Anonymous Systems

Today’s Lecture

• Theoretical anonymity.
 – Dining Cryptographers Protocol
 – Definitions of Anonymity
 – The Crowds protocol
 – Mixes
 – Onion Routing
• Practical anonymous systems
 – Tor system
 – Mixminon
 – MUTE
 – Freenet

“The Internet nobody knows you’re a dog”

The Theory of Anonymity

“On the Internet nobody knows you’re a dog”

Anonymity means different things to different users.

The right definitions are key to understand any system.

You have zero privacy anyway, get over it”
Scott McNealy, CEO of SUN Microsystems.

The Theory of Anonymity

• Anonymity is a difficult notion to define.
 – Systems have multiple agents
 – which have different views of the system
 – and wish to hide different actions
 – to variable levels.

• Sometimes you just want some doubt,
sometimes you want to act unseen.

The Theory of Anonymity

• In a system of anonymous communication you can be:
 – A sender
 – A receive / responder
 – A helpful node in the system
 – An outsider (who may see all or just some of the communications).
• We might want anonymity for any of these, from any of these.
Example: Anonymous File-Sharing

One node sends a request for a file (sender).
Other nodes receive this request (the nodes).
Maybe one of the nodes replies with a file (receiver/responder).
The attacker may be any of these or an outside observer.

Example: Anonymous File-Sharing

• The user may wish to hide
 – that they are offering files
 – that they are taking part in data transfer
 – that they are running the software at all.
• The user may want to have plausible deniability or go complete unnoticed.

Levels of Anonymity

Reiter and Rubin provide the classification:

• **Beyond suspicion**: the user appears no more likely to have acted than any other.
• **Probable innocence**: the user appears no more likely to have acted than to not to have.
• **Possible innocence**: there is a nontrivial probability that it was not the user.

Beyond suspicion

• A is Beyond suspicion:

<table>
<thead>
<tr>
<th>Users</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Beyond suspicion

• A is not Beyond Suspicion:

<table>
<thead>
<tr>
<th>Users</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Probable Innocence

• A is Probably Innocence

<table>
<thead>
<tr>
<th>Users</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Probable Innocence

• A is Probably Innocence

<table>
<thead>
<tr>
<th>Users</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Probable Innocence
• A is Probably Innocence

Summary: The Theory of Anonymity
• There are many agents in a system each of which have different views.
• There are a number of different actions.
• We need to define the level of anonymity an user has when performing a certain action, given the attacker’s view of the system.

Outline of Talk
• The theory of anonymity.
• Designs for anonymity.
• Real Anonymous Systems.
The Dining Cryptographers Protocol

- Nodes form a ring
- Each adjacent pair picks a random number
- Each node broadcasts the sum (xor) of the adjacent numbers
- The user who wants to send a message also adds the message
- The total sum (xor) is:
 \[r_1 + r_2 + r_2 + r_3 + r_3 + r_4 + r_4 + r_5 + r_5 + r_1 + m = m \]

- It's impossible to tell who added m.
- Beyond suspicion even to a global attacker.
- Very inefficient: everyone must send the same amount of data as the real sender.

Crowds

- A crowd is a group of n nodes
- The initiator selects randomly a node (called forwarder) and forwards the request to it
- A forwarder:
 - With prob. 1-p, selects randomly a new node and forwards the request to him
 - With prob. p, sends the request to the server
Crowds
- The sender is beyond suspicion to the server.
- Some of the nodes could be corrupted.
- The initiator could forward the message to a corrupted node.
- The sender has probable innocence to other nodes.

MIXes
- MIXes are proxies that forward messages between them.
- A user contacts a MIX to send a message.
- The MIX waits until it has received a number of messages, then forwards them in different order.
- MIXes are difficult to trace the route of each message.
- Provides beyond suspicion S-R unlinkability even to a global attacker.
- Messages have to be delayed (can be solved with dummy traffic).
- More complicated when sending series of packets.

Onion Routing
- Messages are routed through a number of nodes called Core Onion Routers (COR).
- The initiator selects the whole route and encrypts the message with all keys in reverse order.
- Each node unwraps a layer (onion) and forwards the message to the next one.
- Each node only learns the next one in the path.
- Can be used together with MIXing.
- End-users can run their own COR – Better anonymity
- or use an existing one – More efficient
- User’s identity is revealed to the COR.

Multi-casting
- Broadcast the message to the whole network.
- Provides beyond suspicion for the receiver.
- No anonymity for the sender.
- Multicasting is a good technique for broadcasting messages.
- but very inefficient to send just one message.
Spoofed UDP
- IP packets on the Internet contain the IP address of the sender.
- This address is not used by routers, only by higher-level protocols such as TCP.
- UDP does not use this address.
- A random address can be used instead to provide sender anonymity.
- Method prohibited by many ISPs.

Outline of Talk
- The theory of anonymity.
- Designs for anonymity.
- Real Anonymous Systems.

The Anonymizer
An Internet connection reveals your IP number.
The Anonymizer promise "Anonymity"
Connection made via The Anonymizer.
The Server see only the Anonymizer.

The Anonymizer
The sender is *Beyond Suspicion* to the server.
The server knows The Anonymizer is being used.
If there is enough other traffic, you are *Probably Innocence* to a global observer.
The global observer knows you are using the "The Anonymizer"
There is no anonymity to the "The Anonymizer"

The Anonymizer
- From the small print:
 - … we disclose personal information only in the good faith belief that we are required to do so by law, or that doing so is *reasonably necessary* …
 - … Note to European Customers: The information you provide us will be transferred outside the European Economic Area

Tor
- Tor is an anonymous transport layer.
- It does not implement a file-sharing but file-sharing software can be run on top of it.
- Tor implements onion routing without MIXes.
- It's possible that a program run on top of Tor will reveal its IP address.
Tor does not provide security

- In 2007 Dan Egerstad set up his own Tor exit node and monitored all the traffic.
- He found unencrypted e-mail traffic including passwords from
 - foreign ministry of Iran,
 - Kazakh and Indian embassies in the U.S.
 - Russian embassy in Sweden.
- He got arrested for this.

Mixminon

- Mixminon is an anonymous e-mail system.
- It considers a network of nodes that MIX messages before forwarding them as e-mail.
- It uses onion routing and mixes traffic.

Anonymous File Sharing MUTE

- MUTE removes the IP address from the file exchange.
- Peers only know the IP address of their direct neighbors.
- Peers choose random “pseudo ID”.
- Files are not sent directly between peers. Instead files are sent via a number of peers.
- MUTE uses a version of the “Ants” ad-hoc routing protocol.

MUTE: Search

The search takes place as before, but this time the message uses its pseudo ID as the “from ID”.

Each peer builds a routing table by records the ID and the connection.

A probabilistic time-to-live counter limits the search.
MUTE: Reply

If B wants to reply it sends a message to A’s pseudo ID.

This message is routed using the ad-hoc routing table.

The route to B is also recorded.

Anonymity Provided by MUTE

• MUTE makes it hard to link the IP address of a peer with its pseudo ID.
• Peers only know the ID address's of their direct neighbours.
• The network should provide enough cover to let a neighbour deny using a particular ID.
• If an attacker can completely surround a peer it looses anonymity.

Freenet

• Freenet is an “anonymous publishing system”.
• Anyone can publish by sending to a node.
• Search method similar to MUTE but only use a single search message.
• Based on “Distributed Hash Table”.

Outline of Talk

• The theory of anonymity.
• Designs for anonymity.
• Real Anonymous Systems.

Questions?