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Abstract. The Egli-Milner power-ordering is used to de�ne verisimilitude orderings ontheories from preference orderings on models. The e�ects of the de�nitions on constraintssuch as stopperedness and soundness are explored. Orderings on theories are seen tocontain more information than orderings on models. Belief revision is de�ned in terms ofboth types of orderings, and conditions are given which make the two notions coincide.1 IntroductionBelief revision and verisimilitude involve very similar notions. In both cases we wish toselect a theory according to some notion of `closeness' to a given theory. In the case ofbelief revision, we are given a sentence, and the selection is from all the theories thatcontain the sentence. In the case of verisimilitude, the given theory represents the truth,and we are directly given the family of theories from which to select. But the criterion isthe same: we seek a theory in the family of theories which is closest to the given theory.From a technical perspective, however, the two topics have received di�erent treat-ments. Our aim in this paper is to formalise the intuitive relations between the two topicsby providing maps which de�ne one concept in terms of the other. We will also considerthe topic of preference relations in our analysis. Preference relations [17, 5, 8] were de�nedto give a semantics to default reasoning. Since the relationship between default reasoningand belief revision is so close [10], preference relations are also relevant for belief revision.�This author's current address is: School of Computer Science, University of Birmingham, Edgbaston,Birmingham B15 2TT, UK. Email: M.D.Ryan@cs.bham.ac.uk
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The formal relationships we will describe are summarised in the following diagram.belief revisionfunctions
preferencerelations 7 -� 8

4 - verisimilituderelations
� 11

The nodes show the three topics which we interrelate. The arrows represent the de�nitionsused to translate between the concepts, and are labelled by the de�nition number in thepaper. For example, de�nition 4 shows how to de�ne a belief revision function from apreference relation.The paper explores the properties of the translations. Firstly, we will study the how thepostulates typically imposed on the three concepts fare under the translation mechanisms.Secondly, we examine under what conditions the above diagram commutes. For example,suppose we obtain a belief revision function from a preference relation by passing througha verisimilitude relation, using de�nitions 7 and 11. Do we get the same result if weproceed directly, using de�nition 4?We do not attempt a thorough review of any of the three relevant �elds, such reviewsbeing readily available elsewhere (eg, [4, 3] for belief revision, [1, 6] for verisimilitude and[8] for preference relations). A brief introduction to verisimilitude is given in section 3.The paper is structured as follows. Section 2 discusses belief revision and preferencerelations. Section 3 introduces verisimilitude. Section 4 gives the results concerning theinterrelationships between the conditions which can be imposed on preference relationsand verisimilitude relations. Section 5 discusses under which circumstances the diagramcommutes, by exploring the compositions of the de�nitions. Finally, section 6 drawsconclusions.Preliminaries. We assume a language L which has the usual boolean connectives, aclass M of interpretations of the language, and a relation � in M�L. We assume that� behaves classically with respect to the connectives. If A � L is a set of sentences,Mod(A) = fm 2 M j 8 2 A m �  g. If N � M, Th(N) = f� 2 L j 8m 2 N m � �g.For � 2 L orm 2M, we will write Mod(�) and Th(m) instead of Mod(f�g) and Th(fmg).The set N � M of interpretations is closed if Mod(Th(N)) = N . The set A � L ofsentences is closed if Th(Mod(A)) = A. A closed set of sentences is also called a theory.The set of theories over L is T . If A 2 T , Ctg(A) = fB 2 T j A � Bg (the theoriescontaining A). A theory A is complete if � 2 A or :� 2 A for each � 2 L; it is consistentif � 62 A or :� 62 A for each � 2 L. The set of complete and consistent theories is denotedCT .We will need to make use of the fact that m 2 Mod(Th(n)) i� Th(m) = Th(n) i�n 2 Mod(Th(m)). This is proved as follows. First assume m 2 Mod(Th(n)); then, forall � 2 L, n � � implies m � �, so Th(n) � Th(m). Now suppose n 6� �; so n � :�, som � :�, so m 6� �. Thus, Th(m) � Th(n). This is the only place in the paper at which we2



appeal to the classical behaviour of �. Now suppose Th(m) = Th(n); then n � � impliesm � �, so m 2 Mod(Th(n)). The other half is proved similarly.If 6 is a relation on the set X and Y � X , then y 2 Y is said to be 6-minimal in Yif 8y0 2 Y (y0 6 y ) y 6 y0). We de�ne Min6(Y ) = fy 2 Y j y is 6-minimal in Y g. Wede�ne #6Y = fx 2 X j 9y 2 Y x 6 yg, and "6Y = fx 2 X j 9y 2 Y y 6 xg. As usual,x < y means x 6 y and y 66 x.2 Belief revision via preference relationsThe classical preference relations approach to default reasoning works as follows. SupposeT is some default information expressed as sentences of the language L. We assume someprocedure for deriving from T a relation vT � M�M which measures how nearly aninterpretation m satis�es the default information. By convention, m vT n means that msatis�es the default information as well as n does; we say m is preferred to n. There isa strong intuition that such preference relations should be transitive, though this is notalways assumed in the literature. We will assume it. As to whether they are re
exive ornot, this may be taken as a matter of convention for one can always close under re
exivityor take the strict (irre
exive) counterpart of a relation. We will assume re
exivity. Thus,De�nition 1 A preference relation v is a ternary relation v � M� T �M such that,for all T 2 T , the binary relation vT is re
exive and transitive.There are several properties of preference relations which we will sometimes need.Some, such as stopperedness, are well-known in the literature. Others, like the soundnessproperty below, arise because we have made the parameter T explicit.De�nition 2 A preference relation v is1. sound if for any satis�able T , m is vT -minimal in M i� m � T .2. stoppered if for all A � L and m 2 Mod(A) there is n 2 MinvT (Mod(A)) withn vT m.3. abstract if Th(m) = Th(n) implies m vT n and n vT m.4. preserves closed sets if, for all T � L and closed N � M, the sets MinvT (N) and#vTN and "vTN are closed.5. strongly abstract if for all N �M andm 2Mod(Th(N)) we have 9n1; n2 2 N n1 vTm vT n2.The intuition behind the soundness property is that nothing is `closer' to satisfying Tthan its models. Stopperedness is well-known in the default reasoning literature, and tellsus that we can �nd minimal models of any theory. Abstractness means that the preferenceof an interpretation is determined only by the sentences that it satis�es. The propertyof preservation of closed sets just tells us that certain useful operations on closed setsof interpretations return closed sets. Strong abstractness says that the preference order3



cannot make distinctions beyond the granularity of the logic. It represents an easy way tocheck whether the properties of abstractness and preservation of closed sets are satis�ed,as the following lemma shows.Lemma 3 If v is strongly abstract, it is abstract and preserves closed sets.Proof Abstractness:Th(m) = Th(n)) m 2 Mod(Th(n))) n vT m vT n (by strong abstractness).Preservation of closed sets: Suppose T � L and N �M is closed. We prove that1. MinvT (N) is closed. Suppose n 2 Mod(Th(MinvT (N))); we will prove that n 2MinvT (N). By strong abstractness, there are n1; n2 2 MinvT (N) s.t. n1 vT n vTn2. Since n1 and n2 are both minimal and n1 vT n2, we also have that n2 vT n1. Butn1 vT n, so by transitivity n2 vT n, i.e. they are all equivalent, so n 2MinvT (N).2. #vTN is closed. Suppose n 2 Mod(Th(#vT (N))); we prove n 2 #vT (N). By strongabstractness, there are n1; n2 2 #vT (N) such that n1 vT n vT n2. Since n2 2#vT (N), we have n2 vT m for some m 2 N ; by transitivity, n vT m and son 2 #vT (N).3. "vTN is closed: similar. 2In the standard account of preference relations, T is left implicit, and a �xed orderingv is assumed. This more general account presents T as a parameter. In other work theauthors and colleagues have described two preference structures; one based on the notionof `natural consequence' [12] and one based on distances between models [13]. In [15],Schobbens de�nes a preference structure for predicate logic based on correspondences.Given a preference relation, we may de�ne an inference relation. Let A and T be setsof sentences and � a sentence in L. The inference relation j� � P(L) � T � L is de�nedas follows: A j�T � :() MinvT (Mod(A)) � Mod(�)We will write  j�T � instead of f g j�T �. The preference relations framework hasits origins in circumscription [7]. Extensive work relating properties of vT to propertiesof j�T can be found in the accounts of Makinson [9], Kraus/Lehmann/Magidor [5] andSchlechta [14].The connection established between default reasoning and belief revision reported in[10] seems to be essentially the following. The statement that  j�T � corresponds tothe statement that � 2 T �  , i.e. that revising the information T with  will result ina theory that includes �. In [10], the authors show that the relationship between thestandard postulates for j� and for � correspond very closely under this translation. Thus,a preference relation can be used to de�ne a belief revision operator.De�nition 4 (� in terms of v.)T �v  := Th(MinvT (Mod( )))4



This says that to revise T with  , we look at the models of  which are closest to T ;then we take the theory of those models.This de�nition is the �rst of the four de�nitions promised by the diagram in theintroduction. Notice the notation: we write �v for the belief revision function de�ned interms of the preference relation v.3 Verisimilitude via power orderingsThe topic of verisimilitude concerns the measurement of closeness of theories to the truth.The idea is to de�ne a ternary relation on theories:A 6T B if A is as close to T as B is.Thus, the `truth' is represented as a theory. The actual truth is of course a completetheory (that is, for all � 2 L, either � 2 T or :� 2 T ), but many of the de�nitions in theliterature do not require this. Van Benthem's [18] constitutes a very readable survey ofapproaches as well as an analysis of the relations between verisimilitude and conditionals.We will again assume re
exivity and transitivity.De�nition 5 A verisimilitude relation 6 is a ternary relation in T � T � T , such that,for all T 2 T , the binary relation 6T is re
exive and transitive.The ternary relation allows us to select, from a given range of theories, one which isclosest to the truth in an obvious way: If the family fAi j i 2 Ig of theories consists ofthe candidates at hand, then a particular Ai is closest to the truth if it is 6T -minimal infAi j i 2 Ig, i.e. Ai 2 Min6T (fAi j i 2 Ig). Of course there can be several incompatibletheories among the candidates, all minimally close.3.1 History of verisimilitudeThe �rst formal de�nition of this relation is due to Popper [11]: for theories A, B and T ,he de�nes that A 6(P )T B i� B \ T � A and A � T � B. (The superscript (P ) standsfor Popper.) Since T contains only true sentences, the �rst condition in the de�nitionthese can be thought of as saying that A has all the true sentences that B has. If T isindeed complete, then its complement consists entirely of false sentences, in which casethe second condition means that A has no more false sentences in it than B has. If T isnot complete then the second condition is not so intuitive.Another de�nition of the same relation, due to D. Miller and T. Kuipers is A 6(K)T Bif Mod(B) \Mod(T ) � Mod(A) and Mod(A) �Mod(T ) � Mod(B). We can paraphrasethe two conditions as: any model in B which might have been the true situation must alsobe a model in A (so A doesn't lose any models); and any model in A which couldn't havebeen the true situation must be a model in B (so A doesn't introduce any bad models).We have that A 6(P )T B implies A 6(K)T B5



but the converse implication is false. It turns out that both Popper's de�nition andMiller/Kuiper's both have undesirable consequences. The following observations are dueto P. Tich�y and D. Miller:Proposition 61. A <(P )T B implies A � T .2. If T is complete and Mod(B) \Mod(T ) = Mod(A) = ? then A 6(K)T B.The �rst means that 6(P ) cannot strictly order \false" theories (that is, theories withat least one false sentence in them). Since that was the whole purpose of the enterprise, itseems su�cient reason for rejection of 6(P ). The second item in the proposition says thatthe contradictory theory A (with no models) is an improvement on any theory B whichshares no models with T . It is counterintuitive that the contradictory theory should be animprovement on anything. A proof of the �rst item is given in [16, page 49]; the secondis trivial to demonstrate. It should be noted that the second item is not seen as groundsfor complete rejection of 6(K); it is still widely discussed.A survey of approaches to verisimilitude can be found in [1].3.2 Power-ordering approach to verisimilitudeThe power-ordering approach to verisimilitude proceeds in the following way. We assumethat L is propositional, and that the truth is a single interpretation t inM, or equivalently,that it is the complete theory Th(t). By convention, we take t to be the interpretationin which every proposition is assigned true (we just rename the propositions to arrangethis). The set M of interpretations has a natural order on it, given by m vt n i� for allpropositions p, n � p implies m � p; which says, of course, that m is as near to t as n is.Thus, we have a natural order on interpretations which shows how they approximatethe truth. We want an order on theories. Since a theory T may be viewed as a setof interpretations (namely Mod(T )), we may use a technique well-known in ComputerScience called the power-ordering or Egli-Milner ordering; it tells us how to lift an relationon points to sets of points. It says: if R is a relation on X then R+ is a relation on P(X ),de�ned by XR+Y i� 8x 2 X 9y 2 Y xRy ^ 8y 2 Y 9x 2 X xRy. Thus, Brink andHeidema de�ne, for theories A;B,A 6t B () 8m 2 Mod(A) 9n 2 Mod(B) m vt n ^8n 2 Mod(B) 9m 2 Mod(A) m vt n:Further details and motivation are given in [2].This approach is easily generalised. We need not assume that the `truth' is a com-plete theory (thus represented by a single model t), nor the particular ordering vt givenabove. Indeed, we can start with any preference relation v and compute a correspondingverisimilitude relation:De�nition 7 (6 in terms of v.)A 6vT B :() 8m 2 Mod(A) 9n 2 Mod(B) m vT n ^8n 2 Mod(B) 9m 2 Mod(A) m vT n:6



The intuition behind this de�nition is the following. The theory A is as close to T asB is if, every model of A is as close to T as some model of B, and also every model of Bis as far from T as some model of A. Thus, A is as close because it can match any modelof B with one of its models, and moreover, any of its models matches some B model.Conversely, starting with a verisimilitude relation (i.e. a ternary relation 6 on theories)we can derive a family of relations on M via the `singleton embedding' of a relation in itspower-relation:De�nition 8 (v in terms of 6.)m v6T n :() Th(m) 6T Th(n):The intuition here is simple. Every interpretation m gives us a theory, namely Th(m).If we're able to compare theories for closeness to T , then that fact allows us to compareinterpretations too.Proposition 91. If v is a preference relation, then 6v is a verisimilitude relation.2. If 6 is a verisimilitude relation, then v6 is a preference relation.Proof 1. We just check that the power-relation of a pre-order is again a pre-order, aresult known from the literature on power structures. Re
exivity is easy. For transitivity,suppose A 6T B 6T C; we will prove A 6T C. Suppose m 2 Mod(A); since A 6T Bthere exists m0 2 Mod(B) with m0 vT m. Using this m0 and the fact that B 6T C, we�nd n 2 Mod(C) with n vT m0. By transitivity of v, m vT n. The proof of the otherhalf is similar.2. Re
exivity and transitivity of 6T follow immediately from the re
exivity and tran-sitivity of vT . 23.3 Conditions on verisimilitude relationsA great many conditions on verisimilitude relations have been studied; for example,see [18]. However, the conditions that we will describe here seem to be yet more! Thefollowing conditions will be used in the remainder of the paper.De�nition 10 A verisimilitude relation 61. is sound if for any satis�able theory T , the theory A is 6T -minimal in T i� T � A.This is the analogue of soundness for preference relations; it says the best theoriesare those that include the truth (and possibly more).2. is stoppered if for allA � L and B 2 Ctg(A) there is a satis�able C 2 Min6T (Ctg(A))with C 6T B; this is the natural analogue again.7



3. respects complete theories if, for all A 2 T and B 2 CT , B 2 Min6T (Ctg(A) \ CT )implies B 2 Min6T (Ctg(A)). This means that a complete theory which is minimalamong the complete extensions of A is also minimal among all the extensions.4. is elaboration tolerant if, for A;B;C 2 T , B 2 Min6T (Ctg(A)) and B � C implyC 2 Min6T (Ctg(A)). It says that if B is closest to T among the theories that containA, then so is any elaboration of B.5. satis�es split if(a) A 6T B and Mod(A) = Si2I Mod(Ai) for some I implies that there is a familyfBigi2I such that Mod(B) = Si2I Mod(Bi) and Ai 6T Bi. This says that ifA 6 B and A can be split into components Ai, then B can be similarly splitand each of the component pairs are related by 6T . Thus, a verisimilituderelation can be `split' into components.(b) A 6T B and Mod(B) = Si2I Mod(Bi) for some I implies that there is a familyfAigi2I such that Mod(A) = Si2I Mod(Ai) and Ai 6T Bi. This is similar to(a).6. satis�es join if Mod(A) = Si2I Mod(Ai) and Mod(B) = Si2I Mod(Bi) andAi 6T Bifor each i 2 I, then A 6T B. This is the converse of split; it takes the componentsof a verisimilitude relation and `joins' them together.7. is strongly abstract if for all sets of interpretations N � M and complete and con-sistent theories A such that Mod(A) � Mod(Th(N)), there exists B1; B2, complete,consistent, such that B1 6T A 6T B2 and Mod(Bi) � N . This is a `literal trans-lation' of strong abstractness for v. It's a rather technical condition which we willonly need once.The analogues of the properties of preference relations are natural desiderata forverisimilitude. Note that there is no analogue of abstractness; every verisimilitude re-lation trivially has the property that Mod(A) = Mod(B) implies A 6T B and B 6T A.The other conditions given above may seem less natural, but it will be seen that they arisenaturally from seeing verisimilitude in terms of the power-ordering construction.3.4 Belief revision from verisimilitudeWe have so far de�ned a belief revision operator in terms of a preference relation (slightlygeneralising the standard way; de�nition 4), and we have shown how to de�ne verisimil-itude in terms of preference and vice versa (de�nitions 7 and 8). We now complete thediagram in the introduction by giving a de�nition of belief revision in terms of verisimili-tude.To revise T with  , we look at the theories which contain  , and pick among thosethe ones which are closest to T :De�nition 11 (� in terms of 6.)T �6  :=\(Min6T (Ctg( )))8



Remark 12 The similarity in structure between de�nitions 4 and 11 may be seen by thefollowing:� T �v  = f� 2 L j MinvT (Mod( )) � Mod(�)g;� T �6  = f� 2 L j Min6T (Ctg( )) � Ctg(�)g.We now have the following de�nitions to enable us to inter-de�ne preference relations,verisimilitude relations and belief revision operators:�
v 7 -� 84 - 6

� 11
The remainder of the paper will explore properties of these de�nitions. First, in thenext section, we examine the relations between the constraints given for preference rela-tions and verisimilitude relations. We answer such questions as: what conditions mustbe imposed on on 6 in order to guarantee that v6 is stoppered? Then, in the followingsection, we explore the round trips: what happens if we begin with a preference relation,convert it into a verisimilitude relation, and then back again into a preference relation?How do the two preference relations relate? The same question can be asked about theother way around, starting with a verisimilitude relation and doing a round trip via apreference relation. We also examine under what circumstances the two ways of de�ningbelief revision coincide, i.e. when �6 = �v.4 Interrelating the conditionsIn this section we examine how the conditions given for preference relations and verisimil-itude relations translate using the de�nitions of v6 and 6v.We start with a lemma about de�nition 7 which will be used a lot in this and the nextsection. It says that, in the power-ordering approach to verisimilitude, the theories closestto T selected from the family of theories containing B are precisely those whose modelsare closest to being models of B.Lemma 13 If v is stoppered and preserves closed sets, thenB 2 Min6vT (Ctg(A))() Mod(B) � MinvT (Mod(A))In other words, the best theories are those with the best models, `best' being relative to agiven constraint.Proof Let 6 be 6v. 9



). Suppose Mod(B) 6� MinvT (Mod(A)). Then either Mod(B) 6� Mod(A), i.e. B 62Ctg(A), and we are home; or B 2 Ctg(A) and 9n 2 Mod(B) � MinvT (Mod(A)). Inthat case we will prove that Th(#vTMod(B)\MinvT (Mod(A))) <T B, thus proving thatB 62 Min6T (Ctg(A)).1. We show 6T . If m 2 Mod(Th(#vTMod(B) \ MinvT (Mod(A)))) then, since thesets #vTMod(B) and MinvT (Mod(A)) and hence their intersection are all closed,m 2 #vTMod(B). Therefore, 9n 2 Mod(B) m vT n as required. On the other hand,if n 2 Mod(B) then n � A, so by stopperedness we can �nd m 2 MinvT (Mod(A))with m vT n; and moreover, m 2 #vTMod(B) as required.2. We show 6>T . It is su�cient to show that there is some n � B such that, forall m � Th(#vTMod(B) \ MinvT (Mod(A))), n 6vT m. Take any n 2 Mod(B) �MinvT (Mod(A)).(. Suppose B 62 Min6T (Ctg(A)). Then either B 62 Ctg(A), so Mod(B) 6� Mod(A), orMod(B) � Mod(A) and C <T B for some C 2 Ctg(A). In the former case we are home.In the latter, we must �nd n 2 Mod(B)�MinvT (Mod(A)). We have1. 8c � C 9b � B c vT b;2. 8b � B 9c � C c vT b; and3. 9c � C 8b � B b 6vT c _ 9b � B 8c � C b 6vT c.If we have the �rst disjunct of 3, take this c. By 1, �nd b; c vT b, so by 3 again c @T band so b 62 MinvT (Mod(A)). If we had the second disjunct of 3, take this b. Take c fromline 2. Again, c @T b. Therefore, b 62 MinvT (Mod(A)), so Mod(B) 6� MinvT (Mod(A)). 2Now we give our main result for this section, relating the properties of v and 6.Proposition 141. If v preserves closed sets, then 6v satis�es split.2. 6v satis�es join.3. If v is abstract, then 6v respects complete theories.4. If v is sound, stoppered and preserves closed sets then 6v is sound.5. If v is stoppered, then 6v is stoppered and elaboration-tolerant.6. If v is strongly abstract, then so is 6v.7. If 6 is sound and respects complete theories, then v6 is sound.8. If 6 is stoppered, elaboration tolerant, and satis�es split, then v6 is stoppered.9. v6 is abstract.10. If 6 is strongly abstract, then so is v6.10



Proof 1. IfA 6T B and Mod(A) = Si2I Mod(Ai) then de�neBi = Th("vTMod(Ai)\Mod(B)). First we show Mod(B) = Si2I Mod(Bi), i.e.Mod(B) =[i2IMod(Th("vTMod(Ai) \Mod(B)))�: If b � B then there exists a � A with a vT b. Let i be s.t. a 2 Mod(Ai). Thenb 2 "vTMod(Ai) \Mod(B), so b 2 Mod(Th("vTMod(Ai) \Mod(B))) for that i.�: For any i we have "vTMod(Ai) \Mod(B) � Mod(B), thereforeMod(Th("vTMod(Ai) \ Mod(B))) � Mod(Th(Mod(B))) = Mod(B), proving theresult.Next we prove that Ai 6T Bi. Suppose a 2 Mod(Ai); then a 2 Mod(A), so pickb 2 Mod(B) s.t. a vT b. Then b 2 "vTMod(Ai) \ Mod(B). On the other hand,suppose b 2 Mod(Bi); then since Mod(Ai) and Mod(B) are closed and v preservesclosed sets, "vTMod(Ai)\Mod(B) is closed. Hence, b 2 "vTMod(Ai)\Mod(B), sotake a 2 Mod(Ai) such that a vT b.2. Suppose Mod(A) = Si2I Mod(Ai) and Mod(B) = Si2I Mod(Bi) and Ai 6T Bifor each i 2 I. We want to prove that A 6T B. Suppose a 2 Mod(A); thena 2 Mod(Ai) for some i, and since Ai 6T Bi there is a b 2 Mod(Bi) � Mod(B) witha vT b. Similarly, given b 2 Mod(B) we can �nd a 2 Mod(A) with a vT b.3. Suppose A 2 T and B 2 CT , B 2 Min6vT (Ctg(A) \ CT ). We will show B 2Min6vT (Ctg(A)). Suppose not. Clearly, B 2 Ctg(A); suppose C <vT B. Our reason-ing now is similar to the proof of lemma 13; we have(a) 8c � C 9b � B c vT b;(b) 8b � B 9c � C c vT b; and(c) 9c � C 8b � B b 6vT c _ 9b � B 8c � C b 6vT c.From these facts we �nd c @T b for some b � B; c � C, and hence, employingabstractness, Th(c) <vT Th(b). Since B is complete, B = Th(b) and therefore,B 62 Min6vT (Ctg(A) \ CT ), a contradiction.4. v sound , Mod(T ) = MinvT (M)) 8A (Mod(A) � Mod(T ), Mod(A) � MinvT (M)), 8A (A 2 Ctg(T ), A 2 Min6vT (Ctg(?))), Ctg(T ) = Min6vT (T ), 6v sound.In going from the second line to the third, we use lemma 13.5. 6v is stoppered: Suppose B 2 Ctg(A). We want a C 2 Min6vT (Ctg(A)) withC 6vT B. Put C = Th(#vTMod(B) \ MinvT (Mod(A))). C is satis�able because#vTMod(B) \MinvT (Mod(A)) 6= ?. The fact that C 6vT B follows easily; to proveC 2 Min6vT (Ctg(A)), use lemma 13. 11



6v elaboration-tolerant: Suppose A;B;C theories with B 2 Min6vT (Ctg(A)) andB � C. We want to prove C 2 Min6vT (Ctg(A)).B 2 Min6vT (Ctg(A)) ^B � C, Mod(B) � MinvT (Mod(A)) ^Mod(C) � Mod(B) (lemma 13)) Mod(C) � MinvT (Mod(A)), C 2 Min6vT (Ctg(A)) (lemma 13):6. Suppose N and A are given as in the de�nition of strong abstractness for 6. Pickm 2 Mod(A). Using the fact that v is strongly abstract, pick n1; n2 with n1 vTm vT n2 and n1; n2 2 N . Then Th(n1) 6vT A 6vT Th(n2), since Th(m) = A. Sincev is abstract, Mod(Th(ni)) � N .7. T � B , B 2Min6T (T ) 6 sound) (T � Th(m), Th(m) 2 Min6T (T )) in particular) (T � Th(m), Th(m) 2 Min6T (CT )) respects complete theories) (m 2 Mod(T ), m 2 Minv6(M)) def. of v68. Let A be a set of sentences, m � A. We require n v6T m with n 2 Minv6T (Mod(A)).Th(m) 2 Ctg(A), so since6 is stoppered we can �nd a satis�ableB 2 Min6T (Ctg(A))withB 6 Th(m). Pick any n � B. By elaboration tolerance, Th(n) 2 Min6T (Ctg(A)).Moreover, since Mod(Th(n)) � Mod(B) we have Mod(B) = Mod(Th(n))[Mod(B).Using this fact and B 6T Th(m), split Mod(Th(m)) into two subsets, Mod(A1)and Mod(A2) with Th(n) 6T A1. But A1 is either Th(m) or L, since Th(m) iscomplete. The latter situation is impossible because of the case I = ? of split,and so we have Th(n) 6T Th(m), i.e. n v6T m. A similar argument shows thatn 2 Minv6T (Mod(A)).9. Suppose m;n 2M such that Th(m) = Th(n). Then Th(m) 6T Th(n) (re
exivity),so m v6T n.10. If m 2 Mod(Th(N)), then Mod(Th(m)) � Mod(Th(N)). Pick B1; B2 by strongabstractness of 6. Pick n1; n2 in Mod(B1);Mod(B2) respectively. Then ni 2 N andTh(ni) = Bi, each i, so n1 v6T m v6T n2. 25 Composing the de�nitionsIn this section we look at whether the diagram given in the introduction commutes. Firstwe consider a round trip: suppose we begin with a preference relation, calculate theverisimilitude relation according to de�nition 7, and return to a preference relation viade�nition 8. Intuitively we expect to arrive back at the same preference relation, sincethe verisimilitude relation contains much more structure than a preference relation. Averisimilitude relation contains information about partial, incomplete situations whereasa preference relation just orders (total) models. Going from v to 6 freely generates aparticular `canonical' ordering of theories, which from the point of view of v contains alot of redundancy. Going the other way forgets this extra structure.Indeed, it is su�cient to impose the relatively benign condition of abstractness on vin order to guarantee that the round trip preserves the preference relation.12



Proposition 15 If v is abstract, v6v = v.Proof m v6vT n , Th(m) 6vT Th(n), 8m0 � Th(m) 9n0 � Th(n) m0 vT n0 ^8n0 � Th(n) 9m0 � Th(m) m0 vT n0:From the Introduction, m0 � Th(m) implies Th(m0) = Th(m), which, since v is abstract,means that m0 vT n0 i� m vT n0. By a similar argument, this reduces to m vT n, andthe result is proved. 2The other round-trip is less well-behaved. If we go from a verisimilitude relation toa preference relation and then back again, there is no guarantee that we will recoverthe original verisimilitude relation. The intuitive reason has already been stated: theverisimilitude relation contains a lot of structure, which is jettisoned by de�nition 8 andthen a canonical version of which is freely generated by de�nition 7. However, we shouldexpect that the round-trip will preserve the relation for complete theories.Proposition 16 If A;B are complete and consistent theories and 6 is abstract, A 6v6T Bi� A 6T B.Proof Since 6 is abstract, so is v6. Since A is complete and consistent, it is equal toTh(m) for some m (indeed, any m 2 Mod(A)). Similarly, B = Th(n) for some n.A 6v6T B , 8m0 � Th(m) 9n0 � Th(n) m0 v6T n0^ 8n0 � Th(n) 9m0 � Th(m) m0 v6T n0, m v6T n, Th(m) 6T Th(n), A 6T BThe reasoning from the second formulation to the third uses the fact that v6 is abstractin a similar way to the proof of the previous proposition. 2We may formulate some conditions on 6 which will guarantee that the round-trip viaa preference will return exactly the same verisimilitude relation. These conditions arerather strong, forcing 6 to order incomplete situations in a way compatible with the wayit orders complete ones. This is the role of the conditions split and join in the followingproposition. The requirement of strong abstractness is there for the technical reason thatit guarantees that certain sets are closed.Proposition 17 If 6 is strongly abstract and satis�es split and join, then 6v6 = 6.Proof Note that v6 is strongly abstract (proposition 14(6)) and therefore it is ab-stract and preserves closed sets (3). We want to show A 6T B i�: 8a 2 Mod(A) 9b 2Mod(B) Th(a) 6T Th(b) and 8b 2 Mod(B) 9a 2 Mod(A) Th(a) 6T Th(b).13



(: Let I be the disjoint union of Mod(A) and Mod(B). If i is some a in Mod(A),let Ai = Th(a) and Bi = Th(b) where b is the b which comes from a using theRHS. Similarly, if i is some b in Mod(B), let Bi = Th(b) and Ai = Th(a) wherea is the a which comes from b using the RHS. Then Mod(A) = Si2I Mod(Ai) andMod(B) = Si2I Mod(Bi) and Ai 6T Bi, so by join A 6T B.): We have A 6T B, and want to show the RHS. For the �rst part of the RHS: wesuppose a 2Mod(A), and want to �nd b 2 Mod(B) with Th(a) 6T Th(b).Consider Mod(B) = Sn2Mod(B)fng; by split, �nd the family fAn j n 2 Mod(B)gwhich covers A, i.e. Mod(A) = Sn2Mod(B)Mod(An). Since a 2 Mod(A), pick b suchthat a 2 Mod(Ab). By the use of split we have Ab 6T Th(b).Now use split again, this time writing Mod(Ab) = Sm2Mod(Ab)fmg, to �nd the familyfBmg such that Mod(Th(b)) = Sm2Mod(Ab)Mod(Bm) and for each m 2 Mod(Ab),we have Th(m) 6T Bm. In particular, Th(a) 6T Ba. But each such Bm is equaleither to Th(b) or to L, since Mod(Bm) is a subset of the models of Th(b) all ofwhich are satisfaction-equivalent. Thus, either Th(a) 6T Th(b) or Th(a) 6T L.The latter case is ruled out by the special case I = ? of split, so we are left withTh(a) 6T Th(b).The second part of the RHS is similar. 2Finally, we ask: when do �6 and �v coincide? This is the other aspect of the questionof whether the diagram commutes.Proposition 18 If v is stoppered and preserves closed sets then �v = �6v .Proof We show that MinvT (Mod( )) � Mod(�) i� Min6T (Ctg( )) � Ctg(�).): Suppose C 2 Min6T (Ctg( )). We need to prove C 2 Ctg(�). By lemma 13, Mod(C) �MinvT (Mod( )), so Mod(C) � Mod(�), so C 2 Ctg(�).(: Suppose N � MinvT (Mod( )). We need to prove N � Mod(�). Let B = Th(N).Then, using the fact that MinvT (Mod( )) is closed, Mod(B) � MinvT (Mod( )), so bylemma 13, B 2 Min6T (Ctg(A)). Therefore B 2 Ctg(�), so N = Mod(B) � Mod(�). 2The conditions required for this proposition are relatively weak, as one might expect,in view of the fact that verisimilitude relations potentially contain more information thanpreference relations, but those verisimilitude relations which are generated from a prefer-ence relation do not contain any surprises. The conditions required in the next propositionare stronger, because we have to constrain the verisimilitude relation more.Proposition 19 If 6 respects complete theories and is elaboration-tolerant then �6 =�v6 .Proof It is su�cient to prove that Min6T ( ) � Ctg(�) i� Min6T (Ctg( ) \ CT ) �Ctg(�) \ CT .): This follows easily from the fact that 6 respects complete theories.(: Suppose C 2 Min6T (Ctg( )). We want to prove that Mod(C) � Mod(B). Takem � C. By the fact that 6 is elaboration-tolerant, Th(m) 2 Min6T (Ctg(A)); so Th(m) 2Ctg(B), i.e. m � B. 214



6 Conclusions and outlookWe have given an intuitive de�nition of belief revision in terms of verisimilitude, and shownclose connections between the preferential models approach to belief revision and thepower-ordering approach to verisimilitude. The connection may be succinctly summarisedas follows.Preference relations order models according to how close they are to some given the-ory, while verisimilitude relations order theories according to the same criterion. We haveshown how to extract a verisimilitude relation from a preference relation and vice-versa,and have shown su�cient conditions to prove that the notions are inter-de�nable. In gen-eral, verisimilitude relations contain more information than preference relations, becausethey say how to order partial theories as well as total models. Moving from a verisimili-tude relation to a preference relation discards this extra information, while moving in theopposite direction freely generates a canonical version of it.Further work will complete the triangle of section 1 by �nding de�nitions of a preferencerelation and verisimilitude relation in terms of an arbitrary belief revision operator. Ofcourse, a de�nition of v in terms of � already exists in the literature, by going via the non-monotonic inference operator j� and using the representation theorems of [5] and others.Therefore, we can also construct 6 by applying de�nition 7; but more likely, there is amore interesting way of constructing 6 directly from � which exploits the extra freedomof a verisimilitude relation.Acknowledgements. The �rst author is grateful to Chris Brink and the other organis-ers for their invitation to the UNISA/UCT Verisimilitude Workshop (7-11 February 1994,Pretoria, South Africa) during which he began working on these ideas. Both authors aregrateful to Sjoerd Zwart and to an anonymous referee for their comments.This work is related to the authors' participation in the Esprit WG ModelAge, and the�rst author's participation in the Esprit WG IS-CORE and the Portuguese JNICT projectJURAD. We acknowledge our colleagues in those projects for interesting discussions andthe funding agencies for �nancial assistance.References[1] C. Brink. Verisimilitude: Views and reviews. History and Philosophy of Logic, 10:181{201, 1989.[2] C. Brink and J. Heidema. A verisimilar ordering of theories based in a propositionallanguage. The British Journal for the Philosophy of Science, 38:533{549, 1987.[3] A. Fuhrmann and M. Morreau, editors. The Logic of Theory Change, number 465 inLecture Notes in Arti�cial Intelligence. Springer Verlag, 1991.[4] P. G�ardenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States. MITPress, 1988.[5] S. Kraus, D. Lehmann, and M. Magidor. Non-monotonic reasoning, preferentialmodels and cumulative logics. Arti�cial Intelligence, 44:167{207, 1990.15
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