-- Martin Escardo, 7th August 2015.

module description where

open import preliminaries
open import prop
open import proptrunc
open import logic 

-- First we need a Prp-valued equality to be able to define ∃!:

infix 34 _≡[_]_

_≡[_]_ : {i : L} {X : U i}  X  isSet X  X  Prp i
x ≡[ s ] y =  x  y , s 

∃! : {i : L} {X : U i}  isSet X  (X  Prp i)  Prp i
∃! s p = (∃̇ p)  ∀̇ \x  ∀̇ \y  p x  p y  x ≡[ s ] y

description : {i : L} (X : U i) (s : isSet X) (p : X  Prp i) 
             (∃! s p) holds  Σ \(x : X)  p x holds 
description {i} X s p eu = ∥∥-rec h  x  x) e
 where
  P : X  U i
  P x = p x holds
  e : (Σ \(x : X)  P x) 
  e = ∧-elim-L {i} {∃̇ p} {∀̇ \x  ∀̇ \y  p x  p y  x ≡[ s ] y} eu 
  u : (x y : X)  P x  P y  x  y
  u = ∧-elim-R {i} {∃̇ p} {∀̇ \x  ∀̇ \y  p x  p y  x ≡[ s ] y} eu
  h : isProp(Σ \(x : X)  P x)
  h (x , r) (y , s) = Σ-≡ (u x y r s) (holdsIsProp (p y) (transport P (u x y r s) r) s)