A Practical Secret Voting Scheme for Large Scale Elections

Atsushi Fujioka Tatsuaki Okamoto Kazuo Ohta

NTT Laboratories
Nippon Telegraph and Telephone Corporation
1-235 Shonan-ku, Yokosuka-shi, Kanagawa-ken, 239-03 Japan

Abstract. This paper proposes a practical secret voting scheme for large-scale elections. The participants of the scheme are voters, an administrator, and a counter. The scheme ensures the privacy of the voters even if both the administrator and the counter conspire, and realizes voting fairness, i.e., no one can know even intermediate result of the voting. Furthermore fraud by either the voter or the administrator is prohibited.

1 Introduction

Secret voting schemes have been proposed by many researchers from both the theoretical and practical points of view.

In the scheme using the multi-party protocol [GMW87, BGW88, CDD88], all procedures are managed by just the voters, however, it takes many communication acts to prove that all acts were performed correctly. Therefore, this approach is interesting theoretically, but is impractical. A practical secret voting scheme requires additional participants, e.g., a trusted center or an administrator.

There are two types of this approach: one is the voter sends the ballot in an encrypted form and the other is voter sends the ballot through an anonymous communication channel.

The first type have been proposed by Benaloh (Cohen et al.) and Iversen [CF85, Bv96, Iv91], and their schemes utilize the higher degree residue encryption technique. The scheme in [CF85] needs distributed centers to protect voting privacy, however, the voter must prove that the distributed ballot is valid, so all voting must be done at the same time. Iversen [Iv91] evades this problem by using the technique proposed to realize electronic money [CFN90]. However, the essential drawback of this approach is that if all centers conspire, the privacy of voters is violated. Moreover, these schemes are less practical for large scale elections, since it takes a lot of communication and computation overhead when the number of voters is large.

As a scheme of the second type, Chaum proposed a voting scheme that used an anonymous communication channel, and it provides unconditionally security against tracing the voting [Ch88b]. Independently Ohta proposed a practical secret voting scheme using only one administrator in similar manner [Oh88]. These schemes are more suitable for large scale elections, since the communication and computation overheads are reasonable even if the number of voters is large.

However, both and privacy. As the i.e., the center k vote the voting by s is violated, when a claims it by showing
Recently, Anawal lem [AM91]. This the administrator, problem [Sa92] TI and voting is limit
Therefore, no j which is suitable for the privacy and fail
This paper sol voting scheme whi and fairness problem of the voters even i fairness, i.e., no one and fraud by either the
Section 2 defn Section 3, a pract proposed scheme is

2 Security o

In this paper, we following definition

Definition 1. We following:

- Completeness
- Soundness
- Privacy
- Unbreakability
- Eligibility
- Fairness
- Verifiability ...

3 Proposed

3.1 Model of I

Our model consist be replaced with cate through an a
However, both schemes have the same drawbacks: the problems of fairness and privacy. As the fairness problem, these schemes don’t ensure voting fairness, i.e., the center knows the intermediate result of opening the ballot, so he can affect the voting by leaking the result. As the privacy problem, voter’s privacy is violated, when a voter notices that his voting was not counted correctly, and claims it by showing his voting.

Recently, Asano et al. proposed a scheme which overcomes the fairness problem [AMI91]. This scheme, unfortunately, is not secure against disruption by the administrator. Subsequently, Sako proposed a scheme to solve the privacy problem [Sa92]. This scheme, however, doesn’t overcome the fairness problem and voting is limited to only yes/no.

Therefore, no practical and secure secret voting scheme has been proposed which is suitable for large scale elections (or based on the second type) and solves the privacy and fairness problems at the same time.

This paper solves these problems: we propose practical and secure secret voting scheme which is suitable for large scale elections and solves the privacy and fairness problems at the same time. That is, our scheme ensures the privacy of the voters even if both the administrator and the counter conspire, and voting fairness, i.e., no one can know even intermediate result of the voting. Furthermore fraud by either the voter or the administrator is prohibited.

Section 2 defines the security needed by a practical secret voting scheme. In Section 3, a practical secret voting scheme is proposed and we prove that the proposed scheme is secure, and we conclude this paper in Section 4.

2 Security of Secret Voting Scheme

In this paper, we discuss the security of the secret voting scheme using the following definition.

Definition 1. We say that the secret voting scheme is secure if we have the following:

- **Completeness** All valid votes are counted correctly.
- **Soundness** The dishonest voter cannot disrupt the voting.
- **Privacy** All votes must be secret.
- **Unreusability** No voter can vote twice.
- **Eligibility** No one who isn’t allowed to vote can vote.
- **Fairness** Nothing must affect the voting.
- **Verifiability** No one can falsify the result of the voting.

3 Proposed Voting Scheme

3.1 Model of Proposed Scheme

Our model consists of voters, an administrator, and a counter (the counter can be replaced with a public board), and the voters and the counter communicate through an anonymous communication channel [Ch81, PB84, Ch88a]. The
scheme requires the bit-commitment scheme [Na80], the ordinary digital signature scheme [DH76], and the blind signature scheme [Ch85].

Every voter has his own ordinary digital signature scheme, and the administrator has blind signature scheme. The counter only creates a list of ballots, and publishes it.

3.2 Notations

In this paper, we use the following notations.

\[\begin{align*}
V_i &: \text{Voter } i \\
A &: \text{Administrator} \\
C &: \text{Counter} \\
\xi(v, k) &: \text{Bit-commitment scheme for message } v \text{ using key } k \\
\sigma_i(m) &: \text{Voter } V_i 's \text{ signature scheme} \\
\sigma_A(m) &: \text{Administrator 's signature scheme} \\
\chi_A(m, r) &: \text{Blinding technique for message } m \text{ and random number } r \\
\delta_A(s, r) &: \text{Retrieving technique of blind signature} \\
ID_i &: \text{Voter } V_i 's \text{ identification} \\
v_i &: \text{Vote of voter } V_i
\end{align*}\]

3.3 Structure of Proposed Scheme

In this subsection, we propose a practical secret voting scheme based on the model described in Subsection 3.1. The proposed scheme is secure in the sense of Definition 1.

First we outline the proposed scheme. The scheme consists of the following stages executed by the voters, the administrator, and the counter.

Preparation: Voter fills in a ballot, makes the message using the blind signature technique to get the administrator's signature, and sends it to the administrator.

Administration: Administrator signs the message in which the voter's ballot is hidden, and returns the signature to the voter.

Voting: The voter gets the ballot signed by administrator, and sends it to the counter anonymously.

Collecting: Counter publishes a list of the received ballots.

Opening: The voter opens his vote by sending his encryption key anonymously.

Counting: Counter counts the voting and announces the result.

Roughly speaking, the voter prepares a ballot, get a administration, and vote anonymously. Administrator gives a administration to an eligible voter, and counter only collects the ballots and published a list.
On the communication between the voter and the administrator, voter gets qualification, and after it, voter acts anonymously. The blinding signature technique provides the separation between the identification and anonymous communication.

Here we explain the scheme in detail.

- **Preparation**
 - Voter V_i selects vote v_i and completes the ballot $x_i = \xi(v_i, k_i)$ using a key k_i randomly chosen.
 - V_i computes the message e_i using blinding technique $e_i = \chi(x_i, r_i)$.
 - V_i signs $s_i = \sigma_i(e_i)$ to e_i and sends (ID_i, e_i, s_i) to administrator.

- **Administration**
 - Administrator A checks that the voter V_i has the right to vote. If V_i doesn’t have the right, A rejects the administration.
 - A checks that V_i has not already applied for a signature. If V_i has already applied, A rejects the administration.
 - A checks the signature s_i of message e_i. If they are valid, then A signs $d_i = \sigma_A(e_i)$ to e_i and sends d_i as A’s certificate to V_i.
 - At the end of the Administration stage, A announces the number of voters who were given the administrator's signature, and publishes a list that contains (ID_i, e_i, s_i).

- **Voting**
 - Voter V_i retrieves the desired signature y_i of the ballot x_i by $y_i = \delta(d_i, r_i)$.
 - V_i checks that y_i is the administrator’s signature of x_i. If the check fails, V_i claims it by showing that (x_i, y_i) is invalid.
 - V_i sends (x_i, y_i) to the counter through the anonymous communication channel.

- **Collecting**
 - Counter C checks the signature y_i of the ballot x_i using the administrator’s verification key. If the check succeeds, C enters (l, x_i, y_i) onto a list with number l.
 - After all voters vote, C publishes the list. (The list can be accessed by all voters.)

Table 1. List of the ballots (in the Collecting stage)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ballot & additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_1, y_1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>l</td>
<td>x_l, y_l</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
• **OPENING**
 - Voter 1 i checks that the number of ballots on list is equal to the number of voters. If the check fails, voters claim this by opening \(r_i \) used in encryption.
 - \(V_i \) checks that his ballot is listed on the list. If his vote is not listed, then \(V_i \) claims this by opening \((x_i, y_i)\), the valid ballot and its signature.
 - \(V_i \) sends key \(k_i \) with number \(i \), i.e., \((i, k_i)\) to \(C \) through an anonymous communication channel.

• **COUNTING**
 - Counter \(C \) opens the commitment of the ballot \(x_i \), retrieves the vote \(v_i \) (or \(C \) adds \(k_i \) and \(v_i \) to the list), and checks that \(v_i \) is valid voting.
 - \(C \) counts the votes and announces the voting results.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ballot & additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x_1, y_1, k_1, v_1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(i)</td>
<td>(x_i, y_i, k_i, v_i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 2. List of the ballots (in the COUNTING stage)

3.4 Security

Theorem 1 (Completeness). If every participant (the voters, the administrator, and the counter) is honest, the result of the voting is trustable.

Sketch of Proof. It is clear.

Theorem 2 (Soundness). Even if a voter intends to disrupt the election, there is no way to do it.

Sketch of Proof. The only way to disrupt the elections is for the voter to keep sending invalid ballots, however, this can be detected in the COUNTING stage. Furthermore, the votes are bound by using the bit-commitment scheme, so the voter cannot change his mind.

Remark. It is possible to assume that the voter sends an illegal key which cannot open the vote. In this situation, there is no way to distinguish between a dishonest voter or a dishonest counter. To prevent this, the voter should send his key to several independent parties, e.g., the candidates of the election, who are assumed not to collaborate.

Theorem 3 (P they cannot det

Sketch of Proof. \(x_i \) is hidden by sent through th communication against tracing.

In addition, counter, he nee In **Voting** voter only show In **OPENING** only show the p So he can c t the voter's priv

Theorem 4 (Un

Sketch of Proof.

Theorem 5 (E

Sketch of Proof.

Theorem 6 (E

Sketch of Proof.

Theorem 7 (V

Sketch of Proof. valid ballot to th
Theorem 3 (Privacy). Even if the administrator and the counter conspire, they cannot detect the relation between vote \(v_i \) and voter \(V_i \).

Sketch of Proof. The relation between the voter's identity \(ID_i \) and the ballot \(z_i \) is hidden by the blind signature scheme. The ballot \(z_i \) and the key \(k_i \) are sent through the anonymous communication channel. So no one can trace the communication and violate the privacy of the voters. It is unconditionally secure against tracing the voting.

In addition, when the voter claim the disruption by the administrator or counter, he need not release his vote \(v_i \).

In Voting stage, when the administrator sends the invalid signature, the voter only show the pair \((x_i, y_i) \) to claim the cheating.

In Opening stage, when the counter doesn't list the voter's ballot, the voter only show the pair \((x_i, y_i) \) to claim the disruption.

So he can claim the disruption with keeping his vote \(v_i \) secret. This ensures the voter's privacy. \(\square \)

Theorem 4 (Unreusability). Assume that no voter can break the blind signature scheme. Then, the voter cannot reuse the right to vote.

Sketch of Proof. To vote twice, voter must have two valid pairs of the ballot and the signature. He can get one signature by right procedure, however, he has to create another pair by himself. This means that he can break the blind signature scheme, and it contradicts the assumption. \(\square \)

Theorem 5 (Eligibility). Assume that no one can break the ordinary digital signature scheme. Then, the dishonest person cannot vote.

Sketch of Proof. In the opposite direction, assume the dishonest person can vote. The administrator checks the list of voters who have the right to vote. So the dishonest person must create a valid pair of the ballot and the signature by himself. This contradicts that no one can break the ordinary digital signature scheme. \(\square \)

Theorem 6 (Fairness). The counting of ballots doesn't affect the voting.

Sketch of Proof. The COUNTING stage is done after the VOTING stage, and the votes are hidden by using the bit-commitment scheme. So it is impossible that the counting of ballots affects the voting. \(\square \)

Theorem 7 (Verifiability). Assume that there is no voter who abstains from the voting and no one can forge the ordinary digital signature scheme. Then, even if the administrator and the counter conspire, they can not change the result of the voting.

Sketch of Proof. It is clear that only disruption is for the counter not to list a valid ballot to the list. However, this disruption can be easily proved by showing
the valid pair of the ballot and the signature by the valid voter. So we only
consider the disruption by the administrator in the following.
If there is no voter who abstains from the voting (i.e., he sends a ballot even
if he abstains), there is no way for the administrator to dummy vote. So only
valid voters can vote, and the result is trustworthy.
If the list overflows, every voter claims that he is an eligible voter and he
was given a valid signature by the administrator. To claim it, the voter open the
number \(r_1 \) which he used in the blinding technique, and requires the adminis-
trator to show his signature. By opening \(r_1 \), the message \(e_1 \) is fixed, so the
signature which the administrator must show is determined. If the administrator
is honest, he can show the signatures for all requests. However, when he dummy
voted, there remains the ballots which were not shown the signature because he
cannot forge the digital signature scheme. The fraud is detected here.

\[\square \]

Remark. The following procedure is followed after the Administration stage:
if fraud by the administrator or counter is proved by one or more voters, First, the
usual voting protocol is followed and disputed votes are omitted. If the number
of omitted votes changes the result, the voting process is invalidated and is
restarted. If the number of omitted votes fails to change the result, the voting
process is accepted. In any case, the fraudulent party should be appropriately
punished.

4 Conclusion

This paper proposed a practical secret voting scheme for large scale elections.
The scheme ensures the privacy of the voters and prevents any disruption by
voters or the administrator. Furthermore, voting fairness is ensured.

Acknowledgement

The authors would like to thank Choonik Park for pointing out the illegal
key problem. We would also like to thank Kazue Sako, Tsutomu Matsumoto,
and Tomoyuki Asano for their valuable comments about the dishonesty of the
administrator and the counter.

References

Symposium on Cryptography and Information Security, SCIS91-12A (Feb.,

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation”, Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, pp.1-10
(May, 1988).
So we only a ballot even vote. So only voter and he ter open the administra-fixed, so the finminister t he dummy t because he a.

ATION stage w. First, the the number ated and is t the voting appropria
e elections.

the illegal hatsumoto, esty of the

chymes for of the 1991 -12A (Feb.,

Theorems 1, Proceeding, pp.1-

