Peer-to-Peer: Trust and Security

Tien Tuan Anh Dinh
School of Computer Science
The University of Birmingham
UK

November 2009
P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Introduction

Definition

1. *Autonomous*
2. *Allow heterogeneity*
3. *Most traffic is among peers*

Why P2P?

P2P vs. Client-Server:

- Scalability
- No single point of failure
Introduction

Types of P2P

Unstructured:
- Broadcast, undeterministic search
- Example: Limewire, KaZaa, Bittorrent, etc ...

Structured:
- Deterministic, efficient search
- Example: Chord, DHT-based Bittorrent, StormNet, etc ...
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
1st Generation - Napster

- Search done by the index server
- Easy to take down
2nd Generation - Gnutella

- Example: Limewire, KaZaa, eDonkey
- Search by flooding, *undeterministic*
- More scalable, no single point of failure
3rd Generation - Bittorrent

- Peers organized into *independent* swarms
- Tracker server acts as index server for the swarm
- Search (for tracker server) assumed to be off-line
- *Tit-for-tat* improves cooperation (download speed, for instance)
Summary

Characteristics of Unstructured P2P

- Nodes could connect to any peer
 - Network topology: random
 - Frequent joining and leaving would not affect the network
- Search (if applicable) is done via flooding:
 - Undeterministic
 - Not scalable.
Outline

P2P Systems
- Unstructured P2P
- Structured P2P

Security in P2P
- P2P Abstraction
- Attacks
- Other Challenges
- Summary

Trust As a Solution
- Trust in Society
- Trust in P2P
- Summary

Conclusion
Overview

Motivation

To address the search problem in unstructured P2P:

- Deterministic
- Scalable

The trade-off

- Exact-match search
- Rigid network topology is maintained, hence the name *structured*
- Frequent joining and leaving incur great overhead
Chord - a Simple Structured P2P Network

- So-called *Distributed Hash Table*: `lookup(key)`
- Nodes \((n_1, n_2, \ldots)\) and data objects \((d_1, d_2, \ldots)\) hashed to the same identifier space
Chord - a Simple Structured P2P Network

- The ID space wraps around to make a ring
- Every peer connects to ones on its left and right
- Data objects stored at peer right in front of them (clock-wise)
- Routing table: O(logN) neighbors, neighbor i^{th} is at a distance of at least 2^i away
- lookup(key) returns in $\frac{1}{2} \cdot \log_2 N$
Real Implementations - Trackerless Bittorrent

- Ordinary peers run tracker servers
- Organized into a structured P2P network
- $\text{lookup}(\text{key})$ returns the peer running tracker for the file, whose name hashed to key
Real Implementations - Botnet (StormNet)

- At time interval t, bot master upload control C_t with a key K_t
- Bots know how to generate K_t, contact another bot P using $\text{lookup}(K_t)$
- Download and run C_t
Real Implementation - VoIP and Windows 7

- Machines (with Windows 7) or VoIP clients given unique names
- Users publish their connection details to the structured P2P network (cloud), using the given names
- Names are used as DNS addresses
Summary

1. Structured P2P supports deterministic, efficient exact-match search
2. Scalable, with several practical implementations
3. Not robust under high churn
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
P2P Abstraction

- Routing: deliver messages to destination
- Application interface: publish(k, data)
- Application: specific requirements, depending on the application
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Attacks at Different Layers

At the Internet Layer

- Common attacks on Confidentiality, Integrity and Availability
Attacks at Different Layers

At the Routing Layer

- No routing, redirection
- Impersonate as destination, tamper with search queries
Attacks at Different Layers

At the Application Interface Layer

- Drop keys instead of storing them
- Tamper with data
At the Application Layer

Application specific:
- Censorship, data corruption
- DoS
- etc ...
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Sybil Attacks

The Attack

- Adversary obtains multiple identities, i.e. control multiple peers
- Amplify impact of other attacks
- Why?: no identity management, arbitrary number of Sybils could be introduced
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Summary

- P2P systems inherit security issues from the Internet layer
- P2P systems have specific security threats at all level of abstractions
- Challenging, because:
 - Nodes do not have global views of the network
 - No identity management, therefore subject to Sybil attacks
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Outline

P2P Systems
- Unstructured P2P
- Structured P2P

Security in P2P
- P2P Abstraction
- Attacks
- Other Challenges
- Summary

Trust As a Solution
- Trust in Society
- Trust in P2P
- Summary

Conclusion
Trust

Overview

- Trust is one of the things that make our society works
- Studied extensively in social sciences: sociology, psychology, economics, politics, etc...

Definition

A trusts B regarding a task T means A believes that:

1. B has the right intention towards A
2. B is competent to perform T

Note: trust is subjective
Trust, Distrust, Trustworthiness and Reputation

Trust and Distrust

- Not two ends of the same spectrum
- *(low trust, low distrust)* - casual relationship; *(low trust, high distrust)*; *(high trust, low distrust)*; *(high trust, high distrust)* - trust but verify
- Different emotions:
 - *trust* - docile zoo elephant munching on hay
 - *distrust* - raging wild bull elephant protecting the herd (McKnight et al.)
Trust, Distrust, Trustworthiness and Reputation

Trust, Trustworthiness, Reputation

- *Trust* - verb
- *Trustworthiness* - noun, constitutes trust
- In general:
 \[\text{Trustworthiness} \rightarrow \text{Trust} \]
- *Reputation*, cultural, physical, institutional factors constitute *trustworthiness*. With high probability:
 \[\text{Reputation} \rightarrow \text{Trustworthiness} \]
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Soft Security

Had we had trust in P2P systems

• Peer only interacts with ones it trusts
• Badly behaved ones or adversaries are detected and eliminated from the network
• Encourage cooperation among peers
How to Compute Trustworthiness

Reputation

- **Why?**: other factors constituting trustworthiness are not available in P2P settings
- **How**:
 - *Feedback* for peer i, \(F_i \) is gathered
 - *Reputation Metric*: function applied over feedback, returns reputation scores:
 \[
 R_i = m_i \left(\bigcup_{j} F_j \right)
 \]
 - Simple metric: summing up all feedback for \(i \):
 \[
 R_i = \sum_{f \in F_i} f
 \]
 - but vulnerable to manipulation
How to Compute Trustworthiness

PageRank as a Reputation Metric

- Trust graph G: P_i has link to P_j if P_i trusts P_j
- PageRank values computed on G returns *importance* scores for all nodes
- A peer with high PageRank score has high reputation, as being trusted by other nodes with high reputation
- Effective, robust against manipulation
Reputation Using Trusted Services

Problems with Feedback

- How to incentivize peers to give feedback?
- How can a peer distinguish good and bad behavior in order to give feedback?
 - For example: in structured P2P, how to tell if a peer P really is the destination for search key k?
Reputation Using Trusted Services

Trusted Services

- Addresses the second question
- *Trusted service*: whose failure can break security properties *vs.* *trustworthy service*: will not break
- *Centralized service*: stores configuration of the network and answers queries about neighbor information
- *TPMs and other hardware-based security modules*:
 - Using features: *monotonic counters, signing, transport session, attestation*
 - Generate neighbor certificates everytime nodes join or leave
 - If P claims to be destination for key k, check P’s certificates.
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Summary

Trust As a Solution

• Peers can interact with ones they trust, therefore eliminate bad/adversarial ones

• Notion of trust has been studied extensively in social sciences, and recently in computer science (reputation)

• Trust can be established using reputation: computed using reputation metrics over feedback

Implementing Trust Systems

Trust System

<table>
<thead>
<tr>
<th>Trust Model</th>
<th>Trust Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback definition</td>
<td>Storage and computation</td>
</tr>
<tr>
<td>Reputation metric</td>
<td>Feedback mechanism</td>
</tr>
</tbody>
</table>
Outline

P2P Systems
 Unstructured P2P
 Structured P2P

Security in P2P
 P2P Abstraction
 Attacks
 Other Challenges
 Summary

Trust As a Solution
 Trust in Society
 Trust in P2P
 Summary

Conclusion
Conclusion

- P2P is not only about file-sharing
- Structured P2P is more scalable and could be used for very large scale applications
- P2P systems, especially based on structured P2P overlays are subject to wide range of security attacks
- Made worse by Sybil attacks
- Notion of trust offers a solution to eliminate such attacks
- Computable reputation can be used as a good indicator of trust
- Still many questions to be addressed before implementing a full trust-based infrastructure for P2P