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Abstract

In this paper we propose an empirical method for the
comparison of architectures designed to produce similar
behaviour from an intelligent system. The approach is
based on the exploration of design space using similar
designs that all satisfy the same requirements in niche
space. An example of a possible application of this
method is given using a robotic system that has been
implemented using a software toolkit that has been de-
signed to support architectural experimentation.

Introduction

Although many researchers design architectures for intelli-
gent systems, very few evaluate the influence the architec-
ture has on the system, instead preferring to evaluate the
overall system performance on the tasks it was designed for.
If the science of building intelligent systems is to advance
beyond the current state-of-the-art it is essential that archi-
tectures are evaluated as key system components in their
own right. Due to the typically complex nature of intelli-
gent systems such evaluation is not easy to do; systems are
not traditionally designed and built to allow the influence of
the architecture to be isolated from that of the other (inter-
connected) elements of the system. This paper presents a
sketch of a methodology that could be used for comparing
architecturally different versions of a single system in order
to explore how these variations affect the performance of the
whole system.

Design Space & Niche Space

The study of architectures for intelligent systems is an ex-
ploration of design space, the space of possible designs for
intelligent agents (Sloman 1998). Architecture designs are
usually produced to satisfy a set of constraints and require-
ments. This set defines a particular niche that could be sat-
isfied by many designs, and a single niche can be consid-
ered as a point in niche space (the space of all possible con-
straints and requirements). In most Al work architecture
designs are ultimately implemented in hardware and soft-
ware. As with the previous mapping between design space
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and niche space, there is a space of possible implementa-
tions that may realise a single design. This could be as
simple as implementing a design in different programming
languages, or it could involve different robot sensor and ef-
fector configurations providing the same gross functional-
ity. This characterisation of intelligent systems has been ex-
plored in greater detail in previous work, e.g. (Sloman 1998;
2000).

Given that architectures for intelligence can be described
in terms of niches, designs and implementations, there are
a number of different ways architectures can be evaluated.
For example, designs for architectures for neighbouring
points in niche space could be compared to study how the
changes in requirements result in a change in design, or
the interaction between a single niche and design could be
explored in increasing levels of detail (cf. (Hawes 2004;
Scheutz & Logan 2001)). For this paper we will concen-
trate on the evaluation possibilities provided by comparing a
number of closely related designs for a single niche.

1 Niche, n Designs

When looking to draw an informative comparison between
architectures, it is important that some common aspects ex-
ist between them. This allows the comparison to be drawn
with reference to these fixed elements. In the most extreme
case of comparing designs for the same niche, only the fact
that they satisfy the same niche may be common. For ex-
ample, a comparison could be drawn between two museum
tour-guide robots that must solve the same problems to func-
tion correctly but are based on different hardware platforms
and have run different software. Another example is a com-
parison between a design where all possible contexts in that
niche have been analysed in advance by the designer and
suitable (e.g. reactive) responses Dre-coded versus a design
where the system has some general capability which can be
used to work out what to do. Typically the former will re-
spond much faster, and the latter will be able to cope with
a wider variety of circumstances, though speed differences
could be masked by hardware differences. Another differ-
ence might be between a neural-net based system that learns
by adjusting weights in a network and one that uses sym-
bolic rules and learns by compiling or modifying rules (in-
cluding rules using probabilities in the conditions or in the
actions). Although such comparisons between very differ-



ent designs may provide some information about the ways
both systems solve the same problems, it will be difficult to
separate out the effects of their different architectures from
the effects of their many other possibly different software
and hardware elements. This is a special case of the ‘credit
assignment problem’ which bedevils many Al learning sys-
tems (Minsky 1995). It can also be a problem for a research
community.

In a comparative study, in order to obtain information
about the effects a system’s architecture has on its overall
behaviour it is important to be able to control the varia-
tion between the compared systems to just variations in ar-
chitecture. In terms of software, this means that the sys-
tems should be composed of software modules based on
the same designs. The variation should occur in the con-
nection and communication patterns that exist between the
software modules in the design, i.e. at the level of the sys-
tem’s architecture. In terms of system-level behaviours, this
means that the systems must be compared when perform-
ing the same tasks (e.g. answering a question or giving a
tour). This type of exploration of design space draws on
problem-specific knowledge about possibly useful architec-
ture designs, allowing us to explore the design space for a
single niche using very small steps between designs (as the
majority of their parts are based on the same designs).

In the remainder of this paper we discuss an approach
to putting this methodology into practice using a software
toolkit designed for experimenting with architectures with-
out altering their processing components.

The CoSy Architecture Schema & Toolkit

We have recently designed and implemented a robotic sys-
tem that can manipulate simple objects and engage in simple
linguistic interactions with a human about its world (Hawes
et al. 2007). The design of the system is based on the
CoSy Architecture Schema (CAS) (Hawes, Wyatt, & Slo-
man 2006), which was developed from requirements derived
from scenarios for a self-extending household assistant robot
with 3-D manipulative capabilities and some understanding
of what it is doing. In addition to representational, algorith-
mic and learning requirements derived from the complexity,
variability, ontological richness and unpredictability of do-
mestic environments, the scenarios require support for ar-
chitectural features such as: concurrent modular processing,
structured management of knowledge, and dynamic control
of processing.

To satisfy these requirements, the schema allows a collec-
tion of loosely coupled subarchitectures (SAs). As shown
in Figure 1, each contains a number of processing compo-
nents which share information via a specific working mem-
ory, and a control component called a task manager. Some
processing components within an SA are unmanaged and
some managed. Unmanaged components continuously per-
form relatively simple processing. This may include pro-
cessing high-bandwidth data. They run constantly and re-
actively, pushing any significant results onto their work-
ing memory. Managed processes, by contrast, monitor the
changing working memory contents, and suggest possible
processing tasks using the data in the working memory.
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Figure 1: The CAS Subarchitecture Design Schema.

Such processing tasks may include deliberative mechanisms
concerned with controlling, monitoring, planning, and learn-
ing from actions in the environment, and meta-management
tasks concerned with controlling, monitoring planning and
learning from internal processes and their consequences, in-
cluding the deliberative processes. As these tasks are typ-
ically expensive, and computational power is limited, tasks
are selected on the basis of current needs of the whole sys-
tem. The task manager is essentially a set of rules for mak-
ing such allocations. Each subarchitecture working mem-
ory is readable by any component in any other SA, but is
writable only by processes within its own SA, and by a lim-
ited number of other privileged SAs. Components within
privileged SAs can post instructions to any other SA, allow-
ing top-down goal creation.

If there are several goals in a subarchitecture they are me-
diated by the SA’s task manager. This mixes goal-driven
(top-down) and data-driven (bottom-up) processing and al-
lows goals to be handled that require coordination within
one SA or across multiple SAs. At one extreme the number
of write-privileged SAs can be limited to one (centralised
coordination), and at the other all SAs can have write priv-
ileges (completely decentralised coordination). Our scenar-
ios appear to favour a small number of specialised, privi-
leged coordination SAs.

We work from the requirement that processing compo-
nents must operate concurrently to build up shared represen-
tations. SAs work concurrently on different sub-tasks, and
components of an SA work on different parts of a sub-task.
This is required, for example, to allow the results of one
component’s processing to influence the concurrent process-
ing of other components working with the same information.
This may be the case with components working at different
levels of abstraction on the same task (as in POPEYE (Slo-
man 1978)), or with one component predicting the results
of another (as in modular motor learning (Wolpert, Doya, &
Kawato 2003)). In general, instantiations of the SA schema
function as distributed blackboard systems as used, for ex-
ample, in Hearsay-II (Erman et al. 1988).

To support these requirements in implemented sys-
tems we developed the CoSy Architecture Schema Toolkit
(CAST) (Hawes, Zillich, & Wyatt 2007), a software toolkit



based on CAS. The toolkit provides interfaces for develop-
ing managed and unmanaged components in C++ and Java
(and could be extended for other languages) and implemen-
tations of task managers and working memories. Compo-
nents can be connected into subarchitectures across machine
and language barriers without recompilation. The toolkit al-
lows researchers to experiment easily with different instan-
tiations of the schema, and to separate the effects of the
architecture (i.e. the toolkit) from that of the components
software modules. Both of these aspects of the toolkit are
important when evaluating an architecture and they will be
exploited in the following evaluation methodology.

Although this paper is about ways of comparing differ-
ent implementations of architectures providing very similar
functionality, the main point of both the architecture schema
and the toolkit is to allow significant changes to an architec-
ture to be made relatively easily during research. This may
be necessary where the required architecture is not obvious,
or where new components or competences must be inte-
grated into a system. Examples of such cases include allow-
ing new high level visual information to be passed to a nat-
ural language subsystem which may be able to use the new
information to resolve syntactic or semantic ambiguities, or
allowing new information from language to be passed to a
visual system to help with the interpretation of ambiguous
or obscure visual input (e.g. a sentence drawing attention
to an object that is in deep shadow and therefore not very
visible).

We have used CAST to develop an integrated system for a
large European integrated project (Hawes et al. 2007). The
system is a linguistically-driven tabletop manipulator that
combines state-of-the-art subarchitectures for cross-modal
language interpretation and generation (Kruijff, Kelleher,
& Hawes 2006) and visual property learning (Skocaj et al.
2007) to produce a system that can learn and describe object
properties in dialogue with a tutor. In addition to this, the
system features subarchitectures for planning, spatial rea-
soning and manipulation (Brenner et al. 2007) to allow it
to carry out manipulation commands that feature object de-
scriptions based on the previously learnt visual properties
in combination with a collection of ‘innate’ (directly pro-
grammed) visual, motor and learning capabilities.

We wish to evaluate the system we have built on at least
two levels. We want to evaluate it on how well it fits its niche
(i.e. how good it is at performing the tasks it was designed
to do). This will involve benchmarking it over a wide range
of visual scenes, dialogues and commands. We also want
to evaluate how suitable CAS is as an architecture design
for such a system. This requires us to separate the effects
of the system’s architecture from that of its other elements.
The following sections propose a methodology for doing this
empirically. However, any empirical results will also need to
be explained analytically.

Comparing CAS Instances

To separate the effects of our CAS instantiation’s architec-
ture from the effects of its other components we need other
similar instantiations to compare it to. As stated previously,
to understand the influence of the architecture on the overall

system we must be able to compare the system to other sys-
tems that are nearby in the design space that satisfies a sin-
gle niche. There are many ways to do this, but in CAS and
CAST there are a small number of ways to move through
design space that are easy to implement with the provided
tools!. The following sections present the simplest ways
of altering CAS instantiations for comparative experiments.
These suggestions are followed by a selection of proposed
metrics that could be used to empirically compare the effects
of the architecture in the various instantiations.

Variations in Control

Each CAS subarchitecture features a control component
called a task manager. The component controls when man-
aged components can process data. Part of designing and
implementing a CAS instantiation is writing the rules that
each task manager will use for its subarchitecture. In our
current system most of the subarchitecture task managers
allow components to act whenever they can, in parallel if
necessary. The exceptions to this are the spatial and com-
munication subarchitectures which use finite state machines
to coordinate the actions of their managed components.

The first way in which we could consider creating easily
comparable CAS instantiations is to enforce particular pat-
terns of control in different instantiations. There are three
control patterns that sample the possible spectrum of paral-
lelism in an architecture: fully parallel, subarchitecture par-
allel, fully sequential. A fully parallel architecture is what
we currently use, in which each component can act when it
is able to. A fully sequential architecture would only allow
a single component to act at a time, and no other compo-
nent could act until it had finished. A subarchitecture par-
allel architecture would sit between these extremes, allow-
ing only a single subarchitecture to be active at one time
but with components within the subarchitecture able to act
in parallel. The notion of ‘parallelism’ allowed by CAS in-
cludes both the parallelism that exists when processes are
distributed across multiple machines and that which occurs
in multi-threaded single CPU processes. Our current system
uses a mixture of both these types of parallelism (multiple
machines running multiple processes in parallel).

We view the support for parallelism as an essential as-
pect of architectures for systems that must operate in the
real world. As parallelism is not explicitly covered by all ar-
chitectures for such problems (cf. (Laird, Newell, & Rosen-
bloom 1987)) it is important to be able to demonstrate the
effects of parallelism on a complete system in a principled
manner. By varying the amount of concurrency supported by
a CAS instantiation (without varying any other aspect of it)
we hope to separate out the effects of the schema’s support
for parallelism from the other aspects of the instantiation.

"Ease of implementation is important because few researchers
can spare the time to create multiple systems to perform the same
task purely for comparative purposes, except where ‘rival’ teams
happen to be using different architectures and/or tools for the same
purpose.



Variations in Connections

Our current system uses 31 processing components divided
between 7 subarchitectures. The main role of the subarchi-
tecture grouping is to strategically limit the flow of infor-
mation between components. Components can subscribe to
change information about working memories and use this in-
formation to read from working memories. Subarchitectures
can be configured to send change information to other sub-
architectures or not, and to receive change information from
other subarchitectures or not. Components within subarchi-
tectures can then apply additional filtering to this change in-
formation, choosing to receive information from a particular
source component or subarchitecture; of a particular change
type (add, delete or overwrite); or about a particular data-
type. Components can choose to discard change informa-
tion that arrives when they are engaged in processing, or to
buffer this information for later access. The buffers used
for this are not fixed in size, but are limited by the mem-
ory available on the system. In practice this has not become
an issue, as change information structures are typically very
small (although in some scenarios and systems they could be
numerous). The amount of processing a component has to
do to receive relevant change information is an indicator of
how much redundant information it is receiving as a result
of its connections into the wider architecture.

The grouping of components into subarchitectures also
controls which components have access to working mem-
ories. In the schema, access to working memory is serial,
so that when more components require access to a single
working memory the greater the chance that an access re-
quest will have to be queued while another request is carried
out. On the other hand, when a greater number of working
memories are used there is a greater overhead in locating a
particular item of data.

By varying which components in are in which subarchi-
tectures it is possible to explore the performance trade-offs
present in these configuration options. There are a number
of possible configurations of components and subarchitec-
tures that could be explored in CAS: a 1-subarchitecture in-
stantiation, an n-component n-subarchitecture instantiation,
and an n-component m-subarchitecture instantiation. In
a 1-subarchitecture instantiation all the components would
be in a single subarchitecture, attached to a single work-
ing memory. At the other end of the connection spectrum,
an n-component n-subarchitecture instantiation would fea-
ture a subarchitecture and working memory for every com-
ponent. Between these extremes is an m-component m-
subarchitecture instantiation where n > m and m > 1.
This is the case for our current system, where components
are grouped into subarchitectures based on a functional de-
composition of the system’s desired behaviours. These con-
nection variations could be combined with the previously
presented control variations to explore design space in two
dimensions of architectural variation.

Architectures tend to be viewed almost exclusively as
approaches to grouping and connecting processing compo-
nents. There are many different possibilities for subdividing
systems, (e.g. compare the functional subdivision in (Hawes
et al. 2007) to the behaviour based subdivision favoured in

(Brooks 1986)) but there is not a great deal of objective evi-
dence about the benefits of one approach over another for a
particular task. Although it is clear that the above variations
in CAS connection patterns will not shed light on the bigger
questions of modularity, we hope that exploring a subset of
the issues in a controlled way will allow us to make some
progress in this direction.

Experimental Metrics

Using the CAS toolkit it is possible to take our current sys-
tem and create the various instantiations described above
just by changing the way the system is configured at startup
time (i.e. with no changes to compiled code). Given that
we can produce these implementations of particular points
in design space it is important to be able to compare them
objectively. To this end we need to measure aspects of the
performance of each instance. The following are sugges-
tions for possible metrics we could employ to compare ar-
chitecture instances:

e The number of successfully completed system-level be-
haviours in a particular scenario (e.g. answering a ques-
tion). It would be expected that this would not change
across instantiations.

e The time it takes for a system-level behaviour task to be
completed. Increased parallelism should reduce this, and
the time taken for lower-level tasks will have an influence.

e The number of component-level tasks (e.g. segmenting a
scene) that are completed in a given amount of time across
the instantiation. This is an indication of how much con-
currency is being exploited in the system. The time taken
to write to and retrieve from working memory may have
a small influence.

e The amount of time taken to write to or read from work-
ing memory. This should be influenced by the number of
components attached to a working memory, and the lev-
els of concurrency allowed in the system (concurrent pro-
cessing should cause more access attempts to co-occur).

e The time taken for a component to complete a task (e.g.
parsing a sentence or segmenting a scene). This will be
influenced by the CPU load of the component’s system
and the time taken to interact with working memory.

e The CPU load of the machines running the instance. This
is a coarse way of judging the complexity of the pro-
cessing being done by the system. This metric provides
no real measure of instance performance in isolation, but
should do so when measured over multiple architecture
instances running the same components. This assumes
that the components always place the same load on the
CPU and it is the change in architecture that creates any
load variation across instances.

e A ratio of required working memory change information
to redundant change information received by a compo-
nent. This reflects the overhead placed on a component
due to the architecture’s connectivity.

These metrics are obviously interdependent in various ways
and should fluctuate in coherent patterns across system be-



haviours and architecture instantiations. There are likely to
be many more aspects of a system’s performance that could
and should be measured in order to assess the influence of
the architecture and how this varies across instantiations.

In addition to these ‘object-level’ metrics it is also pos-
sible to examine ‘meta-level’ metrics for architecture in-
stances. For example, we could investigate metrics for mea-
suring how easy it is to debug, maintain or extend a system;
how well a design supports the addition of various kinds of
learning or self-monitoring; how easy is it to give a mathe-
matical specification of the the system; or how many aspects
of human-like or animal-like functionality a design supports
or impedes. Because we are interested, in this paper, in
providing a method for evaluating designs that are close in
design space, these issues become less important (as such
metrics will probably vary very little across considered de-
signs). In the long-term they are critical issues that must be
addressed by the science of building intelligent systems.

Conclusion

In this paper we proposed a methodology for a task-
independent empirical method for evaluating architectures
for intelligent systems. The methodology is based on com-
paring data taken from multiple similar systems that vary
only in architectural terms. These systems will all exist at
neighbouring points in the design space for a single point in
niche space. The data taken from the systems will allow us
to evaluate the architectures by understanding how moving
through design space in particular ways affects the overall
performance of systems built on the architectures.

In the next few months we will apply the methodology to
evaluate the CoSy Architecture Schema by understanding its
position in design space. This exercise will also allow us to
further develop the methodology itself. One particular focus
will be developing the metrics that allow informative com-
parisons to be drawn between implemented robotic systems.
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