Privacy-supporting cloud-based conference systems: protocol and verification

Myrto Arapinis, Sergiu Bursuc, Mark Ryan

School of Computer Science, University of Birmingham

Security of cloud computing

Does user have to trust the service provider?

- Confidentiality
- ← main issue

- Integrity
- Availability

EasyChair: the little Facebook

Year	#confs
2002	2
2003	3
2004	7
2005	66
2006	276
2007	629
2008	1312
2009	2183
2010	3306
2011	>3690
2012	>161
2013	>5

EasyChair data about Mark Ryan, 2005-2011

Reviewed papers by A.Gordon (CSF'11), D.Ghica (FCS'11), G.Steel (ESORICS'10), M.Fisher (FM'10), P.Panagaden (LICS'09), and others. Recommended *reject* for all of them.

Had papers reviewed by S.Kremer (S&P'10), A.Martin (TRUST'09), M.Huth (POPL'08), J.Fiadeiro (CAV'09), etc. They all recommended *accept*.

EasyChair data about Mark Ryan, 2005-2011

Reviewed papers by A.Gordon (CSF'11), D.Ghica (FCS'11), G.Steel (ESORICS'10), M.Fisher (FM'10), P.Panagaden (LICS'09), and others. Recommended *reject* for all of them.

Had papers reviewed by S.Kremer (S&P'10), A.Martin (TRUST'09), M.Huth (POPL'08), J.Fiadeiro (CAV'09), etc. They all recommended *accept*.

25	number of papers submitted	
17	number of papers accepted	
0.68	Acceptance rate	
107	number of papers reviewed	
24	number of times recommended accept	
28%	Recomendation agr. w. outcome	

EasyChair data about Mark Ryan, 2005-2011

Reviewed papers by A.Gordon (CSF'11), D.Ghica (FCS'11), G.Steel (ESORICS'10), M.Fisher (FM'10), P.Panagaden (LICS'09), and others. Recommended *reject* for all of them.

Had papers reviewed by S.Kremer (S&P'10), A.Martin (TRUST'09), M.Huth (POPL'08), J.Fiadeiro (CAV'09), etc. They all recommended *accept*.

25	number of papers submitted	
17	number of papers accepted	
0.68	Acceptance rate	
107	number of papers reviewed	
24	number of times recommended accept	
28%	Recomendation agr. w. outcome	
0.2	Probability CSF 2012 re-invites him	
$2^{-11.2}$	Prob. will win ACM Turing award	

Formal verification

Formal model

Term algebra $\mathcal{T}(\Sigma, \mathcal{N} \cup \mathcal{X})$

Process calculus ProVerif [Blanchet'2001]

$$P, Q, R := 0$$

$$P \mid Q$$

$$!P$$

$$\text{new } n; P$$

$$\text{let } M = D \text{ in } P \text{ else } Q$$

$$\text{in}(c, M); P$$

$$\text{out}(c, M); P$$

Operational semantics

Term rewriting

Process reduction

```
out(c, M).P \mid \text{in}(c, x).Q \rightarrow P \mid Q\{M/x\}
let M = D in P else Q \rightarrow P\sigma, if D \Downarrow N \& \sigma = \mu(M, N)
let M = D in P else Q \rightarrow Q, otherwise
```

Observational equivalence

Observation $P \Downarrow c$:

$$\exists C[_] \exists Q, \exists M. \quad P \rightarrow^* C[\text{out}(c, M).Q]$$

Largest equivalence relation s.t. $P \sim Q$ implies

- 1. $P \Downarrow c \implies Q \Downarrow c$
- $2. \quad P \to^* P' \quad \Longrightarrow \quad \exists \, Q'. \ Q \to^* \, Q' \, \& \, \, P' \sim \, Q'$
- 3. $\forall C[_]$. $C[P] \sim C[Q]$

Secrecy in conference systems

Papers:
$$P_{conf} \sim P_{conf}^{\mathbf{P}}[-]$$

Reviews:
$$P_{conf} \sim P_{conf}^{R}[-]$$

- Secrecy of papers: $P_{\text{conf}}^{\mathbf{P}}[\text{pap}] \sim P_{\text{conf}}^{\mathbf{P}}[\text{pap'}]$
- Secrecy of reviews: $P_{\text{conf}}^{\mathbf{R}}[\text{rev}] \sim P_{\text{conf}}^{\mathbf{R}}[\text{rev'}]$

Unlinkability in conference systems

Author-Score:

$$P_{\text{conf}}^{\text{AS}}(\mathsf{a},\mathsf{one})|P_{\text{conf}}^{\text{AS}}(\mathsf{b},\mathsf{two}) \sim P_{\text{conf}}^{\text{AS}}(\mathsf{a},\mathsf{two})|P_{\text{conf}}^{\text{AS}}(\mathsf{b},\mathsf{one})$$

Reviewer-Score:

$$P_{\mathsf{conf}}^{\mathsf{RS}}(\mathsf{ra},\mathsf{one})|P_{\mathsf{conf}}^{\mathsf{RS}}(\mathsf{rb},\mathsf{two}) \sim P_{\mathsf{conf}}^{\mathsf{RS}}(\mathsf{ra},\mathsf{two})|P_{\mathsf{conf}}^{\mathsf{RS}}(\mathsf{rb},\mathsf{one})$$

Author-Reviewer:

$$P_{\mathsf{conf}}^{\mathsf{AR}}(\mathsf{a},\mathsf{ra})|P_{\mathsf{conf}}^{\mathsf{AR}}(\mathsf{b},\mathsf{rb}) \sim P_{\mathsf{conf}}^{\mathsf{AR}}(\mathsf{a},\mathsf{rb})|P_{\mathsf{conf}}^{\mathsf{AR}}(\mathsf{b},\mathsf{ra})$$

Conclusions

"ToughChair"

- C does not know p and r
- C knows A, R, and s, but
 - does not know the link $A \longleftrightarrow s$
 - does not know the link $R \longleftrightarrow s$
 - does not know the link $A \longleftrightarrow R$

Formalising the properties, and verifying them.

Implementation by Matt Roberts and Joshua Phillips

toughchair.markryan.eu

The future

- A more systematic way to formalise the properties
- More cloud computing examples