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Abstract
Ripple Down Rules (RDR) is a knowledge acquisition method which
constrains the interactions between the expert and a shell to acquire only
correct knowledge.  Although RDR works well, it is only suitable for the
problem of providing a single classification for a set of data.  Multiple
Classification Ripple Down Rules (MCRDR) is an extension of RDR which
allows multiple independent classifications.  The approach has been
evaluated in simulation studies where the human expert is replaced by a
simulated expert.  MCRDR may provide a basis for building a general
problem solver for a range of problems beyond classification.

1. Introduction
In the area of knowledge based systems (KBS), tools to solve problems can be
usually classified into four categories: "Universal programming language",
"General expert system tool", "Problem-specific expert system tool (shell)" and
"domain-specific expert system tool" (Puppe 1993).  These tools can not be
used directly to acquire knowledge.  Acquiring knowledge depends on the
available techniques as understood by a knowledge engineer.  Sometimes the
knowledge acquisition process will result in a problem specific tool being built
by the knowledge engineer for use by the expert (Puerta, Egar et al. 1992).  In
general, acquiring knowledge depends on the availability of the problem
solving methods for that problem class (Kleer 1985) which leads to the
question of identifying problem types.

A well-known classification of the types of problems that can be solved by
expert systems is that of Hayes-Roth (Hayes-Roth 1983).  He identified 10
categories: interpretation, prediction, diagnosis, design, planning, monitoring,
debugging, repair, instruction and control.   However, these classes do not
have strong relationships to methods of building expert systems.
Chandrasekaran provides a more systematic approach to problem
classification(Chandrasekaran 1983; Chandrasekaran 1986; Chandrasekaran
1987), classifying problems into several generic tasks at high level and
applying these tasks to system building.  His approach focuses on dividing the



task into sub-tasks in a high level abstraction and he considered that each task
can be solved individually.

Probably KADS provides the most systematic approach of this kind to building
expert systems (Wielinga, Schreiber et al. 1992).  In essence KADS is
concerned with a top down software engineering approach to building
systems and one proceeds through various layers of analysis resulting in
selection of an appropriate problem solving method and domain model.
There are important differences between KADS, Chandrasekaran's Generic
Tasks and other related methods, however, in essence all these methods
attempt some sort of software engineering to identify or build a problem
solver closely matched to the problem at hand prior to populating the
knowledge base with knowledge.

However, despite the systematisation brought about through KADS and similar
projects it is clear that making appropriate distinctions between problem
solving methods although highly useful in building systems is a difficult and
perhaps arbitrary task.  Because of these difficulties, Breuker, one of the KADS
originators, suggests that problems are better understood in terms of their
interrelationships rather than their properties and so finds a suite  a more
useful notion than a taxonomy (Breuker 1994).  For example, some sort of
design must exist before it makes sense to consider the issue of assignment
and the assignment, that is a completed system, must exist before it makes
sense to consider diagnosis etc.  This analysis seems superior to earlier
approaches, but it also makes clear that there is probably no end to the
possibilities of analysis.  The one distinction the seems to remain through all
analyses, including being central to Breuker's, is Clancey's distinction between
classification and construction (Clancey 1985),

In Clancey's approach (1985) the task of a KBS system is to produce an
appropriate answer from a given set of inputs.  The system may also generate
some intermediate data that is used to produce the final output.  A
classification system matches some important features of the input to select a
solution from a pre-defined set of outputs.  A heuristic classification system
works based on heuristic matching methods.  On the other hand, construction
methods construct solutions based on the given input.  The central point for
the discussion here is that in a construction system, there are constraints
between outputs and the construction system has to ensure that the
constraints are satisfied by the proposed outputs.  For example, if the outputs
does not satisfy the constraints, the system should be able to change the
proposed outputs, previous inputs or outputs to satisfy constraints.  Another
way at looking at the same distinction is that in classification systems there is
a distinction between input and output, while in construction systems the
input may include things that are also output.  The constraints are not from
one class of thing to another, inputs to outputs, but between things which may



be input or output.  Construction may thus be seen as a generalisation of
classification.

For our concerns here the central issue is that all problem solving is in getting
appropriate outputs given certain inputs.  The distinction between
classification and construction identifies the importance of constraints
between components of the output, things that can also be input.  This leads
to the notion that rather than go more or less directly from inputs to outputs
as in classification, it is appropriate in construction to propose a solution and
then test it, or propose part of a solution which in become a further input
constrains further choices for the solution etc.  The importance of constraints
between components of a solution underlies notions such as propose and
revise or generate and test.  However, although such problem solving methods
facilitate solving certain types of problem, they are not essential e.g. (Gaines
1992).  The central issue is that the system gives the right inputs for outputs,
that the appropriate pathways from inputs to outputs can be found.  The issue
of the path connection between inputs and outputs can be analysed further
and the reasoning between inputs and outputs may well be part of the
solution.  Clancey has developed the notion of "situation specific model"
(Clancey 1992) to express such notions.  Breuker identifies related ideas
(Breuker 1994).  For the discussion here, the output is whatever is desired
from the system and which can be judged as right or wrong given certain
inputs.

The approaches noted so far for producing appropriate outputs for inputs aim
to design a problem solver very closely matched to the problem, but
providing no constraints on the links and parts of links between input and
output provided by the expert.  Another approach is to provide a very simple
mechanism for linking inputs and outputs but highly constrain the expert so
that new links are added and corrections made in a way that does not degrade
the performance of the knowledge base.  The goal is to incrementally build up
a set of appropriate and validated links (a knowledge base) regardless of the
problem type.  Ripple down rules (RDR) uses this approach but can only
produce a single output for a given input.  Obviously a single output does not
provide a rich input for construction tasks.  The goal of the present work is to
extend the RDR approach to producing multiple conclusions for a given input
(Multiple classification Ripple Down Rules (MCRDR)).  Once the system is able
to produce multiple conclusions (outputs/inputs) it has a basis for dealing
with construction tasks, and the constraints between the outputs/inputs of a
solution.  The actual inference method is optional and is decided on efficiency
issues, whether one proceeds in a single pass from input to output, or whether
one incrementally adds to a solution and the developing solution becomes
part of the input for the next cycle.  Many variants are possible.

We may seem that we are suggesting a return to general purpose expert
system shells (e.g. CLIPS).  However, the normal use of these systems in



entirely unconstrained.  Knowledge engineering skill is essential in using these
tools, whether they are used in an ad hoc fashion, or a systematic fashion as
described above, where the whole process of selecting (or building) a tool is
part of the knowledge engineering exercise.  In contrast in the RDR approach
here, the expert (or knowledge engineer) have no say in the details of
knowledge organisation, the system is responsible for knowledge organisation,
and by constraining the knowledge organisation the system is able to provide
the expert with a list of conditions from which to select which will guarantee a
validated rule and an incremental change to the knowledge base.  A
knowledge engineer is thus not required.

It should be noted that the RDR approach has much in common with methods
based on Personal Construct Psychology such as repertory grids (Gaines and
Shaw 1990).  These methods do not constrain the expert as much as the RDR
approach, they rather allow the expert to readily see the interrelationships
between knowledge as it is added to the KB.  They are similarly based on the
idea that experts will select more valid knowledge if asked to deal with
differences between cases.  Similarly to the original RDR these techniques tend
to deal with single classification tasks, but related to the claim here, there is a
suggestion that much more can be achieved with these techniques (Bradshaw
et al).

The remainder of the paper describes the various algorithms and principles
underlying MCRDR (Kang and Compton 1992) and demonstrates through
simulation studies that the method is viable.

2. Ripple Down Rules
The RDR approach does not use any notion of extracting or mining the
expert's knowledge. RDR grew specifically from the experience gained in
maintaining an early medical expert system, the GARVAN-ES1, for a number of
years (Compton, Horn et al. 1989; Compton and Jansen 1990; Callan, Fawcett
et al. 1991).  Observation of experts during maintenance suggests that experts
never provide information on how they reach a specific judgment.  Rather the
expert provides a justification that their judgement is correct.  The
justification they provide varies with the context in which they are asked to
provide it (Compton, Horn et al. 1989; Compton and Jansen 1990; Callan,
Fawcett et al. 1991).  The context in RDR is defined as the sequence of rules
that were evaluated leading to a wrong conclusion (or no conclusion).  When
the rule producing a new conclusion is added, this rule is evaluated only after
the same sequence of rules is evaluated.  The resulting structure is a set of
ordered rules (if .. elsif rules) with exceptions which can themselves be
ordered rules and so on (Catlett 1992).  If a rule is satisfied by the data then
its conclusion will be asserted unless any of its exception rules are satisfied
and so on with the exceptions to the exceptions.  The expert need have no
knowledge about this structure and how the system appends the rule to the
KB.  As far as the expert is concerned he or she composes a rule of whatever



generality is preferred and the system handles this rule.  All rule addition is
prompted by the system misclassifying or failing to classify a case.

A second advantage of the approach is that the expert can be constrained to
add only valid rules.  Each rule is added to the system to deal with a specific
case.  These cases are stored in conjunction with the rules and are called
cornerstone cases. When a new rule is added, the cornerstone case associated
with the rule that gave the wrong classification may be misclassified by the
new rule, as any case satisfying the parent rule is passed along to the new
exception rule.  Therefore a new rule should be satisfied by the new case but
not by the previous cornerstone case.  This can be achieved by requiring the
expert to select conditions for the new rule from a list of differences between
the case for which the rule is added and the previous cornerstone.

For example:

old case new case
TSH high TSH high
T3 low T3 low
FTI normal

TT4 high

The expert must choose either or both the conditions

FTI NOT normal
TT4 high

as conditions in the rule and can optionally chose any of the common
conditions to make the rule intelligible.  Such a rule is guaranteed to work on
the new case but not the old case, so no further checking is required or
relevant.  Note that for a case that has not satisfied any rule, the difference list
includes all the conditions that are true for the case and the rule can use any
of these conditions, however, the rule is not evaluated until all previous rules
have been evaluated.

RDR also shift the development emphasis to maintenance by blurring the
distinction between initial development and maintenance.  The difficulty of
adding a rule to an RDR system is the same regardless of how long a KB has
been under development and how large it is.  This feature allows a KB to
evolve along with the gradual development of domain expertise.

The major success with RDR is PIERS, an expert system used to add clinical
interpretations to chemical pathology laboratory reports (Compton, Edwards
et al. 1992; Edwards, Compton et al. 1993).  PEIRS now has about 2000 rules,
covers 25% of chemical pathology (i.e., 100 out of 500 reports per day issued
by the laboratory) and is 95% accurate.  Rules can deal with temporal data,



allow mathematical expressions to be included and new attributes can be
added at any time.  PEIRS went into routine use with about 200 rules with the
rest of the rules added while in routine use.  Rule addition is a trivial task
taking about 3 minutes per rule, so that knowledge addition for the whole
system has taken about 100 hours.  Most importantly, all rules have been
added by an expert without any knowledge engineering or programming
assistance or skill.  Rule addition takes about 15 minutes per day and is a
trivial extension to an expert pathologist's normal duties.  A knowledge
engineer/programmer was required only for the initial data modelling.

2.1.      RDR Limitations
A problem with PEIRS is that a patient may have multiple independent
diseases.  PEIRS currently handles this problem by treating such situations as
compound diseases.  However,  this could exponentially increase the
knowledge acquisition task.  A possible solution would be to separate domains
and build independent KBs for each domain.  However, in many domains it is
not easy to separate sub-domains and a clumsy work-around would be
required.  The MCRDR  system described below deals with this problem

A further apparent limitation of RDR is that the KB may be ill structured and
considerable repetition of knowledge may result.  This is not a major problem
in practice, largely because of the decision list nature of the representation
and because experts tend to produce very general rules (Mansuri, Compton et
al. 1991; Compton, Preston et al. 1994).  If the problem is significant, Gaines
has proposed using the existing RDR KBS together with a data base to produce
a well classified set of training cases which can then be used with the
INDUCT/RDR algorithm to build a more compact RDR KBS to again be
maintained by hand (Gaines 1991).  We expect the likelihood of this problem
occurring to be further reduced with MCRDR, as all pathways through the KBS
are explored.

3. MCRDR
The aim of MCRDR is to preserve the advantages and essential strategy of RDR
in dealing with multiple independent classifications.  MCRDR,  like RDR, is
based on the assumption that the knowledge an expert provides is essentially
a justification for a conclusion in a particular context.  A major component of
the context is the case which has been given a wrong classification and how
this differs from other cases for which the classification is correct.  As we shall
see, the context in MCRDR is preserved differently and only includes rules
that have been satisfied by the data and validation extends to differentiating
the new case from a range of different cases.

3.1.      Inference
The RDR inference operation is based on searching the KB represented as a
decision list with each decision possibly refined again by another decision list.



Once a rule is satisfied no rules below it are evaluated.  In contrast MCRDR
evaluates all the rules in the first level of the KB.  It then evaluates the rules at
the next level of refinement for each rule that was satisfied at the top level
and so on.  The process stops when there are no more children to evaluate or
when none of these rules can be satisfied by the case in hand.  It thus ends up
with multiple paths, with each path representing a particular refinement
sequence and hence multiple conclusions.

The structure of an MCRDR knowledge base can be drawn as an n-ary tree
with each node representing a rule.  Fig 1 shows such a structure and also
shows the inference for a particular case.

The inference process can be understood in terms of capturing 'paths', as
shown below in Fig 2.  When paths are produced there are a number of
questions about whether the path produces a classification, whether the
classification is redundant because it is produced elsewhere etc.

3.2.      Knowledge Acquisition
When a case has been classified incorrectly or is missing a classification,
knowledge acquisition is required and can be divided into three parts.  Firstly,
the system acquires the correct classifications from the expert.  Secondly, the
system decides on the new rules' location.   Thirdly, the system acquires new
rules from the expert and adds them to correct the knowledge base.

Rule 2 :
If  a,c then class 2

Rule1 :
If  a,b then class 1

Rule 3 :
If  k then class 2

Rule 5 :
If  d then class 5

Rule 6 :
If f,e then class 6

Rule7 :
If i then class 7

Rule 10 :
If  g,h then class  5

Rule 8 :
If  l then class 8

Rule 9 :
If  i then class 9

Rule 4 :
If  e then class 4

Rule 0:
If true then ..

Fig 1. An MCRDR KBS.  The highlighted boxes represent rules that are satisfied
for the case {a,c,d,e,f,h,k}.

Path 1 [(Rule 0, ....), (Rule 2, Class 2), (Rule 6, Class 6) ]  Info 1



Path 2 [(Rule 0, ....), (Rule 2, Class 2), (Rule 10, Class 5)] Info 2 [4]

Path 3 [(Rule 0, ....), (Rule 3, Class 2) ]  Info 3

Path 4 [(Rule 0, ....), (Rule 5, Class 5)]  Info 4 [2]

Fig 2.  Pathways through the knowledge base from Fig 1.  The rules producing
conclusions are highlighted.  'Info n [...]' indicates other rule numbers with

the same classification.

It is likely that experts may find the system more natural if the order of steps
two and three are reversed, thereby better hiding the implicit knowledge
engineering that is going on.  However, the order is not crucial in terms of the
algorithm.

3.2.1. Acquiring New Classifications
Acquiring new classifications is trivial, the expert simply needs to state them.
For example, if the system produces classifications class 2 , class 5 , class 6
for a given problem , the expert may decide that  class 6  does not need to be
changed but class 2  and class 5  should be deleted and class 7  and class 9
added.

3.2.2. Locating Rules
The system should find the locations for the new rules that will provide these
classifications.  It cannot be assumed that the correct location for a new rule is
as a refinement for one of the rules giving one of the wrong classifications.  It
may be a quite independent classification and the wrong classification is
simply wrong.  The possibilities are shown in Table 1.  Note the idea of
stopping rules, rules that make no conclusion, or rather give a null
classification.  Stopping rules play a major role in MCRDR in preventing wrong
classifications being given for a case.

As well as attempting to decide whether a classification is best seen as a
refinement or an independent classification, we note that in some ways it does
not matter - both are workable solutions for any classification.  The key effect
of the rule location is to effect the evolution and maintenance of the
knowledge base.  If there is a strategy that tends to add rules at the top level,
the knowledge base will cover the domain more rapidly but with a greater
likelihood of error.  If the strategy tends to add new rules at the end of paths,
domain coverage will be slower but with less errors from the new rules, simply
because they see less cases .  This is shown in  Fig 3.  A rule can also be placed
at appropriate intermediate levels.  One can also change these strategies as the
system develops.  These decisions are a new type of knowledge engineering



consideration - the issue is what type of development is appropriate for a
particular domain, rather than the structure of the knowledge.

Wrong classifications To correct the KB

Wrong classification to be
stopped

Add a rule (stopping rule) at the
end of path to prevent the

classification

Wrong classification replaced by
new classification

Add a rule at the end of path to
give the new classification

A new independent classification Add a rule at a higher level to
give the new classification

Table 1.  The three ways in which new rules correct a knowledge base.

Decisions about the evolution of the knowledge base do not have to be
knowledge engineering decisions that override any preferences of the expert.
Rather, the expert can be free to make any type of decision, but the interface
can be designed so that the expert is more likely to add rules towards the top
or the bottom.  For example,  two alternative strategies might be to ask the
expert to select the important data used in reaching the conclusion or to
delete the irrelevant data.  If selected data satisfies a pathway the rule is
placed at the bottom of the pathway or at whatever level  the conditions
selected reach down to.  One may expect that the expert's behaviour will be
conservative, he or she will either select few conditions or remove few
conditions. The method used here is for the (simulated) expert to select
important data in the case.  We call the selected conditions a "mini-case".

Other strategies may include asking the expert to make the normal difference
list selection (see below) and then asking the expert to select from a list which
includes all the conditions for all the possible pathways where the rule may
go.  Again the expert's behaviour can probably be biased by asking for
conditions to be removed or alternatively selected.  In this paper we have not
explored these strategies further as they do not determine whether or not the
method works, they merely help tune it to a particular domain problem and
application.

3.2.3. Acquiring Rule Conditions  - Rule Validation
Verification and validation are concerned with ensuring that a KBS system
performs as it is meant to.  Verification research is normally concerned with
ensuring the internal consistency of a knowledge base  The normal approach
in verification is to attempt to reduce the KB to pathways from data to
conclusions and then look at the relationships between these pathways, the
data they use, the intermediate conclusion they establish etc. (Preece,
Shinghal et al. 1992).  Validation, in terms of maintenance or incremental



acquisition, is concerned with testing whether other cases previously correctly
classified will be misclassified by a new rule, as well as ensuring the new rule
covers the new case.  We are mainly interested in validation, in particular in
validating a KBS by testing it on cases.

                      (a)                                                            (b)
Fig 3.  Structure of the MCRDR tree if rules are added mainly at the top (a) or

mainly as refinements (b).

A standard technique is to use a database (Buchanan, Barstow et al. 1983) of
standard cases.  In this situation one depends on the cases being
representative of the cases the system is meant to cover.  With RDR, a case is
associated with a rule because the rule is added to deal with that particular
case.  A new rule must distinguish between the  case that caused its creation
and the case associated with the rule that gave the previous incorrect
classification.  With MCRDR, a number of cases (cornerstone cases) can reach
a new rule and the higher in the tree the more cases can reach the rule.  The
new rule should distinguish between the new case and all of these cornerstone
cases.  That is, MCRDR has multiple cornerstone cases for a rule, compared to
RDR where there is a one per rule.

A rule at some level can be hit by all the cases associated with its siblings at
the same level and their children lower in the system.  So, the rule has to be
made sufficiently specific so that none of these other cases satisfy the rule.
However, it does not matter if other cases which include the same
classification reach this particular rule.  If a rule is added at a level below the
top level, only cases which satisfy the parent rule above need to be considered
as cornerstone cases.  Note that as the system develops, cases may arise which
correctly satisfy a rule, but may be added to the system because a rule is
needed elsewhere to add a further classification.  Such a case will become a
cornerstone case for new rules below the rule it satisfies and for which the
classification is correct.  As the tree develops, the rules lower down will
naturally have less cornerstone cases associated with them.



The aim then is make a new rule sufficiently precise so that it satisfies only
the case it is being added for and no other stored cases, except that it does not
matter if it happens to satisfy cases which include the same classification.  The
algorithm for selecting conditions to make the rule sufficiently precise is very
simple and some discussion is needed why a more sophisticated approach was
not chosen.  Consider a new case A and two cornerstone cases B and C.  In
creating a new rule, one may imagine that expert should choose at least one of
conditions from

(Case A - (Case B ∪ Case C))

or

negated conditions from the ((Case B ∩ Case C) - Case A).

However, as seen in Fig 4, these may be empty - leading to the situation where
no rule conditions can be found.  Alternatively the difference list may
contain only trivial conditions that are irrelevant.  In other words there are no
common conditions that distinguish the presented case from all the
cornerstone cases, but a number of different conditions distinguish different
cases and these conditions must all be included in the new rules.

The algorithm we use is as follows.  First, the system can form a cornerstone
case list which can reach the new rule and should be distinguished from the
presented case.  The expert is asked to select from a difference list between
the presented case and one of the cornerstone cases in the list of cornerstone
cases to be considered.   The system then tests all cornerstone cases in the list
against the conditions selected and deletes cornerstone cases from the list that
do not satisfy the condition selected.  The expert is then asked to choose
conditions from a difference list between the current case and one of
remaining cornerstone cases in the list.  The conditions selected are added as
a conjunction to the rule.  The system repeats this process until there is no
cornerstone case in the list which satisfies the rule.  A crucial question for the
following evaluation is whether this process requires too many cycles of
adding conditions to rules.
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Fig 4. Two similar cases in which difference lists are to be found to distinguish
the presented case A from two cornerstone cases, B and C.  Note in case (a) the
difference between the presented case and the intersection of the other cases
provides a suitable condition.  For case (b) the new rule has to include
conditions both from the difference list between And B and from the
difference list between B and C.

After the system adds a rule with the selected conditions, it tests the
remaining cornerstone cases associated with the parent rule and any cases
which can satisfy the new rule are saved as a cornerstone case of the new rule.
Note again that it is permissible for cases which include the classification
given by the rule to satisfy the rule, and the saved cornerstone cases include
such cases.

Finally the new case is added to the cornerstone case data base.  The lists of
cornerstone cases for the other rules correctly satisfied by the case (ie. giving
a correct classification for the case) are also updated to include the new case.
The system is now ready to run another case and, if the classifications
provided are incorrect, for more knowledge acquisition.

It should be noted that MCRDR systems may be developed for a whole domain
or incrementally, a sub-domain at a time to avoid demands on the expert.
That is, cases which have more than one classification may only be given one
classification initially.  In dealing with sub-domains incrementally, the
algorithm is the same except for the extra requirement of consulting the
expert as to whether the new classification may apply to the each of the



cornerstone cases which can satisfy the rule.  However, the feature remains
that as the rule becomes more precise to exclude a specific case, the other
cases that are also excluded are not considered further.

3.3.      Evaluation
Evaluation of knowledge acquisition techniques is a new area of study because
of the difficulty of dealing with experts in a way that provides reproducible
and comparable data, as well as the obvious problem of finding experts with
the time available to participate in such studies.  One approach has been in
the Sisyphus projects (Linster 1992; Gaines and Musen 1994).  However, in
the Sisyphus projects  there is no actual knowledge acquisition from experts,
the aim of Sisyphus is to evaluate approaches to developing a domain model
and a problem solving method.  The issues concern how easily and how well a
given methodology or tool can produce an appropriate problem solver for the
given Sisyphus problems.  The actual population of the knowledge base with
knowledge is of little concern, the knowledge is given in the specifications.
Modelling is the central issue.  In contrast, with machine learning evaluation
the issues are the performance of a KBS built from test cases.  The initial
modelling is of little concern.

In earlier studies we have developed a machine learning style evaluation for
RDR (Mansuri, Compton et al. 1991; Compton, Preston et al. 1994).  In
essence, these studies assess an incrementally developed RDR KBS.  The KBS is
built by sequentially evaluating a large data base of cases with the developing
KBS and passing any cases that are misclassified by the system to an expert for
an new rule to be added.  In these studies the expert is a simulated expert.  We
have used the same approach to evaluate MCRDR.

The critical questions with MCRDR are the performance of the KBS - how well
does it work on test cases;  secondly, the size of the KBS, as there is no attempt
to make the KB compact as with inductive machine learning methods; and
thirdly the complexity of the KA task.  It has been shown in the PEIRS studies
that the KA task in RDR is very small and easily managed by experts as a small
extension to their normal duties.  In MCRDR, the expert has essentially the
same task of selecting from a difference list but this may be repeated a
number of times to deal with the various cornerstone cases and may become
tedious.

The simulated expert should perform similarly to a human expert.  The role of
the expert is to identify important features in the case which justify why an
MCRDR classification should be changed.  A simulated expert able to identify
important features is essentially a rule trace of the same case run through
another KBS with a high level of expertise in the domain.  In these studies the
other KBS has been built by applying the INDUCT/RDR machine learning
program to the total set of cases available (Gaines and Compton 1992).
INDUCT./RDR is the machine learning algorithm which uses the INDUCT



algorithm and can produce the RDR format knowledge base (Gaines and
Compton 1992).  The reason for choosing Induct is that not only does it
perform similarly to other machine learning techniques such as C4.5 (Gaines
1989), but the INDUCT/RDR  tends to produce knowledge bases which are
much smaller than those produced by other machine learning approaches
(Gaines and Compton 1992).  The size of the INDUCT/RDR KB is thus a "gold
standard" for how  compact a knowledge base should be.

We can set several levels of expertise by manipulating different strategies to
choose conditions.  One would expect the best performance from a system
where conditions are selected from the intersection of the difference list and
the INDUCT rule trace (recalling that the difference list is a set of valid
conditions from which to construct a rule).  The worst performance will come
from a system where a condition is randomly selected from the difference list.
Intermediate performance will come from a mixture of the two.  Note that we
do not expect the best simulated exert to out-perform a human expert.  We are
unable to tell which of the conditions in the rule trace are the most important,
while one assumes that a human expert knows what are the most important
features in a case leading to a conclusion.  Secondly, we include only satisfied
rules in the rule trace, although the actual sequence of rules evaluated in RDR
is important in determining what conditions are necessary in rules lower
down the pathway.  Further, as will be seen below, even with the best
simulated expert it was frequently necessary to select conditions at random
from difference lists.

3.3.1. Experimental design
Two different domains are used for the evaluation (Table 2).  One of data used
were thyroid cases that had been run through the GARVAN-ES1 KBS to ensure
a consistent classification.  The other is "tic-tac-toe" data from Irvine machine
learning data set.  We tested the system on these single classification domains
as all the problems the system may have in terms of size and repeated
knowledge acquisition would show up more in a single classification domain,
where the system only has disadvantages and no advantages.  These particular
domains have been well studied and in particular were used to evaluate RDR
(Mansuri, Compton et al. 1991; Compton, Preston et al. 1994) so that
comparisons between the two systems could be made.  The GARVAN-ES1 cases
cover a fairly consistent period in a larger 10 year data base of 45,000 cases
that has been studied (Gaines and Compton 1994).  A smaller subset has been
available as part of the UC Irvine machine learning database.  "Tic tac toe"
data set is randomized to get rid of any artificial effect (it is a collection of all
possible result in the game of tic-tac-toe).

Domains Total
cases

Test
cases

Type of collections



GARVAN-ES1 21822 Last
6822

historical collection of natural data

Tic-tac-toe 1000 Last 300 randomized data

Table 2   Systems built using these cases should have some resemblance to a
real system built because both data set are in fact randomized data (GARVAN-
ES1 is collection of historical data).   The last 6822 cases and 300 cases in
both domains are used as a test case data set.

An INDUCT/RDR KBSs were built using the entire 21822 cases in GARVAN-ES1
and 1000 cases in the 'tic tac toe" domain so that they presumably had total
expertise for the domain.  Note that because the classifications for the cases in
GARVAN-ES1 were produced by running the cases through the GARVAN-ES1
KBS the classification were consistent and no pruning of the inductive KB was
required.   In the case of tic-tac-toe the data set covered all solutions and was
also consistent.

In the experiments, the system starts with an empty KB and it tests each case
from case 1 to case 15,000 in GARVAN-ES1 and case 1 to case 700 in tic-tac-
toe.  The last 6822 cases in GARVAN-ES1 and 300 cases in tic-tac toe are test
data.  Note that this does not follow the protocols used in machine learning
evaluations for randomising training and test data, however it does
correspond to the historical reality of building a system over a period of time
and testing it in the next period.

Note that the data here differ from (Mansuri, Compton et al. 1991; Compton,
Preston et al. 1994).  The data includes many boolean attributes, most of
which will always be false.  e.g. pregnant, on-t4, following surgery, I-131
treatment etc.  These have normally been derived from the clinical notes on
the request form from the referring clinician.  The clinician may sometimes
include one, or at most two, of these as likely key factors in explaining any
results.  In the earlier study, both Induct and the random selection of
conditions used in some of the simulated expert studies used such attributes
only when they were TRUE.  From past experience rules almost never use the
FALSE value of such attributes.  This strategy was followed to ensure that the
simulated expert was reasonable and INDUCT produced a small knowledge
base even with a small training set.  In these later studies attributes with the
value FALSE have not been excluded, firstly because the results are adequate
and secondly to provide better comparisons with further studies on other
machine learning data sets.  Note that the existence of the FALSE valued
attributes only affects MCRDR when rules are placed at the top of the tree and
there is no difference list.  This was in fact the most common strategy used, so
that the results presented are "worst possible".

To simplify the experimental design we chose to put new rules at the either
the top or bottom of rule pathways.  We imagined that putting rules at the top



would be a worse situation with respect to the number of cornerstone cases to
be seen.  The data presented here covers only rules added at the top of
pathways.

In the study the following levels of expertise are used:

Clever expert selects all conditions from the Induct rule trace.

Moderate expert selects one condition from the intersection of the
difference list and Induct rule trace

Stupid expert selects one condition from the difference list

Clever expert (RDR) selects 4 conditions from the intersection of the
difference list and Induct rule trace.

Note that we are not concerned with the precise types of expertise involved in
these studies, the results are meant to be a qualitative indicator of the size
and performance of the knowledge base changes with expertise.  Note that a
different strategy was used for the RDR clever expert and MCRDR clever
expert and further studies will be carried out using the same protocol.
However, it will make no difference to the results as the MCRDR moderate
expert with a lower level of expertise than either of the clever experts
produces comparable results.

A further difficulty arises with the "stopping rules", rules that give a null
classification and whose purpose is to prevent a classification being made.
Some 80% of the Garvan cases used do not have any thyroid abnormality and
should return the null classification.  If at any stage these are given a
classification by the MCRDR system a stopping rule is required.  The null
classification is also the default classification given by Induct (because it is the
majority classification in the data base) so that there is no Induct rule trace
for such cases.  To use the simulated expert in this situation, the cornerstone
case from the rule giving the wrong classification is run on Induct. Negated
conditions are selected from the difference list which are also in the the
Induct trace.  That is, a condition which Induct considers important in
reaching the conclusion for the cornerstone case also discriminates the
cornerstone case from the case requiring the classification to be stopped.  This
condition is used in its negated form.  This strategy was used where possible
for the moderate and clever experts but frequently such a condition did not
exist and a condition had to be randomly selected from the difference list.

3.3.2. Results
Fig 5 show the error rates of various MCRDR systems as they develop. The
error data are given by testing the cases in the data base.   Note that the
default error rate is 22.7% as the null classification is correct for 77.3% of
cases in GARVAN-ES1, and are 62.6% for the 'tic tac toe' data set.  The
moderate expert, stupid expert and RDR clever expert all have higher error



rates than the Induct or the clever MCRDR at the beginning.  While the stupid
expert remains at a high error rate, the other methods are all comparable to
Induct once sufficient cases are seen.  Note that, for Induct as well as the other
methods, the error rate continues to fall as more cases are added to the
training set.  As shown by Catlett, this is a common phenomenon with
induction applied to very large training sets (Catlett 1992).

Although the error rates for all but the stupid expert are reasonable, the
critical question is whether these results are achieved at the cost of increased
knowledge acquisition.  Fig 6 shows the amount of knowledge acquisition
required to achieve the error rates in Fig 5.  Note that the Y axis indicates the
number of knowledge acquisition incidents or cases that had to be dealt with
as being misclassified.  For any given case more than one rule may be added.
In contrast in the RDR system each case is dealt with by a single rule so that
the number of cases seen is the same as the number of rules.  Note that the
performance of the MCRDR systems is at least as good as an RDR system.  A
moderate expert RDR system is not shown here but in the earlier studies the
final moderate expert KB was 50% bigger than the clever expert KB in the
GARVAN-ES1 domain.  Here the sizes are comparable.  The final sizes are
shown in Table 3.

Another crucial consideration with MCRDR is the complexity of the KA task,
i.e. the number of difference lists the expert must select from to make a
sufficiently precise rule.  This is shown in Table 4.  If we exclude the stupid
expert as not being representative of a human expert, then on average the
expert only has to see 2-3 difference lists.  If we exclude the lower level
stopping rules and consider only top level rules reached by all cornerstone
cases in the system, an average of 5.5 difference lists have to be dealt with.
Note that in this study all rules giving conclusions were put at the top level.

The number of cases to be dealt with increases as the knowledge base
increases in size and more cornerstone cases are stored (Fig 7).  Note that Fig
7 is again a worst case because the graph covers only rules added of the top
level.  It can be seen with a clever expert that the worst case is an average of 3
cases per rule, and with a moderate expert  an average of 4 or 5 cases per rule
in both domains.

4. Discussion
4.1.      Size and Performance of MCRDR
These results demonstrate that a manually built MCRDR expert system
performs similarly to an RDR system and an inductively built expert system.
The error rate versus number of  training cases for induction or number of
cases evaluated by the manual MCRDR system are very similar.  It should be
noted that we have not yet carried out tests on randomised data to get
confidence limits.  However, from results elsewhere in these Proceedings on



randomised data with single classification RDR, we would expect little effect
on the conclusions here.

It should be noted that we would expect a human expert to do better than the
synthetic expert or induction for small training sets.  In a previous study a
human expert built an RDR system with a 12% error rate from 291 training
cases versus 74% for C4.5 for the same training cases (Mansuri, Compton et al.
1991)   (As noted above, Induct performs similarly to C4.5).  This test set was
9514 Garvan thyroid cases, but importantly the training set was 291 unusual
cases which the original Garvan-ES1 expert system had used as test cases or
which the system had misinterpreted at some stage (Horn, Compton et al.
1985).  Because the cases were diverse this training set was a challenge for an
inductive approach but not for an expert.

It should be noted that the clever and moderate expert produce similar sized
knowledge bases and have a similar performance.  This is to be expected.  The
use of at least one condition from the Induct trace ensures a rule has some
relevance, while the stopping rule approach ensures that a rule that is too
general is made sufficiently narrow as required.  These simulated experts
produced a knowledge base that was only about three times the Induct KB
size.  When we consider that inductive methods aim at producing compact
knowledge bases and that Induct/RDR tend to produce considerably smaller
KBs than other methods (Gaines and Compton 1992), this is a very good
result.  Note that we propose both RDR and MCRDR for domains where large
data bases of well classified cases are not available for induction.  In many
domains large data bases are available, but without suitable and consistent
classification information to enable them to be used for induction.  Once a
manual expert system has been built there is the opportunity to use this to
provide well classified cases which can then be passed to a machine learning
system to produce a more compact KB (Gaines 1991).  However, we suggest
that with a KB approximately double the smallest possible size this is probably
not necessary and certainly the size is not a significant problem during
development.
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Fig 5.  Error rates on a test set (6822 cases) with different methods of building
a KBS.  The x axis indicates the number of cases used as a training set for
Induct or evaluated in building an RDR or MCRDR system and the y axis is
percentage errors for all the cases in the test set for this sized KB
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Fig 6. This shows the number of knowledge acquisition incidents versus
developing size of the KB.  Alternatively, it is the number of corrections
made versus total number of cases seen.  For the RDR clever expert a
single case produces a single rule so that the Y axis is also the number of
rules.  For the Induct RDR KB the Y axis is again the number of rules.
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Fig 7  The average number of cornerstone cases seen by the expert as the
knowledge base develops.  Note that the data include only the worst case of

rules added at the top level.



Domain Stupid
Expert

Moderat
e Expert

Clever
Expert

Clever
Expert
RDR

Induct
RDR

GARVAN-ES1 2300 974 805 924 332

Tic-Tac-Toe 233 99 75 114 29

Table 3. The number of rules made by an MCRR system..

TIC TAC TOE Average
cases/rule

Maximum
cases/rule

Average
cases/rule

top level rules

Moderate
expert

2.55 13 5.45

Clever expert 1.84 14 3.01

Stupid expert 3.22 17 7.13

TIC TAC TOE Average
cases/rule

Maximum
cases/rule

Average
cases/rule

top level rules

Moderate
expert

2.25 8 4

Clever expert 1.87 7 2.86

Stupid expert 2.45 10 4.96

Table 4. The first column indicates the average number of cornerstone cases
or difference lists seen by the expert in adding rules.  The second column
indicates the maximum number of cornerstone cases or difference lists seen
by the expert in adding rules.  The third column indicates the number of cases
seen by rules added at the top level, i.e. rules which can be reached by every
cornerstone case in the system.  Note that the only one difference list is seen
by the expert in RDR because RDR handles only a single cornerstone case for
each rule.

Finally the size of an individual knowledge acquisition task is on average
about 2-4 times as great as the RDR knowledge acquisition task because of the
requirement to deal with extra cornerstone cases (Fig 7 and Table 4).  In the
worst case the expert has to consider 17 cases, but this  is  very rare.  It is
likely to be due to the random selection of conditions that sometimes occurs



with the simulated expert and is unlikely to occur with a real expert.  The
expert maintaining PIERS takes about three minutes per case to add a new
rule.  Expert's report that the major part of this goes into thinking about the
case and deciding on the classification and its appropriate wording  Even if we
double this time for MCRDR, it is more than reasonable.

We anticipate better results with a human expert as opposed to simulated
experts.  With RDR the actual sequence of rules that fail in a pathway is
critical as the rule above a rule in RDR removes cases before they reach the
later rule allowing the later rule to be quite general.  We only used satisfied
rules in the Induct rule pathways.  Further it was frequently found that there
was no intersection between the difference list and the Induct rule trace so
that a condition had to be randomly selected from the difference list.  In this
study this is a major problem with stopping rules.  Because all pathways are
explored with MCRDR we expect repetition to be less of a problem with
MCRDR than RDR so less knowledge acquisition incidents are required. The
only case where this shows up clearly in this study is with the moderate
expert.

Regardless of whether or not MCRDR will produce a more compact KB than
RDR, this study clearly demonstrates that it does not greatly increase the
knowledge acquisition required in a single classification domain.  This implies
that in a multiple classification problem domain it will provide a viable
solution for the incremental development of KBS.

We propose to use the same experimental design on other datasets used in the
machine learning literature, to confirm that these results are domain
independent.  We also propose to randomise the data and repeat these
experiments.  However this may not be entirely appropriate with the GARVAN-
ES1 data as it is taken from a real domain and the cases are in the same order
as they occurred in reality.  Building a system by taking sequential cases and
testing it on cases that occur after the system is assumed complete (here at
15,000 cases) is exactly the scenario that occurs in the real world where one
expects the system to apply to future cases.

4.2.      Implications from MCRDR
As a first minor point we should note that MCRDR hold out some promise of
reducing the brittleness of KBS.  An MCRDR system, unlike a conventional
expert system, keeps a history of corrections to rules.  A case may follow a
certain pathway and reach conclusion X, but elsewhere in the KB it may also
be able to satisfy a rule which changes X to Y but without satisfying the whole
pathway.  We have carried out preliminary studies investigating whether such
relationships could be used to enable a system to warn when its conclusion
may be erroneous and have found that the system gave useful warnings (Kang
and Compton 1992).  We propose to expand these studies now that the
MCRDR system has been validated.  We speculate on the relationship between



keeping and using a history of corrections to a knowledge base and human
learning from experience.

The major issue is the application of MCRDR to construction.  It seems likely
to be inefficient to have a single pass from data to conclusions.  With any RDR
system one has to wait till suitable cases occur (or generate synthetic cases) to
add the appropriate knowledge.  In a construction system for a specific case
there may not be sufficient input to exercise the knowledge that is already
included, however a partial solution may well then match against other
knowledge in the system, suggesting that is more efficient to keep adding
conclusions to the input and repeating the inference process rather than
having a single pass.  Similarly it is likely to be more efficient to assume
various conditions in rules are satisfied if they are as yet unknown, but
represent possible output from the system.  All this is perfectly conventional
inferencing.  We have previously developed a system for configuring ion
chromatography equipment (Mulholland, Preston et al. 1993) but using
multiple single RDR KBS which had been developed by induction.  The
inference mechanism assumed unknown conditions were true and if any
individual conclusion attributes had the same value after an inference cycle
this was added to working memory and the inference repeated.  Various
criteria again, perfectly conventional, can be used terminate the inference.

Obviously there are many variants of the same process that can be identified.
The software engineering approach to knowledge acquisition attempts to
identify the best for the particular problem.  In the RDR framework, it doesn't
matter whether or not the best approach is adopted.  As long as the approach
will work, as long as there is a framework for presenting the expert with case
differences it appears the problem solver will gradually learn how to deal with
the problem.  The task in any knowledge acquisition incident remains the
same, selecting from a difference list, but the speed with which the system
converges to a solution may vary and may be improved with a different
inference strategy.

Knowledge acquisition for MCRDR for construction as well as classification is
concerned with constraining the expert in the choice of conditions to go in a
rule and locating where the rule should go in the KB.  There are a number of
ways this can be achieved.  The simplest is that the new rule must go at the
top of the tree or at a level where the rules above use only to input data not to
any conclusions.  Case difference refer only to the actual input.  The case is
constantly re-run till a complete solution is developed.  This is obviously a
very crude approach.  A second approach considers the whole case including
the input and output components.  The case is run and one or more
components of the solution is incorrect.  To produce one of these, a new rule
has to be added at the bottom of the path or at some level higher and a
stopping rule added at the bottom.  The new conclusion to be reached is
added to the input and the case re-run.  Only those previously identified



locations which are still reachable by the case are suitable for a rule to be
added that concludes this particular output.

The second issue is the case differences to be presented to the expert.  The
system records the sequence of rules that were satisfied in reaching the
conclusions including the repeated cycles.  RDR does the same the but the
sequence comes from a single pass.  One can identify when in this sequence
the new rule will be reached.  All conclusions following this rule are deleted
from the case.  Case differences are then used in the same way as multiple
classifications, except that the current case includes the partial solutions so
far generated.  It is also stored in this way as a cornerstone case.  The case is
re-run after each new rule is added till a complete solution is built up.

This is a fairly simple solution based closely on the notion of a context
pathway which is the basis of RDR so that one would expect that it should
work.  However, it remains to be investigated.  There are also other possible
methods that could be used.  The central issue is that as long as these
methods fulfil the requirement of validated rules added in context, they are
likely to provide for incremental knowledge acquisition without the assistance
of a knowledge engineer.  The choice between methods is concerned with
matching the knowledge acquisition performance to the requirements of the
domain e.g. rapid coverage with many error to be corrected, or gradual
incremental coverage.  The demands on the expert, will also be a
consideration.  This appears to be a new type of knowledge engineering
decision.

We have suggested that it may be possible to use machine learning to help
improve an evolving knowledge base (Compton, Kang et al. 1993).  An
apparent disadvantage of RDR style KBSs, the repetition, may in fact provide a
basis for improving the organisation.  A simple example is that in a
classification or multiple classification system no organisation of the
conclusions is required.  However in a configuration system where one wishes
to assume unknown conditions may be true, it is imperative that the
conclusions be organised as attribute values pairs so that arrival at a specific
attribute value pair for a conclusion means other conditions using the same
attribute are no longer unknown.  It seems that the non co-occurrence of
conditions in rule pathways could be used to suggest that these may be
different values of the same attribute as the knowledge base develops and so
improve performance.

Our conclusion is to suggest is that the effort required by the software
engineering approach to knowledge acquisition may be unnecessary.  We have
shown here that an MCRDR system will happily handle both single and
multiple classification tasks.  We hypothesise that with some extensions the
same approach will be able to handle construction tasks as well, initially at
least configuration.  Of course the conclusion with respect to construction



tasks is speculative.  However in the limited classification studies so far we
have been able to actually build systems without knowledge engineering
support apart from development of the domain model.  There does not seem
to be clear evidence yet that the software engineering approaches lead to
knowledge bases that can be actually populated with knowledge by an expert
without knowledge engineering support.

With respect to the necessity of building an initial domain model, we have
suggested that an RDR knowledge base may provide sufficient information to
be able to use machine learning to adapt the model as the KB develops.  In the
meanwhile we have argued elsewhere that local refinement allows an
inadequate domain model to be refined in context (Compton, Edwards et al.
1992; Edwards, Compton et al. 1993) and that with this facility an expert can
define a domain model for a sophisticated domain unaided (Preston, Edwards
et al. 1994).

In conclusion it seems that despite the efforts of AI to develop methods which
will give optimal models perhaps testing and fixing is perhaps a an easier way
to build useful systems than investing the effort demanded in trying to
develop the "right" model (Menzies and Compton 1994)
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