed all the above protocol honestly by posting a
proof on BB . We present that proof, next, in Section 4.6.

Finally, voter V finishes by recording the vote code and
the ballot ID, and by logging out of S. V must check that
this recorded information is present on BB using an honest
platform, or V must convey this information to a trusted third
party who does the check on behalf of V . Note that conveying
it does not harm V ’s privacy.

4.6 Voting: S proves its honesty

As mentioned above, S must create universally-verifiable
proofs that it correctly selected and reencrypted the ciphertext
x chosen by the voter. The proofs will be posted on BB . Here
we give the technical details of those proofs. We use standard
cryptographic techniques for constructing a non-interactive
zero-knowledge proof, based on ring signatures [1], [19] and
the Fiat-Shamir heuristic [28].

4.6.1 Ring signatures and OR-proofs

Consider a set {P1, . . . , Pn} of participants, and suppose
that each participant Pi has a private key ski and a corre-
sponding public key pki. We suppose Pi possesses his own
private key ski and all of the public keys {pkj}1≤j≤n. A ring
signature is a cryptographic signature that such a participant Pi
can make, and has the property that any verifier in possession
of the public keys {pkj}1≤j≤n can be assured that one of the
participants {P1, . . . , Pn} made the signature, without being
able to tell which one it was [1], [19]. In a ring signature, there
is one “actual” signer, in our example Pi; the signing process
uses his secret key ski and the public keys {pkj}1≤j≤n, j 6=i
of the other ring members. The actual signer does not need
the permission or involvement of the other ring members.

A zero-knowledge proof (ZKP) is a proof between a prover
and a verifier that demonstrates to the verifier that a certain
statement is true, without revealing any information except the
validity of the statement [31]. Non-interactive zero knowledge
proofs (NIZKP) are a variant of ZKP that do not require
interaction between the prover and the verifier. If the statement
being proved asserts that the prover knows a secret signing
key, this type of NIZKP can be a signature on some arbitrary
value using the signing key, and is called a signature-based
proof of knowledge (SPK). The message being signed is not
important, it can be a constant value or even blank. A Schnorr
signature [49] is commonly used for this purpose.

If the statement being proved asserts that the prover knows
a secret value satisfying a disjunction of properties, then a
ring signature can be used. For example, given a finite set
Ω = {ω1, . . . , ωn}, a group generator g, and a function f , we
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may prove in zero knowledge that we know an x such that
gx = f(ω1) or . . . or gx = f(ωn). Such a proof is a ring
signature on an arbitrary value, where the actual signing key
is x and the public keys are {f(ω) | ω ∈ Ω}. We write such
a signature proof of knowledge as

SPK{x | ∃ω : ω ∈ Ω ∧ gx = f(ω)}.

It is useful to generalise this to a double signature. Let Ω be
a set of pairs, and g1, g2 be two group generators, and f1, f2
be two functions. We write

SPK{x | ∃ω1, ω2 : (ω1, ω2) ∈ Ω∧gx1 = f1(ω1)∧gx2 = f2(ω2)}

to mean a proof of knowledge of x satisfying gx1 = f1(ω1)
and gx2 = f2(ω2) for some (ω1, ω2) ∈ Ω. The signer’s private
key is x, and the ring of public key pairs is {(f1(ω1), f2(ω2) |
(ω1, ω2) ∈ Ω}.

4.6.2 Proof of selection and re-encryption of the voter’s
chosen ciphertext

Using these ideas, we show how the server S produces a
zero-knowledge proof that it correctly computed the voter’s
chosen ciphertext x = (x1, x2) from the input C∗ that S
receives from P ; and that it outputs a correct re-encryption
of that x, all without revealing what x is. The proof is divided
into three parts.

Proof of selection.
S computes a pair D = (D1, D2) = (gd, ydhx2), for some

value d, where x2 is the second component of the voter’s
ciphertext; and proves that D is of this form.

To see how this is achieved, we assume that V ’s coin flip
yielded tails, and V enters B∗1 . . . B

∗
nx
∗ into H , where x∗ ∈

{A∗1 . . . A∗n}. S starts as follows:
• retrieve C = ykh(B

∗
1 ||...||B

∗
n||x

∗) and publish it. The last
κ digits of C is C∗, which can be checked by everybody.

• compute Cx∗ = C/h(10
κB∗1 ||...||B

∗
n) = ykhx

∗
. This value

is publicly known as anybody can compute it from C and
(B1, . . . , Bn).

• compute x′ by truncating the last κ digits of x2. Thus,
x2 = x′||x∗.

• compute Cx′ = yr
′
h10

κ x′ , and publish it, where r′ is
chosen randomly.

• prove knowledge of x′ and r′ in Cx′ . We call this proof
Px′ .

• compute D = (D1, D2) = (gd, Cx∗Cx′) = (gd, ydhx2),
where d = k+r′; anyone can compute D2 from Cx∗ and
Cx′ .

These computations demonstrate the relationship between D
and C: they show that D2 = ydhx2 and C = ykhB

∗
1 ||...||B

∗
n||x

∗

share the same x∗.
To prove the structure of D, S must prove knowledge of

d such that D = (D1, D2) = (gd, ydhx2), for some x2 ∈
{A1,2, . . . , An,2} (recall that each El Gamal ciphertext Ai is
a pair (Ai,1, Ai,2)). This proof can be written as

PD = SPK{d | ∃x2 ∈ Ω : gd = D1 ∧ ydhx2 = D2},

where Ω = {A1,2, . . . , An,2}. We show that such a proof can
be achieved, by writing it equivalently in the following form
to match the shape of ring signature proofs above:

PD = SPK{d | ∃x2 ∈ Ω : (gy)d = D1D2/h
x2}.

Proof of re-encryption of a ciphertext.
As previously mentioned, the ballot x can’t directly go to the

bulletin board BB, because P knows the plaintext and could
later use BB to see how the voter voted. To address this, S
now computes a re-encryption E = (E1, E2) = (gex1, y

ex2)
of x (where e is chosen at random).

The proof of the structure of E can be shown using double
ring signature:

PE = SPK{e | ∃x1, x2 : (x1, x2) ∈ Ω∧
ge = E1/x1 ∧ ye = E2/x2},

where Ω = {A1, . . . , An}.
Proof that the re-encryption is of the selected ciphertext.
The proof PE shows that E is the re-encryption of one

of the values in {A1, . . . , An}, but not that it is the one
chosen by the voter. To prove that the (x1, x2) used in the
computation of E matches the code chosen by the voter,
S has to show that the x2 in E is the same as the x2
in D. To demonstrate this, S computes F = (F1, F2) =
(E1D1, E2D2) = (gfx1, y

fx2h
x2) where f = d + e, and

proves that F indeed has this form. The proof that F has the
correct form is another double ring signature:

PF = SPK{f | ∃x1, x2 : (x1, x2) ∈ Ω∧
gf = F1/x1 ∧ yf = F2/x2h

x2}
where Ω = {A1, . . . , An}.
Note that by putting Px′ , PD, PE and PF together, we have

actually proved that E is a re-encryption of Ai = (Ai,1, Ai,2)
where Ai,2 = x2 and x∗2 is involved in C∗. The proofs
Px′ , PD, PE and PF are bound together as a single Schnorr
signature proof Ptotal. This proof Ptotal is also posted on the
bulletin board BB.

Our constructions are novel, but they make use of the
standard signature-based proof of knowledge (SPK) technique.
By using the Fiat-Shamir [28] heuristic, we are assured that
the proof is sound and complete, and has the computational
zero-knowledge property.

4.7 Tabulation

The tellers T receive from S the ciphertext E for each voter.
The voter’s names or identities can be publicly associated with
their encrypted vote. This allows any voter to check that their
E is included.

The set of encrypted votes is tabulated by a back end. Du-
Vote does not require any particular back end. One of these
two standard methods from the literature could be used:
• Homomorphic combination, followed by decryption of

the combination [4]. Since Du-Vote ballots are exponen-
tial El Gamal ciphertexts, multiplication of the ciphertexts
corresponds to addition of the plaintext.
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• A reencryption mixnet, followed by decryption [38], [23].

4.8 Verification

Voters and observers take the following steps to verify the
integrity of the material on BB . As usual, we envisage that a
variety of programs produced by different agencies would be
available for performing the verification.

During vote processing, S publishes the following informa-
tion for each vote:
• the voter ID
• the ciphertexts {A1, . . . , An} from column A and
{B1, . . . , Bn} from column B

• the identity (A or B) of the audited column
• the random values r1 . . . rn used for encryption in the

audited column
• the ballot ID
• the outputs C,Cx′ , D1, E, Ptotal described in Section 4.6,

where Ptotal includes Px′ , PD, PE and PF .
Any voter can ensure that her vote is present, by checking that
BB contains an entry with her ballot ID and the value C∗ that
she obtained from the code page displayed by P during voting.
Any observer (including any voter) can verify the integrity
of the other information, by performing the following BB
verification steps:

1) Identify the randoms used in the audited column, and
check the audited ciphertexts by reconstructing them.
Without loss of generality, assume column B is audited
and column A is used to cast vote

2) Verify the ballot ID by computing hash(A,B), where
value A denotes the lexicographically sorted sequence of
ciphertexts A1, . . . , An in column A, and likewise B in
column B

3) Identify C and check that the last κ digits of C are C∗

4) Compute Cx∗ = C/h{10
κ(B∗1 ||...||B

∗
n)}

5) Verify proof Px′
6) Identify Cx′ and compute D2 = Cx∗Cx′ and D =

(D1, D2), and verify PD
7) Identify E and verify PE
8) Compute F from D and E and verify PF
9) Check E has been sent to T

5 Verifiability and privacy

Full security analysis of Du-Vote (similar to [26] or [40]) is
beyond the scope of this paper. Our contribution is to introduce
the novel ideas that allow secure voting to take place even if
the backend server and the devices the voter interacts with are
all malicious. In this section, we present some results that add
detail to this claim.

Du-Vote’s primary objective is to ensure integrity and ver-
ifiability of the vote, even if the voter’s platform is untrusted.
Section 5.1.1 is devoted to explaining why any manipulation of
a vote by the untrusted P or untrusted S will be detected with
high probability, even if S and P are corrupt and controlled

by the same attacker, while assuming that H is trustworthy.
Additionally in Section 5.1.2 , we consider the possibility that
the hardware token H is corrupt too. There, we show that
even if all three of S, P and H are corrupt and controlled
by the same attacker, we still obtain detection of large scale
manipulation under certain reasonable assumptions.

A secondary objective of Du-Vote is to ensure privacy of
votes. In Section 5.2.1 and 5.2.2, we assume H is trustworthy,
and we argue that privacy of a vote holds even if one of S or
P is corrupt and controlled by an attacker, provided the other
one is honest. In Section 5.2.3, we consider the case that H
is not trustworthy. We show that although a privacy attack is
possible, it cannot be conducted on a large scale without being
detected.

We take the view that integrity and verifiability of the
election is more important than privacy, and that is why
our assumptions to guarantee integrity are weaker than those
required to guarantee privacy. Our view about the importance
of integrity over privacy is justified by considering what
happens if one of them fails, while the other is preserved. An
election with privacy but no integrity is useless: the outcome
is meaningless. But an election with integrity and no privacy,
while not ideal, is still useful (indeed, show-of-hands elections
in committee rooms are used all the time).

5.1 Verifiability

We divide our analysis into two parts. In the first part, we
assume the hardware tokens H are trustworthy. In the second
one, we consider the case that their manufacture is controlled
by an adversary.

5.1.1 Verifiability analysis assuming honest H & corrupt
P , S

We explain why any manipulation of a vote by the untrusted
P or S will be detected with high probability, even if P and
S are corrupt and controlled by the same attacker.

We make two assumptions. First, we assume that the tokens
H are honest. Second, we suppose that the BB verification
steps detailed in Section 4.8 have been carried out by some
voters or observers, and have passed. Our first remark uses the
well-known cut-and-choose argument:

Remark 1. Suppose a voter V votes and checks that her ballot
ID and vote code is present on BB. With probability at least
50%, P correctly computes the ciphertexts {A1, . . . , An} and
{B1, . . . , Bn} for V .

Proof Sketch: Suppose P incorrectly computes one or more
of {B1, . . . , Bn}. With 50% probability voter’s coin toss is
tails and she enters (B∗1 || . . . || B∗n|| x∗) into H and sends C∗

to S. The server S identifies the audited column and requests
the randoms for the ciphertexts corresponding to the audited
column {B1, . . . , Bn}, and publishes the randoms, ciphertexts,
voter ID and ballot ID on BB. An observer is now able to
check that the received ciphertext corresponds to the randoms
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and plaintexts in the correct order, and that the ciphertexts
are the original ones computed by P corresponding to the
commitment in the ballot ID.

As a reminder, n is the number of candidates and κ is the
length of codes.

Remark 2. Suppose a voter V votes and checks that her ballot
ID and vote code is present on BB. If P correctly computes
the ciphertext x corresponding to the code x∗ chosen by V ,

then with probability (10κ−1)2n
2−1

10κ(2n2−1)
, we have that:

(a) S correctly computed the chosen code x∗,
(b) S correctly computed the chosen ciphertext x, and
(c) S correctly computed the re-encryption of ciphetext E.
For example, if κ = 4 and n = 4, this probability is 0.9969.
Thus, with high probability, a correct encryption of the voter’s
chosen candidate is submitted to the tellers.

Proof Sketch: Suppose the ciphertexts {A1, . . . , An} and
{B1, . . . , Bn} correctly encrypt the candidates {a1, . . . , an}.
We prove each of the statements (a), (b), (c) in turn.
(a) Suppose without loss of generality that the voter chose

to audit {B1, . . . , Bn} and vote with {A1, . . . , An}; thus
she entered B∗1 || . . . ||B∗n||x∗ into H , generating C∗. By
the assumption that the BB verification steps pass, the
server receives C∗ correctly. Next, the server computes
possible inputs to H that could have generated C∗. Since
the vote codes are pseudorandom, the probability that the
voter has chosen inputs to H which result in a unique
C∗ can be calculated as 10κ−1

10κ
10κ−1
10κ . . . 10κ−1

10κ (there are

2n2− 1 factors), which equals (10κ−1)2n
2−1

10κ(2n2−1)
. In this case,

since there no collisions on C∗, S has no choice but to
correctly identify x∗.

(b) Any observer that checks proof Ptotal is assured of the
computation of x from x∗.

(c) Any observer that checks proof Ptotal is assured of the
computation of re-encryption E from x.

Putting these remarks together, we obtain:

Remark 3. Suppose a voter participates in the election, and
later verifies that the bulletin board contains her ballot ID
and vote code. Then the probability that her vote has not been

altered and will be decrypted as cast is 0.5× (10κ−1)2n
2−1

10κ(2n2−1)
.

In the case κ = 4 and n = 4, this probability is 0.4985.
Since the attacker’s chance of manipulating a vote is inde-
pendent of all the others, the probability of him undetectably
altering more than a few votes quickly becomes negligible.

5.1.2 Verifiability analysis assuming corrupt H , P , S

Even if all three of H , P and S are corrupt and controlled
by the same attacker, we still obtain detection of large-scale
vote manipulation under some reasonable assumptions.

The first assumption is that H has no wireless or wired
interfaces; the only way for it to communicate with the outside

world is via its keypad and screen. The attacker controls S and
P in real time; he can communicate directly with them. But
his ability to control H is limited to manufacture time. The
attacker can choose the firmware and other data that is installed
on H , but once H has been manufactured he can no longer
communicate with it because of the lack of wired or wireless
interfaces. The idea is that H is prevented from learning the
election nonce I , and this prevents it from being useful to the
attacker. H’s keyboard does provide a very low-bandwidth
channel by which the attacker can try to communicate with it,
but that channel has far too low bandwidth to communicate
the high-entropy I .

The second assumption is that, although the attacker can
spread malware to voters’ machines and thus control the P
that they execute, it cannot spread malware to all the machines.
Some PCs are well-looked after and some users are cautious
enough to avoid downloading malware.

Some of the H’s may be programmed correctly and others
may be programmed maliciously, in a proportion chosen by the
attacker. But we assume he cannot effectively match dishonest
P ’s with dishonest H’s, because the malware distribution
channels are completely different from the hardware distribu-
tion channels. This means that some honest P ’s will be paired
with dishonest H’s; and we assume those ones represent a
fraction h of all the P ’s (0 ≤ h ≤ 1).

As before, we also assume that the voters have checked that
their vote code and the ballot ID are present on BB by using
a trusted platform and that BB verification steps detailed in
Section 4.8 have been carried out by some voters or observers,
and have passed.

To obtain our result, we note that there are precisely two
ways in which a dishonest H could contribute to an integrity
attack:
• H could produce a random output instead of the correct

one.
• H could produce an output calculated according to some

attack strategy that has been built into it at manufacture
time. (We call such attacks substitution attacks and dis-
cuss them later.)

Intuitively, a random output will be very likely to be detected,
because S will fail to find a value x∗ that matches one of
the available ciphertexts. We formalise this intuition in the
following remark.

Remark 4. If a dishonest H modifies a vote by replacing the
code x∗ for a voter’s chosen candidate with a random x′, it
gets detected with probability 1−{(n−1)/(10κ−(n+1))} by
S. If n = 4 and κ = 4, this probability is 1−3/9995 ≈ 0.9996.

Proof Sketch: Suppose without loss of generality that
the voter chose to audit {B1, . . . , Bn} and vote using
{A1, . . . , An}; thus she entered (B∗1 || . . . ||B∗n||x∗) into H ,
where x∗ ∈ {A∗1, . . . , A∗n} . The dishonest H chooses x′∗ ran-
domly instead of x∗ and generates C ′∗. To succeed in substitut-
ing codes, H has to guess x′∗ s.t. x′∗ ∈ {A∗1, . . . , A∗n}−{x∗}.
Device H already knows n + 1 codes of κ digits that can’t
be repeated. So, the probability of getting a correct code is
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(n− 1)/(10κ − (n+ 1)). If x′∗ /∈ {A∗1, . . . , A∗n} − {x∗} then
C ′∗ will not match as expected by S and the attack will be
detected with probability 1−{(n−1)/(10κ−(n+1))}. (Recall
that S publishes the set of values C,Cx′ , D1, E, Ptotal, and by
our trust assumption, they are verified by some voters and
observers.)

Substitution attacks: Instead of relying on H to replace the
code x∗ with a random value (as done in previous remark),
an attacker can have strategically placed some data onto H .
Such data allows dishonest P to choose code sequences that
covertly trigger malicious behaviour within H . The attacker
can arrange it so that H produces an output corresponding
to a choice which is valid but different from the one made
by the voter. We call such attacks as substitution attacks. For
instance, P and H can agree to assign a code, say c1, to
one of the candidates in one column and, say, c2 to attacker’s
chosen candidate in the other column. While voting, if code c1
appears then H substitutes V ’s chosen candidate’s code with
the code c2.

The risk for the attacker mounting substitution attacks
arises when an honest P inadvertently triggers the malicious
behaviour, resulting in H substituting the voter’s choice for
an invalid one. This will be manifested by some voters having
their votes rejected. Considering the above example, if an
honest P assigns code c1 to one of the candidates in a column
but code c2 is not assigned to any candidate in the other
column, then if H replaces V ’s code then the resulting vote
will be rejected. We formalise this intuition in the following
remark.

Remark 5. Suppose a fraction h of the platforms P are
honest. The server S and dishonest P ’s are all controlled
by the same attacker, who also manufactured the devices H .
In order to modify on average N votes, the attacker will on
average cause R×N voters to have their votes rejected, where

R =
h (1− n/10κ) 10κ

((1− h)n+ h) n

For example, if h = 0.5 and n = κ = 4, then R ≈ 500.

Proof Sketch: Suppose the attacker has configured dishonest
H with data that allows P to trigger a substitution attack. Such
data can be represented as a series of pairs of the form (z,Q)
where z is the substitute code, and Q is a predicate on the input
received by H which determines whether the substitution is
triggered. Thus, if H receives input satisfying the predicate
Q, then H should substitute z for the voter’s chosen code and
compute its response accordingly. The predicate Q can express
a set of codes to use and/or a particular order in which to use
them. We write codes(Q) to mean the set of codes in inputs
that satisfy Q. We suppose the attacker has chosen ` lines,
(zi, Qi)1≤i≤`. Without loss of generality, we assume that the
sets codes(Qi) are all disjoint (if they are not, it introduces
ambiguity about how P should behave if the codes it should
use match several sets Qi). We also suppose that the codes
of Qi satisfy the predicate Qi only in one particular order

(Allowing more than one order of those codes would increase
the risk of an honest P inadvertently triggering the attack.).

Suppose P has calculated the allowed codes based on I ,
and the voter has chosen whether to vote using the left or right
column. A dishonest P had the possibility to choose to trigger
the attack if code zi appears in the “vote” column and Qi is
true of the “audit” column. The first of these events occurs with
probability n/10κ. The second one occurs with probability,
say, p. Because the two probabilities are independent, their
conjunction occurs with probability np/10κ. Because these
joint events are exclusive for different values of i, we have
that P had with probability np`/10κ the possibility to trigger
the attack.

As mentioned (and unfortunately for the attacker), an honest
P may also trigger the attack. This will happen if it inadver-
tently chooses codes that match the codes of some Qi (this
occurs with probability p), and puts in the order of Qi (since
there is only one order, this occurs with probability 1/n). If
this inadvertent triggering happens, it will cause the voter’s
vote to be rejected if the code zi is not a valid code; this
occurs with probability 1 − n/10κ. Thus, the proportion of
votes that the attacker causes to be rejected because of honest
P ’s is (p`/n)(1− n/10κ).

If an honest P inadvertently triggers the attack, the attacker
may be lucky because the substituted code turns out to be a
a valid code. The probability of this combination of events is
(p`/n)(n/10κ).

Recall that the proportion of honest P ’s is h. Thus, the
proportion of votes the attacker inadvertently causes to be
rejected is R times as many as he successfully changes, where

R =
h(p`/n)(1− n/10κ)

(1− h)np`/10κ + h(p`/n)(n/10κ)

=
h (1− n/10κ) 10κ

((1− h)n+ h) n

Even if the proportion h of honest P ’s is much lower, say
10%, still about R = 70 times more votes will inadvertently
be rejected than those successfully modified.

5.2 Ballot privacy

If an attacker controls P and S together, it can easily find
how a voter voted, even if H is honest. P can leak the link
between candidates and codes to S. Nonetheless, we argue that
an attacker that controls only one of P or S cannot discover
how a voter voted.

5.2.1 Privacy analysis assuming honest S, H & corrupt P

We claim that if S is honest, an attacker who controls P
cannot find how a voter voted. An attacker who controls P
has all the ciphertexts and their randoms and plaintext, together
with the value C∗ entered by the voter, and the set of values
C, Cx′ , D1, E, Ptotal published by S. The values C∗, C, Cx′ ,
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D1, E are determined pseudorandomly from the high entropy
value K and randoms chosen by S that are not available to
the attacker. Therefore these values do not reveal the vote.

The proof Ptotal is a non-interactive zero-knowledge proof
(NIZKP). Such a NIZKP does not reveal the secret value that
is the knowledge to be proved to its verifier; therefore, P is
not able to learn how the voter voted. Our use of a signature-
based proof of knowledge (SPK) technique, by using the
Fiat-Shamir heuristic, to implement the NIZKP, this ensures
universal verifiability while preserving user privacy.

Pass [45] argued that in the common reference string model
or the random oracle model non-interactive zero-knowledge
proofs do not preserve all of the properties of zero-knowledge
proofs, e.g. they do not preserve deniability from the prover,
although the proof does not reveal the secret value to the
verifier. However deniability from a prover is not required in
our case.

5.2.2 Privacy analysis assuming honest P , H & corrupt S

We claim that if P is honest, then an attacker who controls
S can’t find how a voter voted. The candidates a1, . . . , an are
encrypted by P with the teller’s public key y and the server
S does not know the corresponding private key z. (We show
that our new variant of Elgamal is secure, in Appendix A.)
Moreover, P being honest does not reveal the link between
candidates and codes for the column that voter has used for
voting. Therefore, S has a ciphertext representing V ’s choice,
but no other information about it to find how V voted.

5.2.3 Privacy analysis assuming corrupt H

Assuming H has no wireless or wired interfaces, the situ-
ation for privacy is same in the case when P is honest and
dishonest H and S are controlled by the attacker as the case
that H is honest. However, if H and P are controlled by the
same attacker then H could leak some information to P via the
κ digit code C∗ that V enters into P . For example, instead
of performing the correct computation, H could just output
the last entered code (which belongs to the chosen candidate).
This violates the voter’s privacy as the attacker will learn how
the voter voted. However, if the attacker performs this attack
on a large scale then this misbehaviour would be detected, as
S will reject the vote and a lot of rejections will lead to an
enquiry to find what went wrong.

6 Discussion

Performance: One might think that the search that platform
P has to perform to find ciphertexts matching a given code is
inefficient. On average, the platform P has to compute 10κ El
Gamal ciphetexts in order to find one that matches the code.
If κ = 4, this is 10,000 ciphertexts. However, as explained,
P does not have to compute each of these from scratch. It
computes the first one from scratch, and then from a ciphertext
(α, β) it computes the next one as (αg, βy). Hence, to find

a ciphertext matching the code, P computes one ciphertext
(i.e. two exponentiations and a multiplication) followed by
(on average) 10κ multiplications.

We conducted a simple experiment to see how long this
would take in practice. We programmed the relevant part of the
platform P in Python, and we used a Macbook Air computer.
Once again, we assume κ = 4. For a given plaintext and code,
finding a ciphertext that matches the code took on average 0.24
seconds. (The worst case in our sample of 1000 trials was
1.72 seconds.) If there are n = 4 candidates, then 8 codes are
required; thus, the platform P computes the entire code page
in 8 ∗ 0.24 < 2 seconds on average.

Re-usability of token H: In order for H to be reused for
multiple elections, a different key K must be used each time.
To see the necessity of this requirement, we show that an
adversary who controls P could manage to learn K over the
course of two elections using the same K. Since P knows 2n
candidates for x∗, and since Cx∗ = Khx∗ is publicly known,
adversary can compute 2n candidates keys for K, as Cx∗

(hx
∗
)−1. If K is re-used in two elections, he can intersect

the set of 2n candidates from the first election with the 2n
candidates from the second election, and will likely find only
one value in common, namely real key K.

Therefore, a different key K must be used for each election.
A naive way to achieve this is to store multiple values K1,K2,
. . ., Kn, each one dedicated to a particular election. However,
this would require fixing the number of elections in advance.
To overcome this restriction, we suppose that the server S
has a fixed set of keys k1, ..., k` for each voter, and H has
the public counterparts Ki = yki . For each election, a set
of ` short random values e1, . . . , en, are publicly announced
representing a kind of election ID. Each user programs their
H by typing these values into H . H computes a new election
key K =

∏
1≤i≤`K

ei
i , and the server computes the voter’s

key as k =
∑

1≤i≤` ei · ki.
Recovering key from H: An attacker might try to recover

the key K stored in H , e.g. by solving Hidden Number
Problem [5]. However, such attack would require very high
number of calls which would be impractical (and H could be
rate-limited). Even if an attacker manages to recover the key, it
affects privacy (not integrity), and it requires the co-operation
of the voter.

Error-detecting codes: To detect typing mistakes and to
provide friendly feedback to the user, error-detecting codes
could be employed. For example, the Luhn algorithm [42]
could be used by P to add a single digit checksum after each
candidate’s code in both columns A and B. Instead of entering
κ digits for each candidate, V would enter κ+1 digits. Before
computing C∗, token H would check whether all checksum
were correct; if not, H would ask V to retype them.

Error recovery: Several kinds of errors can arise, which
could result in a voter’s vote being rejected. Some errors
arise because of the voter’s mistakes (errors in inputs, for
example); others could arise because of malicious behaviour
by P , H or S. Another possible error could occur if during
the search for the voter’s input to H , the server S finds that
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there are more than one possible input (a clash due to the small
number of digits in H’s output). Unfortunately, it is difficult to
put error recovery procedures in place without compromising
the security properties. In particular, a situation in which the
platform P starts again could allow it to cheat undetectably.
Therefore, if any of these kinds of errors arise, the voter is
forced to abandon the attempt to vote and use an alternative
mean (such as polling station voting). We hope to improve
this situation in further work.

Malicious S: One might think that a malicious S could
ignore any malicious behaviour it detects from P . But S is
expected to create a public audit trail on BB . If many voters
or observers detect cheating behavior in that audit trail, the
collusion between S and P will be detected. If S wants to
maintain its reputation as an honest voting service, it cannot
engage in large-scale, detectable attacks.

Limitation on the number of candidates: Du-Vote does
not place an upper bound on the number of candidates in
an election. But, from a usability perspective, it would be
tedious for voters to enter a long string of digits into H . This
problem can be addressed by changing the set of codes that
are typed into H . Currently, the user types all n codes of
the audit column, plus one code for her vote. But alternative
arrangements could require the user only to type some of the
audit codes. We leave this issue, and other investigations into
usability, as future work.

7 Related Work

Haenni and Koenig [34] propose a trusted device for voting
over the internet on an untrusted platform. In their system, the
platform generates encryptions in the form of barcodes, the
voter makes her selection on the trusted device by scanning
chosen candidate’s barcode and later transfers her vote to
a trusted computer. That device requires a camera, matrix
barcode reader, and uplink to a computer. Compared to Du-
Vote’s hardware token, that device is complicated and difficult
to make trustworthy. Their hardware device learns voter’s
vote. Moreover, a camera built-in into untrusted platform
may record a voter’s behaviour while she scans her chosen
candidate’s barcode. In Du-Vote voters do not need to trust
hardware token for privacy.

Civitas [23], based on a scheme by Juels et al. [38], provides
coercion resistance but requires voters to trust their computers
for both integrity and privacy. Neumann et al. [43], [44] extend
Civitas with a smart card to manage voter credentials [23];
that scheme does not protect the voter’s privacy from an
untrusted machine. Several other variants of Civitas improve
the usability of the aspects related to verifiability [12], [48]
and coercion-resistance [22], but they still rely on trusted
machines.

Chaum et al. [18] introduce a computational assistant to
verify the vote cast on a voting machine inside a polling
station. This system is designed for polling-place voting,
whereas Du-Vote is suitable for remote voting.

SureVote [15] uses the voter’s computer as an untrusted
communication channel. Voters receive a code sheet through
a trusted channel, such as physical mail. The computer is
used only to send and receive codes from the sheet. SureVote
ensures security from the untrusted computer, but voters
cannot verify the construction of code sheets. Integrity turns
out to depend on secrecy of the code sheets in SureVote,
but Du-Vote does not require code pages to be secret. Pretty
Good Democracy (PGD) [47] improves SureVote by ensuring
stronger integrity properties. But in PGD, leakage of codes
could undetectably undermine integrity.

Helios [3], [4] uses a cast-xor-audit technique to assure
integrity of ballot construction. A voter can either cast her
ballot or audit it. Auditing challenges the computer to prove it
acted honestly in encrypting her candidate choice. But to verify
that proof, the voter must seek out a trustworthy computer.
Du-Vote does not require a trustworthy computer. In Helios,
the voter’s computer automatically learns how the voter voted,
thus violating privacy. Du-Vote guarantees privacy as long as
either P is honest, or H and S are honest. This is better
because voters who are technically competent can protect their
privacy by making sure that their own computer is free from
any election-specific malware. Voters who don’t trust their
computers can rely on trustworthiness of the devices (H and
S) provided by the election authorities.

Remotegrity [53] extends the Scantegrity II [17] paper-
ballot voting system to use for remote voting. In Remotegrity,
a voter receives a paper ballot and an authorization card
by mail. Part of the ballot is printed with invisible ink,
and parts of the authorization card are covered with scratch-
off coating. A voter marks the ballot with a special pen,
revealing a previously invisible code for a candidate. She
then scratches off a field on the card, revealing a previously
hidden authentication code. As part of the voting protocol,
she submits both the candidate and authentication code to
a bulletin board. Remotegrity assumes a secure means of
distributing the ballots and authorization cards. Since Du-Vote
needs to securely distribute a hardware token that is used
to authenticate votes, Remotegrity could be seen as a paper-
based analogue of Du-Vote. Both systems solve the problem of
untrusted computing platforms, but Du-Vote does so without
relying on paper, invisible ink and scratch-offs, or auditing
of printed ballots (which is required by Scantegrity II and
necessitates use of a random beacon and a distinguished group
of auditors).

8 Concluding Remarks

Decades of research have concentrated on securing the back
end of voting systems, while assuming that the front end—the
voter’s computer—is trusted. Unfortunately, those computers
are usually untrustworthy. So we set out to design a voting
system that would distribute trust between a voter’s computer
and a minimal token that could be made trustworthy. We
therefore eschewed designs that would have required tokens
to have cameras, GUIs, or general-purpose operating systems.
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The main challenge we consequently encountered was how to
minimize the amount of information a human would have to
convey between the token and computer. Typing of short codes
presented an attractive tradeoff between security and usability.
We discovered that the token need not be trusted for integrity,
provided that the adversary cannot communicate with it after
the election opens.

Could we replace Du-Vote’s special-purpose tokens with
smartphones? Users might download a simple app that simu-
lates the Du-Vote token. Preventing untrustworthy smartphones
from conspiring with other computers to violate verifiability
and privacy—especially preventing communication with the
adversary—would be challenging, as would be distributing the
secret values stored by tokens. Du-Vote’s security degrades
gracefully when the token is malicious, so it might be pos-
sible to address these concerns. If so, smartphones could be
profitably employed to improve usability.

Conventional wisdom used to hold that remote voting can-
not be secure, because voters’ computers themselves are not
secure [37]. Research in the last decade, though, indicates that
voters do not need fully trustworthy computers. With voter-
initiated auditing [6], [7], computers prove to voters that votes
are properly encrypted—but voters are instructed to seek out
many computers, so that at least one is likely to be honest, and
computers must still be trusted for privacy. Du-Vote doesn’t
require voters to trust general-purpose computer for integrity,
nor does it require voters to trust computers for privacy. We
are now optimistic, based on the techniques developed in this
work, that secure remote voting systems can be deployed
without requiring any trust in the computers used by voters.

Further work One of the more pressing topics for future
work is a systematic security analysis of Du-Vote. This is
likely to be rather complex, because of the non-standard
cryptography we use, as well as the probabilistic nature of
the security guarantees. It is beyond the scope of this paper.
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Appendix

Du-Vote requires the platform to find ciphertexts for which,
when written in decimal form, the last κ digits are equal to
certain codes. One might be concerned that adding such a
requirement may imply that the encryption scheme is insecure.
To alleviate such fears, in this section we prove that the
encryption scheme is IND-CPA.

Definitions. Let Encrypt0 be standard El Gamal, and En-
crypt1 be our variant. Formally, they are defined as follows:

Encrypt0(m,y) = // standard El Gamal
random r;
(c1,c2) = (gˆr, m.yˆr);
output (c1,c2)

Encrypt1(m,y,code) = // our variant

new r;
(c1,c2) = (gˆr, m.yˆr);
while c2* != code {

(c1,c2) = (c1*g, c2*y)
}

output (c1,c2)

Recall that Encrypt0(m, y) satisfies IND-CPA. Thus, we
may consider a typical CPA game between a simulator and an
attacker. In such a game, the attacker receives the public key
y from the simulator; the attacker sends a pair of challenge
messages (m0,m1) to the simulator; the simulator chooses
a random bit b, encrypts mb and returns the ciphertext; the
attacker outputs b′. If b′ = b, the attacker wins the game.

Assumption. Let m and y be fixed, and i be a randomly
chosen q-bit value. Then (m.yi)∗ is uniformly distributed in
the space of κ-digit decimal numbers.

Theorem 1. Under our assumption, Encrypt1(m, y, code)
satisfies IND-CPA.

Proof: Suppose Adversary A has a target of breaking
Encrypt0(m, y). If there exists Adversary B who is able
to break Encrypt1(m, y, code), then A can use B to break
Encrypt0(m, y).

We set up two games. Game 1 is between a simulator S
and the adversary A (playing as an attacker), and Game 2
is between A (playing as a simulator) and B (playing as an
attacker).
• In Game 1, A gets the El Gamal public key y from S.
• In Game 2, A forwards y to B.
• In Game 2, A receives a pair of challenge messages

(m0,m1) from B.
• In Game 1, A forwards (m0,m1) to S.
• In Game 1, A receives (c1, c2) = (gr,mb · yr), where
b ∈ {0, 1}, from S.

– A searches for a value i satisfying (c′1, c
′
2) =

(c1.g
i, c2.y

i) and c′∗2 = code.
– A terminates the games if such a value doesn’t exist.

• In Game 2, A sends (c′1, c
′
2) to B.

• In Game 2, B returns b′ to A.
• In Game 1, A returns b′ to S.

If A succeeds in finding the value i, the probability of A
winning Game 1 is equal to the probability of B winning Game
2.

Let us now calculate the probability that A succeeds in
finding the value i. For a given value of r and i, the
probability that (m.yr+i)∗ = code is 1/10κ (here we rely
on the assumption). The probability that (m.yr+i)∗ 6= code
is, therefore, 1 − 1/10κ. We have 2|q| possible values of i,
so the probability of none of them satisfying the equation is
(1− 1/10κ)2

|q|
. Therefore the probability that there is at least

one i that satisfies the equation is π = 1− (1− 1/10κ)2
|q|

).
The probability that A wins Game 1 is π times the proba-

bility of B winning Game 2. The value 1− π is negligible in
q, so the theorem follows.
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