BALT & CAST: Middleware for Cognitive Robotics

Nick Hawes, Michael Zillich and Jeremy Wyatt
School of Computer Science, University of Birmingham
Birmingham, UK

Abstract—In this paper we present a toolkit for implementing
architectures for intelligent robotic systems. This toolkit is based
on an architecture schema (a set of architecture design rules).
The purpose of both the schema and toolkit is to facilitate re-
search into information-processing architectures for state-of-the-
art intelligent robots, whilst providing engineering solutions for
the development of such systems. A robotic system implemented
using the toolkit is presented to demonstrate its key features.

I. INTRODUCTION

Many researchers are working on middleware software for
robotics, e.g. MARIE [1] and YARP [2]. These projects focus
on supporting the connection of separate, reusable, software
components, into a complete systems. To date the majority
of robotics middleware has been designed to form branching
pipelines of processing components that process sensor data
in various ways to ultimately generate some behaviour. As
we move towards robots that support a wider variety of more
complex behaviours (i.e. cognitive or intelligent robots), we
must consider how all the processing components in these sys-
tems communicate and interact; this problem involves studying
information-processing architectures. In this paper we present
a software toolkit based on a particular architecture design.
The architecture has been designed from requirements taken
from a limited set of robotic scenarios. The toolkit is intended
to simplify the process of implementing systems based on this
architecture, and to support a clear distinction between the
scenario-specific content of the system and its information-
processing architecture.

II. ARCHITECTURES

The study of information-processing architectures will be-
come more and more important as researchers aim to endow
robotic systems with a wider range of more complex and
integrated behaviours than is currently possible. The design
for the information-processing architecture (referred to as just
“architecture” for the remainder of the system) defines exactly
how components are connected, controlled, monitored, and
exchange information; it defines the internal structure of the
system. As such it places limits on the space of possible
behaviours that a system is capable of generating.

If we wish to advance the science of designing and building
intelligent robots (or any system with many interconnected
processing components), then it is vital that we study the
architectures used to create them. To allow us to do this, it
must be possible to separate the effects of the architecture on
the finished system from the effects of other aspects of its
design and implementation (such as the components in it, the

{~ " TTask] Push 3
Ul ——— ¢
o> Manager
| [
TTE1 N
Input/Output
[| Y Working
| | | N Memory
L ¢
Managed
Processing
Components

nmanaged
rocessing -
omponents

The CAS Subarchitecture Design Schema.

Fig. 1.

algorithms they use, the robotic platform it is embodied within
etc.). To this end we present a software toolkit which allows
researchers to concentrate on developing particular types of
robotic functionality, whilst the architecture used to structure
this functionality is kept distinct within the system. This means
it can be modified independently of this functionality and the
effects of doing so can be studied [3].

Our approach to designing architectures is based on the
following methodology. From analysis of detailed scenarios
we derive requirements that lead to design principles for
architectures that can be expressed in terms of architectural
schemata. These define a (large) design space containing many
specific designs: the architectural instantiations. The toolkit
we present is based on a previously developed architecture
schema. This schema is presented in Section III. Because it
is based on a schema, the toolkit defines a space of possible
instantiations (implemented systems) that can be developed
with it. The toolkit has two parts: a layer of software that
acts as connection middleware, and a layer of structure on top
of this that implements our architecture schema. These are
presented in Sections IV & V respectively. Following this in
Section VI we discuss related work, in Section VII we present
an architecture instantiation implemented using our tools, and
follow this with discussion and conclusions.

III. CAS: THE COSY ARCHITECTURE SCHEMA

Rather than base our integration work around a single
architecture, our work is based on an architecture schema. An
architecture schema is a task and implementation independent
set of rules for structuring processing components and infor-
mation, and controlling information flow. To produce a con-
crete design for a system to solve a particular set of problems,

it is necessary to produce scenario-specific instantiations of
this schema containing all of the components for a particular
scenario (e.g. parsers, segmenters, arm controllers etc.). We
take this approach to provide a clear separation between
our integration and architectural principles (the schema), and
designs and implementations derived from these principles
(the design and implementation of the instantiation of the
schema). This follows the work of Sloman on niche-space and
design-space [4], and is necessary to allow us to study and
compare information-processing architectures without being
tied to problem-specific details [3].

Analysis of a number of human-robot interaction scenar-
ios led to three design requirements, namely support for
concurrent modular processing, structured management of
knowledge, and dynamic control of processing. These are met
by the CoSy Architecture Schema [5]. The schema allows
a collection of loosely coupled subarchitectures (SAs). As
shown in Figure 1, each contains a number of processing
components which share information via a specific working
memory, and a control component called a task manager. Some
processing components within an SA are unmanaged and some
managed. Unmanaged components perform relatively simple
processing on high-bandwidth data, and thus run constantly,
pushing their results onto the working memory. Managed
processes, by contrast, monitor the changing working memory
contents, and suggest possible processing tasks using the data
in the working memory. As these tasks are typically expensive,
and computational power is limited, tasks are selected on the
basis of current needs of the whole system. The task manager
is essentially a set of rules for making such allocations.
Each subarchitecture working memory is readable by any
component in any other SA, but is writable only by processes
within its own SA, and by a limited number of other privileged
SAs. Components within privileged SAs can write instructions
to any other SA, allowing top-down goal creation.

If there are several goals in a subarchitecture they are
mediated by the SA’s task manager. This mixes goal-driven
(top-down) and data-driven (bottom-up) processing and allows
goals to be handled that require coordination within or across
SAs. At one extreme the number of write-privileged SAs can
be limited to one (centralised coordination), and at the other
all SAs can have write privileges (decentralised coordination).
Our scenarios appear to favour a small number of specialised,
privileged coordination SAs.

We work from the requirement that processing components
must operate concurrently to build up shared representations.
SAs work concurrently on different sub-tasks, and components
of an SA work on different parts of a sub-task. Instantiations
of the SA schema function as distributed blackboard systems
as used, for example, in Hearsay-II [6].

IV. BALT: BOXES AND LINES TOOLKIT

An architecture is essentially a set of components, the
connections between them, and some assumptions about how
the connections are made and how the components behave. In
our toolkit we separate the component and connection model

from the other elements as this is independent of the remainder
of the architecture. Doing so maintains the flexibility of the
overall toolkit. In addition to this, the problem of connecting
processing components is relatively well understood, and a
number of software solutions exist already.

Our requirements for the connection layer are as follows:
that components can run concurrently; that these components
can be connected so they can share information; that this
connection process should be the same if they are on the
same machine or are on different machines on a network; that
component connections are not hardwired into the code (to
allow architectures to be changed without recompilation); that
component connections can be altered at run time (to support
dynamic reconfiguration of architectures); and that compo-
nents can be written in C++ or Java and can be connected
regardless of language. We also required the software to be
fairly easy to learn and use.

We tested a variety of existing middleware solutions against
this list of requirements. We looked at both robotics-focused
middleware such as MARIE [1] and YARP [2], and more
general solutions such as CORBA. We found that although
the robotics middleware offered more succinct solutions to our
problems, they generally only supported a single programming
language. On the other hand the multi-language support of the
more general middleware solutions was typically accompanied
by a rise in the complexity of working with the software.

As a result of this we decided to implement our own
middleware software to satisfy all our requirements. This pro-
duced the Boxes and Lines Toolkit (BALT), a name inspired
by the ubiquitous architecture diagrams drawn by intelligent
systems researchers. In brief, BALT is built on top of CORBA
to provide (compile-time) typed push and pull connections
between components that run in individual threads. It has
native support for C++ and Java. Components can be intercon-
nected across language and machine barriers with no change to
the structures used within the component code. Connections
are optimised for their end points, so same-machine same-
language connections use native constructs for data exchange,
whilst cross-language and cross-machine connections make
use of CORBA’s translation mechanisms. Because of this, non-
primitive information to be exchanged must be stored in structs
automatically generated from IDL by an IDL compiler. It is
worth noting that CORBA has a number of limitations (e.g.
IDL generated classes not support inheritance) that have led
us to consider replacing it in the future.

A BALT system is run by launching a process server
on each required machine. A configuration process is then
launched which sends details of the components and connec-
tions to the necessary process servers. The configuration pro-
cess can also be run as part of the start-up of a process server,
S0 a separate step is not always necessary. The configuration
information is provided via a configuration file that describes
components and connections along with command-line-style
configuration options.

Components in a BALT system can interact in two ways: via
push connections and via pull connections. A push connection

is a 1-to-N connection in which a sender component transmits
data objects which are delivered to the receiver components
via a parameter in member function call. A pull connection is
a 1-to-1 connection in which a sender component obtains data
objects from a receiver component as the return value from
a member function call. All of these connections are based
on typed interfaces so the validity of the connection can be
checked during compilation.

V. CAST: THE COSY ARCHITECTURE SCHEMA TOOLKIT

On top of BALT we have built a software toolkit that
allows researchers to easily implement instantiations of the
previously described architecture schema, CAS. This software
is the CAS Toolkit (CAST). CAST provides abstract C++ and
Java classes for the key components of CAS: managed and
unmanaged components (processing components), subarchi-
tecture taskmanagers and subarchitecture working memories.
CAST extends the BALT configuration interface to provide a
mechanism to combine the components into subarchitectures,
and for these to be combined into complete architectures.

Rather than interacting directly (as BALT components do)
processing components in a CAST instantiation share in-
formation via working memories. A processing component
can write data to its working memory via a number of
mechanisms, all of which require that the calling component
provides the data along with an ID and some type information.
The data is associated with the ID in working memory, and
this ID can be used in the future to access the data. The
type information describes the ontological type of the data,
rather than its run-time or compile-time type. This allows
data classes to be used for different purposes within a CAST
system whilst distinguishing these purposes. When data is
written to a working memory, change objects are propagated
to all subarchitecture managed components and all connected
working memories which forward the objects to the managed
components in their subarchitectures. These change objects
contain information about the ID and type associated with the
change, the component that caused the change, and the change
operation type (add, overwrite or delete). Components can then
use the information contained within these change objects to
access the changed data.

Change objects generated as a result of a change to working
memory are the primary mechanism for distributing infor-
mation through the architecture. To reduce the amount of
redundant information that is broadcast to all components,
change objects can be filtered by both components and the
working memories they are attached to. Coarse grained fil-
tering is provided at the level of working memories which
can be configured to forward changes to and from other
subarchitectures or not. Finer grained filtering is provided
at the component level based on the ontological type and
memory operation of the change, and whether it originated
in an external subarchitecture.

The task-based control mechanism provided by the archi-
tecture schema is realised in connections between managed
components and a subarchitecture task manager. Components

must propose a task that they wish to execute. This proposal
can then be accepted or rejected by the task manager. Currently
this is not strictly binding, as components can read and write
to working memory without having a task proposal accepted.

In order to provide a rough idea of how the toolkit performs
we have created a simple benchmarking subarchitecture that
consists of a single working memory and pairs of components.
These pairs consist of a writer component that writes an array
of 1000 bytes to the working memory and a reader component
that reads this from the working memory and then deletes it.
When the writer receives notification of the deletion the pro-
cessing cycle is complete and another is started by the writer
writing another array to working memory. One of these cycles
is intended to represent a typical subarchitecture interaction. It
features three working memory operations (an add, a get and
a delete) and two change objects being generated (one for the
add, one for the delete). To benchmark the basic CAST system
we counted the number of cycles a pair of components could
complete in a second. This was done for the various combi-
nations of C++ and Java CAST elements (where an element
can be a reader, writer or the working memory connecting
them). Space does not permit a detailed presentation of these
results, but in general when the components were all written
in the same language the number of cycles per second was
in the range of 7000 to 10000 cycles per second. When the
components were a mix of languages (on the same machine)
the range was around 100 to 300 cycles per second. In future
work we will evaluate the performance of CAST in more
detail, in particular investigating the speed difference between
same- and different-language communication. Currently we
suspect the translation mechanisms in CORBA to be part of
the reason for this discrepancy.

VI. RELATED WORK

The work presented in this paper can be compared to two
main existing areas of research. The first of these is is the
work on cognitive architectures that also provide toolkits for
implementing systems using these architectures. Such work
includes ACT-R [7] and SOAR [8]. Whilst these systems pro-
vide explicit architecture models along with a means to realise
them, they have two primary drawbacks for the kind of tasks
and scientific questions we are interested in studying. First
these systems provide a fixed architecture model, whilst CAST
provides support for a space of possible instantiations based
on a more abstract schema (allowing different instantiations
to be easily created and compared). Second, it is not currently
feasible to develop large integrated systems using the software
provided for these architectures. This is due to restrictions on
the programming languages and representations that must be
adhered to when using these models.

The second area of research that our work can be compared
to is that of robotic middleware. Such work includes MARIE
[1] and YARP [2]. These systems provide the means of
connecting processing components in a distributed manner,
and they also typically provide a collection of components
to use in developed systems. Although BALT is comparable

to the connection aspects of these tools, CAST’s support for a
space of possible architecture instantiations sets it apart from
connection-orientated middleware. This is both a strength and
a weakness; it is possible to implement the same architectures
and more (i.e. those that fall beyond the CAS schema) with
these middleware tools, but the time taken do so would be
greater than if you were using a dedicated tool such as CAST.

In addition to these two extremes (tools that provide ar-
chitectures and tools that provide connections) there are a
small number of toolkits that have a similar aim to the work
presented in this paper. MicroPsi [9] is an agent architecture
and has an associated software toolkit that has been used to
develop working robots. It is similar to the cognitive modelling
architectures described previously in that it has a fixed, human-
centric, architecture model rather than a schema, but the
software support and model provided is much more suited to
implementing robotic systems than these projects. Our work
is perhaps most similar to the agent architecture development
environment ADE [10]. APOC, the schema which underlies
ADE is more general than CAS. This means that a wider
variety of instantiations can be created with ADE than with
CAST. This is positive for system developers interested in only
producing a single system, but because we are interested in
understanding the effects that varying an architecture has on
similar systems, we find the more limited framework of CAS
and CAST provides useful restrictions on possible variations.

VII. AN EXAMPLE SYSTEM

Coordinator Subarchitecture

Processing Components r Task I
© Manager

Communication Subarchitecture Planning Subarchitecture

Working
Memory |

Binding Subarchitecture
e | e |

* Manager

Processing Components r Task !
* Manager

L.l

—

Processing Compon:

Visual Subarchitecture . Manipulation Subarchitecture
Working

i Memol

— Spatial Subarchitecture

Processing Components r sk |
* Manager

i Working i —
emory £ srocessing Components | sk |
: © Manager

{ Working

Fig. 2. The example system subarchitectures.

We have used CAST to develop an integrated system
for a European integrated project [11]. The system is a
linguistically-driven tabletop manipulator that combines state-
of-the-art subarchitectures for cross-modal language interpre-
tation and generation [12] and visual property learning [13] to
produce a system that can learn and describe object properties
in dialogue with a tutor. In addition to this, the system features
subarchitectures for planning, spatial reasoning and manipula-

Red object placed on table.

Tutor (T): “This is a red thing.”

Red object replaced with blue object.

Robot (R): “Is that red?”

T: “No, this is a blue thing.”

Blue object replaced with red object.

Blue object placed to right of red object.

Blue object placed to left of red object.

T: “Put the blue things to the left of the red thing.”
R moves right hand blue object to left of red object.

Fig. 3. Events from the example system run

tion [14] to allow it to carry out manipulation commands that
feature descriptions based on learnt visual properties.

The implemented system features seven subarchitectures.
This includes seven working memory components (two in
C++, five in Java), seven task manager components (two in
C++, five in Java), three unmanaged components (two in
C++, one in Java) and twenty-eight managed components
(ten in C++, eighteen in Java). All of these are sub-classed
from CAST classes. In more detail the subarchitectures and
components are as follows: the communication SA containing
components for speech recognition, parsing, dialogue interpre-
tation, dialogue production and speech synthesis; the vision SA
(VSA) containing components for change detection, segmen-
tation, and visual property learning; the binding SA which
provides mediated information exchange between the other
subarchitectures (cf. [12]); the spatial SA containing compo-
nents for representing the current scene, and components for
adding spatial relationships to the current scene; the planning
subarchitecture containing components for planning, problem
generation, plan execution monitoring; and the manipulation
subarchitecture containing a single component for translating
planned actions into arm behaviour and visual servoing; and
the control subarchitecture containing components for motive
generation and management. A typical interaction with the
implemented system is documented in Figure 3, with internal
timing data from the system shown in Figure 4.

The ability to easily reconfigure CAST instantiations al-
lowed the development of the system to occur in stages
across four implementation sites. Each site typically developed
a subarchitecture as a standalone system which was then
added into an instantiation via the configuration interface.
New components were simply added to subarchitectures in a
similar manner: by adding lines to a configuration file. Using
this approach our integrated system was developed in two
stages. The first stage was to develop a system that could
learn about the objects in its world at answer questions about
them. This system is represented by the dark lines in Figure
2. Once this was complete we added in the subarchitectures
and extra components necessary to generate and follow plans
for manipulating objects. This system is represented by the
lighter lines in Figure 2.

One of the strengths of the architecture schema imple-
mented by CAST is its support for the parallel development
of representations across multiple subarchitectures. This is

30 secs

40 secs

| 50 secs

| B0 secs

Manip. SA

20 secs

Planning S&

i

Comm. SA

Coord. SA

Spatial SA

Binding SA

Vision SA

L
A

30 secs

|
&
B

»
c

31 secs

L
D

32 secs

L
E

33 secs

F

34 secs

G

35 secs

36 secs

J

37 secs

39 secs

| 38 secs

right rel. comp.

left rel. comp.

sCene manager

binding monitor — 1

spatial wm

binder

vis. cand. mon. /

==

binding wm /

colour recogniser| / |

segmentor

change detector.I

visual wm [l

Fig. 4. How processing occurs across SAs in the example. The lower diagram contains a detailed view of the circled area from the upper one. Grey areas
represent processing. Black lines on the lower diagram represent data exchanged via WMs.

illustrated by the highlighted region of the upper timeline
in Figure 4, which is shown in more detail in the lower
timeline. In this example one object is placed in front of the
system, then another object is placed to the right of it. When
the first object is placed in front of the system the change
detection component is triggered, causing a scene changed fact
(which also contains information about the time of change,
camera id etc.) to be added to the visual working memory
(VWM). The appearance of this fact causes the segmenter
component to run on the changed scene, which results in a new
region-of-interest (ROI) being generated along with a related
proto-object (PO). Once these data structures are in working
memory then the other components in the architecture start to
process them in parallel. In the VSA the property learning
components extract features from the ROI which are then
added into the data structure. The presence of these features
trigger the recogniser which add any recognised property data.
In the wider architecture, the presence of the PO causes a
binding candidate (BC) to be generated for it in the binding
subarchitecture. This is then bound into an instance binding
(IB) with other BCs from other subarchitectures. The presence
of a new, visible, bound candidate in the binding working
memory triggers the generation of a new spatial reference
object in the spatial working memory.

When the second object is added to the scene to the right
of the blue object, this triggers the change detection and
segmentation components to generate an ROI and a PO. Due to
the inherently concurrent nature of the design, this can happen
in parallel with the processing being performed on the initial
blue object. The creation of data structures for the second

object in VWM triggers further processing (feature extraction
etc.). As long as these processing components are not currently
processing other data-structures they are free to process the
second object’s data structures. When an IB is generated for
the red object, the spatial subarchitecture extends its scene
to include a new SO. The presence of more than one SO
causes the spatial relationship components to start annotating
the current scene representation with contextually appropriate
spatial relationships. In this case relationships are added to
state that the red object is to the right of the blue object and
the blue object is to the left of the red one. Relationships are
added in parallel to the further processing occurring in the
VSA, allowing an understanding of the scene to be built up
incrementally in parallel across the architecture.

This example demonstrates the importance of the support
for parallelism and incrementality in both the architecture
schema and the toolkit. An architecture that ran components
in serial would require approximately four seconds longer to
process this example. Of course this is more a demonstration
of the power of parallelism than it is the schema, but a crucial
aspect of integration is managing this parallelism in terms
of control and the concurrent changing of information. The
latter problem is tackled by enforcing serial access to working
memories and through change objects. Control is handled in
the schema by subarchitecture task managers preventing com-
ponents from processing at particular times. Further examples
of our system’s behaviour can be found in [11].

VIII. DISCUSSION

Using CAST provides a number of advantages for re-
searchers interested in engineering and understanding intelli-

gent robots. As with any middleware choice these advantages
come at the cost of limits on exactly what can be implemented
in what manner. The principal scientific advantage of using
the toolkit is that the architecture of the system is explicitly
represented and is based on a number of previously researched
design principles [5]. We plan to empirically explore these
principles in the future by using the toolkit to vary the internal
structure of instantiations of an advanced version of the system
presented in Section VII whilst maintaining the same external
functionality [3]. Possible variations may include placing all
processing components into a single subarchitecture, placing
each processing component into a subarchitecture on its own,
or legioning instantiations in various ways. Comparing these
variations will allows us to study the effects of architectural
variation on a state-of-the-art robotic system.

On a more technical level, CAST allows researchers to
quickly generate CAS architecture schema instantiations in
a distributed fashion using a mix of C++ and Java with
an API that remains constant regardless of programming
language or component location. The ability to configure
architecture instantiations via a separate interface means that
systems can be composed out of different combinations of
components as appropriate. The fact that these components
communicate via working memories (rather than using direct
connections) means that components can access information
provided by new components without the need for recompila-
tion or component-level reconfiguration. We took advantage of
these configuration features of CAST to develop the previously
presented system in an incremental manner.

Because the architecture of a system structures its internal
connections, it necessarily limits the ways in which program-
mers can pass information between components. Whereas
most middleware software (including BALT) is designed to
allow direct communication between components, CAST de-
liberately eschews this in favour of communication via shared
working memories. This means that some processing models
are easier to implement than others. It is at this point where
the science of intelligent systems and engineering of intelligent
systems meet, and potentially conflict. It is therefore necessary
to have a strong vision of the design and purpose of the
complete system during its implementation.

One of the most critical design decisions involved in using
CAST is deciding what types of information should be shared
via working memories. For example, should raw sensor data
(e.g. laser scans and images from cameras) be shared via
working memories, or should only the results of processing
such data be shared? For our current system we decided
on the latter approach and connected unmanaged processing
components to sensors via BALT connections (e.g. push or
pull connections). This meant we avoided the overhead of
having large data objects transmitted unnecessarily (when
they may get written to working memory but not read) and
frequently updated information written into working memories
(consequently generating a large number of change objects), at
the cost of allowing such information to exist outside of the
schema. We are currently working on a design for a “robot

layer” which will integrate such hardware connections (both
sensors and effectors) into CAST as far as possible. We hope to
build this layer on top of existing robotic middleware to exploit
existing work in this field. Because such frameworks use
alternative communication software we may have to replace
BALT with this to limit overall software dependencies.

IX. CONCLUSION

In this paper we presented CAST, a toolkit for implementing
architecture instantiations for intelligent robotic systems. This
toolkit is based on an architecture schema, CAS. The pur-
pose of both the schema and toolkit is to facilitate research
into information-processing architectures for state-of-the-art
intelligent robots, whilst providing engineering solutions for
the development of such systems. The applicability of our
tools to this problem was demonstrated with an example
implementation featuring a robot that can learn about objects
in its world and act on commands to manipulate them.

ACKNOWLEDGEMENTS

This work was supported by the EU FP6 IST Cognitive
Systems Integrated Project “CoSy” FP6-004250-1P.

REFERENCES

[1] C. Coté, Y. Brosseau, D. Létourneau, C. Raievsky, and F. Michaud,
“Robotic software integration using MARIE,” Int. Jour. on Adv. Robot.
Sys., vol. 3, no. 1, pp. 55-60, March 2006. [Online]. Available:
http://marie.sourceforge.net/

[2] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot
platform,” Int. Jour. on Adv. Robot. Sys., vol. 3, no. 1, March 2006.

[3] N. Hawes, A. Sloman, and J. Wyatt, “Towards an empirical exploration
of design space,” in Proc. AAAI 07 Workshop on Evaluating Architec-
tures for Intelligence, Vancouver, Canada, 2007.

[4] A. Sloman, “The “semantics” of evolution: Trajectories and trade-offs
in design space and niche space,” in Proc. IBERAMIA ’98, 1998, pp.
27-38.

[5] N. Hawes, J. Wyatt, and A. Sloman, “An architecture schema for
embodied cognitive systems,” University of Birmingham, School of
Computer Science, Tech. Rep. CSR-06-12, 2006.

[6] L. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy, “The HEARSAY-
II Speech Understanding System: Integrating Knowledge to Resolve
Uncertainty,” Blackboard Systems, pp. 31-86, 1988.

[7]1 J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and
Y. Qin, “An integrated theory of the mind,” Psychological Review, vol.
111, no. 4, pp. 1036-1060, 2004.

[8] J. E. Laird, A. Newell, and P. S. Rosenbloom, “Soar: An architecture
for general intelligence,” Art. Int., vol. 33, no. 3, pp. 1-64, 1987.

[9] J. Bach, “The micropsi agent architecture,” in Proc. of ICCM-5, 2003,

pp. 15-20.

V. Andronache and M. Scheutz, “An architecture development environ-

ment for virtual and robotic agents,” Int. Jour. of Art. Int. Tools, vol. 15,

no. 2, pp. 251-286, 2006.

N. Hawes, A. Sloman, J. Wyatt, M. Zillich, H. Jacobsson, G. Kruijff,

M. Brenner, G. Berginc, and D. Skocaj, “Towards an integrated robot

with multiple cognitive functions,” in Proc. AAAI *07, 2007.

G.-J. Kruijff, J. Kelleher, and N. Hawes, “Information fusion for visual

reference resolution in dynamic situated dialogue,” in Proc. PIT ’06,

E. Andre, L. Dybkjaer, W. Minker, H. Neumann, and M. Weber, Eds.,

2006, pp. 117 — 128.

D. Skocaj, G. Berginc, B. Ridge, A. §timec, M. Jogan, O. Vanek,

A. Leonardis, M. Hutter, and N. Hawes, “A system for continuous

learning of visual concepts,” in Proc. ICVS "07, 2007.

M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt, “Mediating between

qualitative and quantitative representations for task-orientated human-

robot interaction,” in Proc. IJCAI ’07, 2007.

[10]

(11]

[12]

[13]

[14]

