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Abstract

The ability to understand behaviour is a crucial skill for Ar-
tificial Intelligence systems that are expected to interact with
external agents such as humans or other AI systems. Such
systems might be expected to operate in co-operative or team-
based scenarios, such as domestic robots capable of helping
out with household jobs, or disaster relief robots expected to
collaborate and lend assistance to others. Conversely, they
may also be required to hinder the activities of malicious
agents in adversarial scenarios. In this paper we address the
problem of modelling agent behaviour in domains expressed
in continuous, quantitative space by applying qualitative, re-
lational spatial abstraction techniques. We employ three com-
mon techniques for Qualitative Spatial Reasoning – the Re-
gion Connection Calculus, the Qualitative Trajectory Calcu-
lus and the Star calculus. We then supply an algorithm based
on analysis of Mutual Information that allows us to find the
set of abstract, spatial relationships that provide high degrees
of information about an agent’s future behaviour. We employ
the RoboCup soccer simulator as a base for movement-based
tasks of our own design and compare the predictions of our
system against those of systems utilising solely metric rep-
resentations. Results show that use of a spatial abstraction-
based representation, along with feature selection mecha-
nisms, allows us to outperform metric representations on the
same tasks.

Introduction
In co-operative or adversarial tasks, knowledge of an oppo-
nent or one’s own team-mates might reveal common mis-
takes in strategy that can be exploited, or identify areas
where the performance of a team can be improved. The use-
fulness of such models, should they be properly exploited,
is clear. However, we must first tackle the issues surround-
ing how Artificial Intelligence systems can be built to learn
robust, predictive models of behaviour from often complex
and chaotic multi-agent domains.

Quantitative representations, while being rich in informa-
tion, do not lend themselves well to generalisation, and can
be brittle when used to encode models of varying situated
behaviour. There may also be forms of richness in the do-
main that lie as-yet undiscovered that first require some in-
terpretation of the metric data before being revealed. In this
study, we are interested in investigating the abstract spatial
relationships that exist between entities, and how they can be

used as a tool to construct predictive models of behaviour.
Our approach build on a broad body of recent work in

the field of Qualitative Spatial-Relational Reasoning, which
seeks to provide tools for human-like, common-sense rea-
soning about space, time and motion by providing discretisa-
tions over quantitative measurements. These techniques may
also be relational, and in our work we argue that in adver-
sarial and/or co-operative domains, agent behaviour can be
explained in relational terms.

To ground our study in human experience, we consider
the example of a human football player unable to verbally
communicate with his or her team-mates (Stone, Kaminka,
and Kraus 2010). While all parties may have an understand-
ing of the rules of the game, the particular team strategy
and tactics employed are not known to our player until they
are observed. We might imagine that while there may exist
no explicit verbal communication facilitating co-ordination,
the human player in this scenario would communicate with
their team-mates through modification of the environment
(changing the position of the ball, and themselves), and
would make behavioural decisions based on spatial infor-
mation regarding the positioning, motion and orientation of
friendly and opposing players. In such situations human rea-
soning is typically conceptual, abstracting away from metric
values, allowing for generalisation and the composition of
robust, transferable models.

RoboCup Soccer
Simulated Robocup soccer is a widely used platform for
Artificial Intelligence research wherein teams of AI agents
compete in games of virtual soccer. It is a fully-distributed,
adversarial multi-agent domain, and therefore the ability to
predict opponent behaviour – both in terms of low-level tac-
tics or high-level strategy - can directly improve team per-
formance. Simulated agents are subject to sensor and action
models, which introduces a stochastic element.

Background
A variety of techniques in the existing work have been ap-
plied to player modelling in the RoboCup domain, such
as traditional reinforcement learning (Vieira, Adeodato, and
Gon 2010; Jung and Polani ; Shimada, Takahashi, and Asada
2010; Molineaux, Aha, and Sukthankar 2008), and case-
based reasoning (Ros, Llu, and Mantaras ; Floyd, Esfandiari,



and Lam 2008). Little work investigates the application of
qualitative, relational representations in regard to the prob-
lem. Though (Bombini et al. 2010) attempted to characterise
player behaviour using relational sequence models, this was
performed using pre-defined relational symbols over the ac-
tion space such as dribble, shoot and pass. Molineaux, Aha,
and Sukthankar employ a similar abstraction, though con-
sider just co-operative behaviour acquisition.

Recent work (Sridhar and Cohn 2010) has used QR tech-
niques in the recognition of events in an aircraft loading do-
main, representing the interactions between a trolley, an air-
craft, a plane puller and a loading bridge in terms of a qual-
itative, relational representation. Changing sequences of re-
lations over time then form the basis of predictive models of
events in the domain. We argue that to model behaviour in
complex, continuous domains, we can make use of similar
calculi. However, we are interested particularly in studying
how several qualitative calculi can be applied concurrently,
all derived from the same metric data, to provide AI systems
with more rich spatial information. For instance, in a real
game of football we might consider the situation of a player
attempting to shoot the ball into a goal which is defended by
a goalkeeper. When shooting at the goal, the relative angles
between the player, the goalkeeper and the goal posts are
important. The goalkeeper would like to minimise the angle
between himself and a goalpost with respect to the player,
so as to make the shot as difficult as possible, whereas the
player would prefer to widen the angle to make the shot eas-
ier. This angle will not be precisely specified for either the
player or the goal keeper, and in fact there may be a range of
angles that are all satisfactory.

Our Approach
In our approach, we assume a learning agent that possesses a
birds-eye view of the simulated football stadium. The agent
observes the ongoing game in real-time, and receives low-
level metric data informing it of the position and orienta-
tion of the game ball, all players on the pitch, and the ac-
tions they take. Systems with this design have been studied
with regard to the automatic generation and understanding
of narratives of football games, towards systems capable of
automatic commentary generation (Hajishirzi et al. 2012a;
2012b). On each discrete time step of the simulation, our
agent observes the quantitative state of the world and ab-
stracts it into sets of qualitative relations according to the
implemented calculi (described in the following section) to
create a state representation. This state representation is then
used as the basis for a predictive model, which we discuss
and evaluate in more detail later.

Qualitative Relational Representations
Abstraction has been characterised as a non-injective map-
ping over the elements of a set S to a target space T (Fromm-
berger and Wolter 2010), compressing a range of possible
inputs into a target space. In AI the field of Qualitative Rea-
soning (QR) looks at how such abstract models can be used.
We are particularly interested in abstractions that are also re-
lational, and one of the most well-known examples of such

is Allen’s interval algebra (Allen 1983), which allows qual-
itative reasoning about temporal relations between events,
such as “Event X occurs before event Y ” and “Event X
overlaps with event Y ” among others. Qualitative symbols
can then explain a wide range of quantitative observations
an AI system might make, aiding knowledge transfer and
generalisation, and improving the scalability of learning sys-
tems (Frommberger 2010).

In our work we are interested in spatial abstractions ap-
plied to entities moving in physically-analogous space. We
are interested in how we can employ spatial abstractions to
discretise over the attributes mobile entities typically pos-
sess, such as position, orientation and velocity, and replace
them with symbols expressed in the form of binary relations.
For now we constrain ourselves to the use of just three sep-
arate calculi, specified in some of their simplest forms, and
of which we now provide an overview.

Region Connection Calculus
Introduced in the early 90s (Randell, Cui, and Cohn 1992)
RCC is used to reason about relations between spatial re-
gions. Between regions a set of binary, boolean relations is
formed from the primitive Connected(x,y) relation, which
holds when given regions share common points in space.
Additional relations can then be formulated by consider-
ing the degree of connectivity between regions. In our work
we employ regions described by simple rectangular shapes,
however RCC can also be used to reason about arbitrary
shapes and concave regions (Ouyang, Fu, and Liu 2007).
Most recently, RCC has been applied to diverse areas such
as activity recognition (Sridhar and Cohn 2010), image anal-
ysis (Falomir, Jim, and Escrig 2011), and spatial reasoning
for mobile robots (Hawes, Klenk, and Lockwood 2012).

The set of relations we employ in our work is known as
RCC5 and provides the following binary relations.

• Equal (EQ) - Regions share all points in common.
• Disconnected (DC) - No points are shared between re-

gions.
• Overlapping (O) - Some points are shared, however there

also exist points that are not shared.
• Proper Part (PP) - One region entirely encloses the other.
• Proper Part Inverse (PPi) - One region is entirely enclosed

by the other.

We encode the underlying structure of the environment
as a set of rectangular regions which mirror the spatial con-
figuration of a football pitch, representing areas such as the
left and right halves, penalty areas, the centre circle, goal
areas, and so on. This is based on information provided by
the RoboCup simulator. The structure of a standard field is
shown in Figure 1. RCC relations between these regions are
calculated in an exhaustively pairwise manner, with only one
relation holding between a given pair at any one time. From
this, we can formulate a symbolic representation of the pitch
structure in terms of RCC5 relations – for instance, consider-
ing the centre circle on the pitch, we can say that it Overlaps
both the left and right halves of the pitch, and is Discon-
nected from the penalty areas. We can also say that the left



Figure 1: Standard football pitch structure. The areas la-
belled are as follows. A is the left inner goal area. B is the
left outer goal area. C is the left penalty area. D is the left
half, and E is the centre circle. Similar region labels hold for
the right side of the pitch.

and right penalty areas and goal areas are Proper Parts of
their respective pitch halves.

We also represent in-game players and the game ball as
mobile regions, employing minimum bounding rectangles
around the entities. The regions used to represent non-static
entities are party to the same relations described previously,
and their relationships are similarly calculated in an ex-
haustively pairwise manner. Transitions between relations
are governed by a conceptual neighbourhood, which ensures
that relations cannot transition directly should intermediate
relations exist between the two which must first be observed
(Gooday and Cohn 1994). That is, in every relational state,
there exists a local neighbourhood of valid transitions.

Qualitative Trajectory Calculus
QTC is used to represent qualitative symbols describing in-
formation about moving objects (Van de Weghe et al. 2005),
and has seen recent applications in reasoning about motion
in robotics (Hanheide, Peters, and Bellotto 2012) and traffic
management situations (Delafontaine 2011).

The QTC calculus itself has several variants – QTCN al-
lows for reasoning about the movement of points in a net-
work, and QTCS allows for reasoning about the shapes of
trajectories of moving points. For this study, we employ the
QTCB (Basic) relation set, which encodes the following re-
lations between any two points k and l, with each relation
taking on a value in the domain {-,+,0} describing its state.

• Towards/Away relation
- : k is moving away from l
+ : k is moving towards l
0 : k is stable with respect to l

• Left/Right relation
- : k is moving to the left of l
+ : k is moving to the right of l
0 : k is stable with respect to l

• Relative Motion relation
- : k is moving faster than l
+ : k is moving slower than l
0 : k is stable with respect to l

Figure 2: A set of four angular zones egocentric with respect
to a player, such that the 0th zone is always aligned with the
orientation of the player’s body.

Transitions between QTC relations are governed by a con-
ceptual neighbourhood (Van de Weghe and Maeyer 2005).
Our technical implementation follows that of (Delafontaine,
Cohn, and Van de Weghe 2011), using the position, velocity
and orientation of points to generate relations.

We decompose each multivariate relation into a set of
boolean relations corresponding to each of the values in its
domain, giving us nine QTC relations in total (with only one
relation per group of three active at any one time). Doing this
allows us to represent RCC5, QTC (and later Star calculus)
relations in a common format. We apply the QTC calculus
to all moving entities, specifically players and the game ball.

Star Calculus
The Star calculus is a calculi for describing qualitative di-
rection between points in space with respect to one-another,
and is done so in terms of a set of binary relations (Renz and
Mitra 2004). Star employs angular zoning based on either an
adjustable granularity parameter m, in which case the uni-
form angular division between zones is simply 360/m, or
by specifying a custom, arbitrary sequence of angles. The
result is a set of circle sectors emanating from a point, ex-
tending into infinity, discretising over a range of angles, with
each composing a single binary relation. Between two points
then, the current Star relation is determined by taking the an-
gle between them and determining which discrete zone the
result falls in to.

The Star calculus has been employed in cognitive
robotics as a component of knowledge-representation sys-
tems (Daoutis, Coradeschi, and Loutfi 2012), as a tool for
generating qualitative models of route networks, and in
localisation (Renz and Wölfl 2010) and navigation tasks
(Stolzenburg 2010).

In our work, the Star relations that hold between all mo-
bile entities are calculated on each time step along with RCC
and QTC relations. We also ensure that Star relations are
considered in egocentric terms, relative to the frame of ref-
erence of an entity. A rough example of this is illustrated
in Figure 2. For players, we orient the relation set such that
the 0th relation is always the relation directly in front of the
player’s body.

Representing States
We have described our implementation of the RCC5, QTCB

and Star calculi, with the underlying commonality being that



all calculi encode information as sets of binary, boolean re-
lations. In our system, we unify these relations into a single
representation which describes the state of the environment,
in terms of the relations that hold between all mobile en-
tities as well as their relationships with the pitch structure.
The current state is then given as a vector of boolean values
expressed over the possible set of all relations.

Relational representations are prone to state-space explo-
sion, and ours is no exception. To partly address this, we
engage in a trivial preprocessing step to remove redundant
relations by removing those that we know a priori will re-
main static, such as the relations between regions of the pitch
structure, and relations between entities and themselves.
These things provide us no descriptive power, and so we dis-
card them. There may still exist other redundant relations in
our representation, but this is not something we can be aware
of without encoding domain-specific information, which we
wish to avoid. We initially deliberately over-generate the
representation, and only later on, after analysing the data
from trials do we begin pruning the state space.

Learning
Our aim is to produce a model that will provide us the ability
to predict the actions a player we are interested in is likely to
perform. In RoboCup Soccer, players select between a finite
set of possible actions to execute on each frame, of which
we consider a simplified sub-set as follows.

• Turn - Allows a player to alter their orientation.

• Dash - Causes the player to move in the current direction.

• Kick - Kicks the ball with some degree of force.

We also consider that an agent might not choose to perform
any of these actions on a given frame, and so we allow for
a NOOP action. Other actions exist, such as those for catch-
ing the ball and tackling, however we do not consider them
for now, as the tasks what we set do not make use of them.
In addition, there exist actions for altering field of view or
communicating with other players. We do not consider these
either, as they do not directly affect the spatial relations that
exist between players (though they may do, depending on
the design of an agent). Several actions also have parame-
ters (for instance, how hard to kick a ball), however for now
we are only interested in predicting the action label. That is,
we are only concerned about predicting what type of action
is to be performed, and we do not think about the quantita-
tive component associated with it.

The approach we take is to utilise a Hidden Markov
Model (HMM), wherein our latent states are the agent ac-
tions we wish to predict, and observations are given in the
form of vectors of qualitative world states. Given the current
time t, and a window of length w of previous observations
(qualitative world states) where y(n) is the world state at
some previous point in time n where n < t, our goal is to
determine a probability distribution over the latent variable
x(t) – the action to be taken by player x. That is, we look
for P (x(t)|y(t−w), .., y(t)), which we determine using the
Forward algorithm (Rabiner and Juang 1986). This gives us
a distribution over actions to be taken by a player given a

history of previous evidence in the form of a sequence of
states, of which we take the action with the max probability
as our prediction. However, as discussed previously, our sys-
tem considers a global state space. This has pitfalls – in our
case, an agent cannot act on something it cannot perceive (or
has not perceived recently in some finite time horizon), and
so attempting to predict based on a global state will mean
that activities that occur beyond the agent’s perception act
as a form of noise. Before building the HMM, we engage
in a pre-processing step to filter out irrelevant information,
and to determine which state variables provide us the most
predictive power.

Feature Selection
Before we employ the HMM to predict agent actions, we
must first determine what variables in the state space may
be relevant to performing that prediction. We do this in two
steps, first we prune variables according to a filter based on
the agent’s field of view, and then we analyse those observed
variables to see which provide the most information about an
agent’s behaviour.

Perception Filtering
We filter the state representation at each step by including
only those relations that are perceivable by the agent whose
actions we wish to predict. For each time step, we start with
the global state S as a vector of state variables of binary re-
lations x ∈ S and an agent a, and generate a perception filter
by applying a weighting function over the state variables to
give us S‘ = w(a, x)x ∀x ∈ S. The weighting function
w(a, x) returns 1 iff the entities represented in the relation
x are perceivable by the agent a, and 0 otherwise. We make
use of the egocentric Star relations, illustrated in Figure 2,
to implement this. A RoboCup agent has a field of view of
90 ◦ which we break down into three 30 ◦ zones (which we
label, s0, s1 and s11. Front, front-right and front-left respec-
tively), and in order for an agent to perceive a relation, the
entities involved in that relation must fall into one of these
zones. That is, w(a, x) returns 1 iff one of these relations
holds.

Mutual Information
Our second step in the feature selection process seeks to
Given the set of abstract spatial relations observed by an
agent, we want to find those that appear to provide the most
information about what the agent will do next. That is, what
spatio-temporal changes influence the agent’s behaviour –
what are its relevant inputs.

We do this partly for practical purposes, but also to main-
tain a degree of generality in our representation. Calculating
relations exhaustively pairwise creates a state-space explo-
sion, but this is initially desirable, as it allows our represen-
tation to maintain somewhat domain agnostic at this stage –
it may be the case that some relations provided by our QR
calculi have no use in a particular application domain, how-
ever we do not know this ahead of time. Instead, we prefer
to generate all possible relations, and determine which ones
are relevant in a pre-processing step.



There may be a wide range of ways to achieve this, but
we employ the information-theoretic measure of Mutual In-
formation (MI), allowing us to quantify levels of mutual de-
pendence between variables (Guyon 2003). MI is given in
its simplest form as

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)(p(y)

MI can be thought of as the reduction in entropy in Y
given X. We may imagine in our case that X represents the
sequence of states perceived by an agent where xt ∈ X is
the vector of state variables at time t, and yt ∈ Y represents
the action taken in a state. So, we wish to discover which
state variables provide good entropy-reduction with regard
to the action performed.

To do this, we employ an algorithm loosely based on
that of (Station and Guyon 2004), which utilises the idea
of Conditional Mutual Information. Conditional MI, that is
I(X,Y |Z), allows us to determine the reduction in entropy
in Y given that we know both X and Z.

Our MI-based filtering algorithm is as follows. We be-
gin with S = {} an empty set and O as the time-series of
qualitative, spatial relations, where Ot is the particular state
vector observable by by an agent a at time t, and the ac-
tion taken in that state yt ∈ Y . We iterate over O, and for
each entry select a variable z ∈ Ot, and calculate the condi-
tional mutual information score CMI(S, Y |z). That is, the
information provided about Y , given that the state represen-
tation contains the observable relation z in addition to the
variables already added to S. This means that we look for
features that provide good mutual information in conjunc-
tion with every other feature in the set. If the information
score is high (In our case – better than guessing the values
of the variables, and higher than some threshold parameter
we may wish to set) we include the variable in S. We ini-
tialise the algorithm by forward search, adding to S the first
variable that provides MI with Y . From there, we start con-
sidering the CMI between the remaining state variables and
the contents of S. This allows us to identify variables that
are weakly dependent, and produces a state representation
populated with variables that, when observed, are informa-
tive regarding the agent’s next action. The feature selection
algorithm also culls those variables which remain static, and
provide no predictive power. The new, filtered state repre-
sentation is then used to provide the basis for estimated prob-
ability distributions used as HMM parameters.

Evaluation
We split our experiments down into three tasks with each
task involving RoboCup soccer agents of our own design
attempting to accomplish some goal related to navigation
and interaction with the environment.

Task 1 - Unobstructed Passing
In our first task, illustrated in Figure 3, the agent labelled A
is our subject of interest. The agent’s task is to pass the ball,
which is placed in front of it, to the friendly agent labelled
D. D patrols the goal area (movement paths are shown as

Figure 3: Illustration of environment for first task

Figure 4: Illustration of environment used for second and
third tasks

dashed lines), whereas adversary agents B and C patrol in
roughly concentric circles around A – the movement model
that each agent is subject to ensures a stochastic component,
so the patterns are not exact. A will not pass the ball if its
shot is blocked by B or C, or if D is not located within the
illustrated cone. Once A has a clear shot, it will pass the ball
to D and the simulation will reset, with B, C and D being
placed on random points on their movement paths. This con-
stitutes one training example. In our experiment, our training
set contains 208 examples of this scenario being played out.
In this task, at each time step the agent may choose to kick
the ball or to do nothing.

Task 2 - Gauntlet
In this scenario, the agent A must move forwards from its
starting position to the ball, which it must then kick towards
the goal. Blocking its movement are the agents B, C and D.
When A’s movement is unobstructed (no agent occupies a
cone identical to the one in Task 1), it will move forwards to-
wards the ball, and will stay in place otherwise. This requires
that the agent use both dash and kick actions, but it may also
decide to do nothing in a particular state. Our training set for
this task contains 205 examples.

Task 3 - Altered Gauntlet
The set-up for this task is the same as in the second task,
however the agent now starts at the position marked E on the
diagram. This alters the situation, such that after completing
the gauntlet task, the agent must then turn to face the ball
before moving towards it. This then makes use of all three
actions – dash, turn and kick – as well as the option to do
nothing in a particular state. Our training set for this task
contains 201 examples.
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Figure 5: Performance of systems on tasks using QR repre-
sentation.

Results
Figure 5 shows our results comparing four different ap-
proaches to learning. All utilise our qualitative state repre-
sentation. First, a HMM+FS which implements the full fea-
ture selection algorithm, with both perception filtering and
MI filtering. Second, the HMM with no feature selection ex-
cept for the perception filter. Third, a standard feed-forward
Neural Network trained with resilient backpropogation, and
finally a Support Vector Machine. All prediction systems
employ a sliding window of 5 previous frames. The NN and
SVM do not implement the full feature selection algorithm,
though do implement the perception filter. Figure 6 shows
results for the NN and SVM on the same tasks, however
this time utilising a metric-level representation as opposed
to our QR representation. No feature selection or filtering is
performed on this data.

We see that results are poor without feature selection. This
is because our feature selection mechanisms – perception
and information-based filtering – reduce the number of vari-
ables in the state representation to a fraction of the initial
number. This, in turn, means that we deal with a smaller
number of unique states which are then repeated often. With-
out this effect, and considering only the global state, we see a
much larger number of unique states (though still fewer than
if we had used a metric representation) since this means that
there is a far higher number of unique variable combinations
to consider. This hinders the estimation of probability distri-
butions used to construct HMM parameters, since, in short,
if a state is seen only once in the training set, it provides little
predictive power.

In Task 1, the full, global representation initially contains
975 state variables. After feature selection, the set contains
just 86 variables, producing 19 unique states observed by
the agent (compared to 795 unique, global states before fea-
ture selection). The variables with the highest MI scores are
often those representing Star relations between agent A and
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Figure 6: Performance of systems on tasks using metric rep-
resentation.

the other agents in the scene. In one particular state, the vari-
ables with the highest MI scores are ml(A : B),mr(A :
C), s0(A : D) – the first is the ”moving to left” QTCb rela-
tion, the second is the ”moving to right” QTCb relation, and
the third is the Star relation corresponding to an angular zone
of 30 ◦ egocentric with A’s orientation. If these variables are
all true, the state is one in which the agents B and C are
not blocking A’s shot, and D is within the required angular
range. We see very similar results for the other tasks, with in-
formation about orientation and motion providing the high-
est MI scores. Analysis of these scores reveals that there is
some degree of overlap between calculi – specifically QTCb

and Star, which often represent the same form of informa-
tion. Attempting to find such overlaps could be one form
of improvement to our system in the future. In addition, MI
tells us how important a variable is in relation to others in
a set, however we simply use this as a way to produce an
incusion-exclusion filter over the set of state variables. Once
accepted, all variables have the same degree of importance
in the state representation, and we discard the measure of
relative importance uncovered by the MI analysis.

Conclusion
We presented an approach to predicting the behaviour
of agents based on utilising several different qualitative,
spatial abstraction calculi in unison. We were able to first
explode, and then prune a state-space of abstract spatial
relations utilising a preprocessing step based on measures
of mutual information. This allowed us to locate relations
that were most relevant to predicting an agent’s behaviour.
We now seek to apply our system to real-world data,
in the form of tournament-level RoboCup soccer games.

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement No 600623 and the
EPSRC grant EP/K014293/1.
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