An Architecture for Knowledge Representation and Reasoning in Robotics

Shiqi Zhang
Department of Computer Science
Texas Tech University, USA
shiqi.zhang6@gmail.com

Mohan Sridharan
Department of Computer Science
Texas Tech University, USA
mohan.sridharan@ttu.edu

Michael Gelfond
Department of Computer Science
Texas Tech University, USA
michael.gelfond@ttu.edu

Jeremy Wyatt
School of Computer Science
University of Birmingham, UK
jlw@cs.bham.ac.uk

Abstract

This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.

1 Introduction

Mobile robots deployed in complex domains receive far more raw data from sensors than is possible to process in real-time, and may have incomplete domain knowledge. Furthermore, the descriptions of knowledge and uncertainty obtained from different sources may complement or contradict each other, and may have different degrees of relevance to current or future tasks. Widespread use of robots thus poses fundamental knowledge representation and reasoning challenges—robots need to represent, learn from, and reason with, qualitative and quantitative descriptions of knowledge and uncertainty. Towards this objective, our architecture combines the knowledge representation and non-monotonic logical reasoning capabilities of declarative programming with the uncertainty modeling capabilities of probabilistic graphical models. The architecture consists of two tightly coupled levels and has the following key features:

1. An action language is used for the HL and LL system descriptions and the definition of recorded history is expanded in the HL to allow prioritized defaults.
2. For any assigned objective, tentative plans are created in the HL using default knowledge and commonsense reasoning, and implemented in the LL using probabilistic algorithms, with the corresponding observations adding suitable statements to the HL history.
For each HL action, abstraction and tight coupling between the LL and HL system descriptions enables automatic selection of relevant variables and generation of a suitable action policy in the LL.

In this paper, the HL domain representation is translated into an Answer Set Prolog (ASP) program, while the LL domain representation is translated into partially observable Markov decision processes (POMDPs). The novel contributions of the architecture, e.g., allowing histories with prioritized defaults, tight coupling between the two levels, and the resultant automatic selection of the relevant variables in the LL, support reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is grounded and evaluated in simulation and on physical robots moving objects in indoor domains.

2 Related Work

Probabilistic graphical models such as POMDPs have been used to represent knowledge and plan sensing, navigation and interaction for robots [1, 2]. However, these formulations (by themselves) make it difficult to perform commonsense reasoning (e.g., default reasoning and non-monotonic logical reasoning) in such formulations, especially with information not directly relevant to tasks at hand. In parallel, research in classical planning has provided many algorithms for knowledge representation and logical reasoning [3], but these algorithms require substantial prior knowledge about the domain, task and possible actions that an agent can perform. Many of these algorithms also do not support merging of new, unreliable information from sensors and humans with the current beliefs in a knowledge base. Answer Set Programming (ASP), a non-monotonic logic programming paradigm, is well-suited for representing and reasoning with commonsense knowledge [4, 5]. It has been used for reasoning in simulated robot housekeepers and for representing knowledge extracted from natural language human-robot interactions [6, 7]. However, ASP does not support probabilistic analysis, whereas a lot of information available to robots is represented probabilistically to quantitatively model the uncertainty in real-world sensing and acting.

Researchers have designed cognitive architectures [8, 9, 10], and developed algorithms that combine deterministic and probabilistic algorithms for task and motion planning on robots [11, 12]. Recent work has also integrated ASP and POMDPs for non-monotonic logical inference and probabilistic planning on robots [13]. Principled algorithms developed to combine logical and probabilistic reasoning include probabilistic first-order logic [14], first-order relational POMDPs [15], Markov logic network [16], Bayesian logic [17], and a probabilistic extension to ASP [18]. However, algorithms based on first-order logic for probabilistically modeling uncertainty do not provide the desired expressiveness for capabilities such as default reasoning, e.g., it is not always possible to express all forms of uncertainty and degrees of belief quantitatively. Other algorithms based on logic programming that support probabilistic reasoning do not support one or more of the desired capabilities: reasoning as in causal Bayesian networks; incremental addition of probabilistic information; reasoning with large probabilistic components; and dynamic addition of variables with different ranges [18]. The architecture described in this paper is a step towards achieving these capabilities. It exploits the complementary strengths of declarative programming and probabilistic graphical models to represent, reason with, and learn from qualitative and quantitative descriptions of knowledge and uncertainty, enabling robots to automatically plan sensing and actuation in larger domains than was possible before.

3 KRR Architecture

This section describes our architecture’s HL and LL domain representations. The syntax, semantics and representation of the corresponding transition diagrams are described in an action language AL [19]. Action languages are formal models of parts of natural language used for describing transition diagrams. AL has a sorted signature containing three sorts: statics, fluents and actions. Statics are domain properties whose truth values cannot be changed by actions, while fluents are properties whose truth values are changed by actions. Actions are defined as a set of elementary actions that can be executed in parallel. A domain property \(p \) or its negation \(\neg p \) is a domain literal. AL allows three types of statements:

3. For each HL action, abstraction and tight coupling between the LL and HL system descriptions enables automatic selection of relevant variables and generation of a suitable action policy in the LL.

In this paper, the HL domain representation is translated into an Answer Set Prolog (ASP) program, while the LL domain representation is translated into partially observable Markov decision processes (POMDPs). The novel contributions of the architecture, e.g., allowing histories with prioritized defaults, tight coupling between the two levels, and the resultant automatic selection of the relevant variables in the LL, support reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is grounded and evaluated in simulation and on physical robots moving objects in indoor domains.
a \textbf{causes} l_{in} \textbf{if} p_{0}, \ldots, p_{m} \quad \text{(Causal law)}
\begin{align*}
l & \text{if} \ p_{0}, \ldots, p_{m} \\
\text{impossible} \ a_{0}, \ldots, a_{k} & \text{if} \ p_{0}, \ldots, p_{m} \quad \text{(Executability condition)}
\end{align*}
\] where \(a \) is an action, \(l \) is a literal, \(l_{in} \) is an inertial fluent literal, and \(p_{0}, \ldots, p_{m} \) are domain literals. The causal law states, for instance, that action \(a \) causes inertial fluent literal \(l_{in} \) if the literals \(p_{0}, \ldots, p_{m} \) hold true. A collection of statements of AL forms a system/domain description.

As an illustrative example used throughout this paper, we will consider a robot that has to move objects to specific places in an indoor domain. The domain contains four specific places: \textit{office}, \textit{main_library}, \textit{aux_library}, and \textit{kitchen}, and a number of specific objects of the sorts: \textit{textbook}, \textit{printer} and \textit{kitchenware}. The fluents of the domain are defined in terms of their arguments:

\[
\begin{align*}
&\text{loc}(\text{thing}, \text{place}) \\
&\text{in}_\text{hand}(\text{robot}, \text{object})
\end{align*}
\] (1)

The first predicate states the location of a thing; and the second predicate states that a robot has an object. These two predicates are \textit{inertial fluents} subject to the law of inertia, which can be changed by an action. The \textit{actions} in this domain include:

\[
\begin{align*}
&\text{move}(\text{robot}, \text{place}) \\
&\text{grasp}(\text{robot}, \text{object}) \\
&\text{putdown}(\text{robot}, \text{object})
\end{align*}
\] (2)

The dynamics of the domain are defined using the following causal laws:

\[
\begin{align*}
&\text{move}(\text{robot}, \text{Pl}) \textbf{ causes } \text{loc}(\text{robot}, \text{Pl}) \\
&\text{grasp}(\text{robot}, \text{Ob}) \textbf{ causes } \text{in}_\text{hand}(\text{robot}, \text{Ob}) \\
&\text{putdown}(\text{robot}, \text{Ob}) \textbf{ causes } \neg\text{in}_\text{hand}(\text{robot}, \text{Ob})
\end{align*}
\] (3)

\[
\begin{align*}
&\text{loc}(\text{Ob}, \text{Pl1}) \textbf{ if } \text{loc}(\text{robot}, \text{Pl}), \text{in}_\text{hand}(\text{robot}, \text{Ob}) \\
&\neg\text{loc}(\text{Th}, \text{Pl1}) \textbf{ if } \text{loc}(\text{Th}, \text{Pl2}), \text{Pl1} \neq \text{Pl2}
\end{align*}
\] (4)

and executability conditions:

\[
\begin{align*}
&\text{impossible } \text{move}(\text{robot}, \text{Pl}) \textbf{ if } \text{loc}(\text{robot}, \text{Pl}) \\
&\text{impossible } A_{1}, A_{2}, \textbf{ if } A_{1} \neq A_{2}. \\
&\text{impossible } \text{grasp}(\text{robot}, \text{Ob}) \textbf{ if } \text{loc}(\text{robot}, \text{Pl1}), \text{loc}(\text{Ob}, \text{Pl2}), \text{Pl1} \neq \text{Pl2} \\
&\text{impossible } \text{grasp}(\text{robot}, \text{Ob}) \textbf{ if } \text{in}_\text{hand}(\text{robot}, \text{Ob}) \\
&\text{impossible } \text{putdown}(\text{robot}, \text{Ob}) \textbf{ if } \neg\text{in}_\text{hand}(\text{robot}, \text{Ob})
\end{align*}
\] (5)

The top part of Figure 1 shows some state transitions in the HL; nodes include a subset of fluents (robot’s position) and actions are the arcs between nodes. Although \(D_{H} \) does not include the costs of executing actions, these are included in the LL (see Section 3.2).

3.1 HL domain representation

The HL domain representation consists of a system description \(D_{H} \) and histories with defaults \(\mathcal{H} \). \(D_{H} \) consists of a sorted signature and axioms used to describe the HL transition diagram \(\mathcal{T}_{H} \). The sorted signature: \(\Sigma_{H} = (\mathcal{O}, \mathcal{F}, \mathcal{P}) \) is a tuple that defines the names of objects, functions, and predicates available for use in the HL. The sorts in our example are: \textit{place}, \textit{thing}, \textit{robot}, and \textit{object}; \textit{robot} and \textit{object} are subsorts of \textit{thing}. Robots can move on their own, but objects cannot move on their own. The sort \textit{object} has subsorts such as \textit{textbook}, \textit{printer} and \textit{kitchenware}. The

3.1.1 Histories with defaults

A recorded history of a dynamic domain is usually defined as a collection of records of the form \textit{obs}(\textit{fluent}, \textit{boolean}, \textit{step}) and \textit{hpd}(\textit{action}, \textit{step}). The former states that a fluent was observed to be true or false at a given step of the domain’s trajectory, and the latter states that action \textit{a} happened (or
was executed by the robot) at that step. In this paper, we expand on this view by allowing histories to contain (possibly prioritized) defaults describing the values of fluents in their initial states. A default \(d(X) \) stating that in the typical initial state elements of class \(c \) satisfying property \(p \) also have property \(c \) is represented as:

\[
d(X) = \begin{cases}
\text{default}(d(X)) \\
\text{head}(d(X), p(X)) \\
\text{body}(d(X), c(X)) \\
\text{body}(d(X), b(X))
\end{cases}
\]

We abbreviate \(\text{obs}(f, \text{true}, 0) \) and \(\text{obs}(f, \text{false}, 0) \) as \(\text{init}(f, \text{true}) \) and \(\text{init}(f, \text{false}) \) respectively.

Example 1 [Example of defaults]
Consider the following statements about the locations of textbooks in the initial state in our illustrative example. Textbooks are typically in the main library. If a textbook is not there, it is in the auxiliary library. If a textbook is checked out, it can be found in the office. These defaults can be represented as:

\[
\begin{align*}
\text{default}(d_1(X)) & : \text{head}(d_1(X), \text{loc}(X, \text{main_library})) \\
\text{body}(d_1(X), \text{textbook}(X)) & : \text{default}(d_2(X)) \\
\text{head}(d_2(X), \text{loc}(X, \text{aux_library})) & : \text{body}(d_2(X), \text{textbook}(X)) \\
\text{body}(d_2(X), \neg \text{loc}(X, \text{main_library})) & \\
\text{body}(d_2(X), \neg \text{loc}(X, \text{aux_library}))
\end{align*}
\]

A default such as “kitchenware are usually in the kitchen” may be represented in a similar manner. We first present multiple informal examples to illustrate reasoning with these defaults; Definition below will formalize this reasoning. For textbook \(\text{tb}_1 \), history \(\mathcal{H}_1 \) containing the above statements should entail: \(\text{holds}(\text{loc}(\text{tb}_1, \text{main_library}), 0) \). A history \(\mathcal{H}_2 \) obtained from \(\mathcal{H}_1 \) by adding an observation: \(\text{init}(\text{loc}(\text{tb}_1, \text{main_library}), \text{false}) \) renders the first default inapplicable; hence \(\mathcal{H}_2 \) should entail: \(\text{holds}(\text{loc}(\text{tb}_1, \text{aux_library}), 0) \). A history \(\mathcal{H}_3 \) obtained from \(\mathcal{H}_2 \) by adding an observation: \(\text{init}(\text{loc}(\text{tb}_1, \text{aux_library}), \text{false}) \) entails: \(\text{holds}(\text{loc}(\text{tb}_1, \text{office}), 0) \).

Consider history \(\mathcal{H}_4 \) obtained by adding observation: \(\text{obs}(\text{loc}(\text{tb}_1, \text{main_library}), \text{false}, 1) \) to \(\mathcal{H}_1 \). This observation should defeat the default \(d_1 \) in Equation because if this default’s conclusion were true in the initial state, it would also be true at step 1 (by inertia), which contradicts our observation. The book \(\text{tb}_1 \) is thus not in the main library initially. The second default will conclude that this book was executed by the robot) at that step. In this paper, we expand on this view by allowing histories to contain (possibly prioritized) defaults describing the values of fluents in their initial states. A default \(d(X) \) stating that in the typical initial state elements of class \(c \) satisfying property \(b \) also have property \(c \) is represented as:

\[
\text{default}(d(X)) = \begin{cases}
\text{default}(d(X)) \\
\text{head}(d(X), p(X)) \\
\text{body}(d(X), c(X)) \\
\text{body}(d(X), b(X))
\end{cases}
\]

We abbreviate \(\text{obs}(f, \text{true}, 0) \) and \(\text{obs}(f, \text{false}, 0) \) as \(\text{init}(f, \text{true}) \) and \(\text{init}(f, \text{false}) \) respectively.

Example 1 [Example of defaults]
Consider the following statements about the locations of textbooks in the initial state in our illustrative example. Textbooks are typically in the main library. If a textbook is not there, it is in the auxiliary library. If a textbook is checked out, it can be found in the office. These defaults can be represented as:

\[
\begin{align*}
\text{default}(d_1(X)) & : \text{head}(d_1(X), \text{loc}(X, \text{main_library})) \\
\text{body}(d_1(X), \text{textbook}(X)) & : \text{default}(d_2(X)) \\
\text{head}(d_2(X), \text{loc}(X, \text{aux_library})) & : \text{body}(d_2(X), \text{textbook}(X)) \\
\text{body}(d_2(X), \neg \text{loc}(X, \text{main_library})) & \\
\text{body}(d_2(X), \neg \text{loc}(X, \text{aux_library}))
\end{align*}
\]

The definition of entailment relation can now be given with respect to a fixed system description \(\mathcal{D}_H \). We start with the notion of a state of transition diagram \(\tau_H \) of \(\mathcal{D}_H \) compatible with a description \(\mathcal{I} \) of the initial state of history \(\mathcal{H} \). We use the following terminology. We say that a set \(S \) of literals is closed under a default \(d \) if \(S \) contains the head of \(d \) whenever it contains all literals from the body of \(d \) and does not contain the literal contrary to \(d \)'s head. \(S \) is closed under a constraint of \(\mathcal{D}_H \) if \(S \) contains the constraint's head whenever it contains all literals from the constraint's body. Finally, we say that a set \(U \) of literals is the closure of \(S \) if \(S \subseteq U \), \(U \) is closed under constraints of \(\mathcal{D}_H \) and defaults of \(\mathcal{H} \), and no proper subset of \(U \) satisfies these properties.

Definition 1 [Compatible initial states]
A state \(\sigma \) of \(\tau_H \) with a description \(\mathcal{I} \) of the initial state of history \(\mathcal{H} \) if:

1. \(\sigma \) satisfies all observations of \(\mathcal{I} \),
2. \(\sigma \) contains the closure of the union of statics of \(\mathcal{D}_H \) and the set \(\{ f : \text{init}(f, \text{true}) \in \mathcal{I} \} \cup \{ \neg f : \text{init}(f, \text{false}) \in \mathcal{I} \} \).

Let \(\mathcal{I}_k \) be the description of the initial state of history \(\mathcal{H}_k \). States in Example compatible with \(\mathcal{I}_1 \), \(\mathcal{I}_2 \), \(\mathcal{I}_3 \) must then contain \(\{ \text{loc}(\text{tb}_1, \text{main_library}) \} \), \(\{ \text{loc}(\text{tb}_1, \text{aux_library}) \} \), and \(\{ \text{loc}(\text{tb}_1, \text{office}) \} \).
respectively. There are multiple such states, which differ by the location of robot. Since \(\mathcal{I}_1 = \mathcal{I}_4 \) they have the same compatible states. Next, we define models of history \(\mathcal{H} \), i.e., paths of the transition diagram \(\tau_H \) of \(\mathcal{D}_H \) compatible with \(\mathcal{H} \).

Definition 2 [Models]
A path \(P \) of \(\tau_H \) is a model of history \(\mathcal{H} \) with description \(\mathcal{I} \) of its initial state if there is a collection \(E \) of init statements such that:

1. If \(\text{init}(f, \text{true}) \in E \) then \(\neg f \) is the head of one of the defaults of \(\mathcal{I} \). Similarly, for \(\text{init}(f, \text{false}) \).
2. The initial state of \(P \) is compatible with the description: \(\mathcal{I} \cap E \).
3. Path \(P \) satisfies all observations in \(\mathcal{H} \).
4. There is no collection \(E_0 \) of init statements which has less elements than \(E \) and satisfies the conditions above.

We will refer to \(E \) as an explanation of \(\mathcal{H} \). Models of \(\mathcal{H}_1, \mathcal{H}_2, \) and \(\mathcal{H}_3 \) are paths consisting of initial states compatible with \(\mathcal{I}_1, \mathcal{I}_2, \) and \(\mathcal{I}_3 \)—the corresponding explanations are empty. However, in the case of \(\mathcal{H}_4 \), the situation is different—the predicted location of \(\text{tb}_1 \) will be different from the observed one. The only explanation of this discrepancy is that \(\text{tb}_1 \) is an exception to the first default. Adding \(E = \{ \text{init}(\text{loc}(\text{tb}_1, \text{main禧ibrary}), \text{false}) \} \) to \(\mathcal{I}_4 \) will resolve the problem.

Definition 3 [Entailment and consistency]

- Let \(\mathcal{H}^n \) be a history of length \(n \), \(f \) be a fluent, and \(0 \leq i \leq n \) be a step of \(\mathcal{H}^n \). We say that \(\mathcal{H}^n \) entails a statement \(Q = \text{holds}(f, i) (\neg \text{holds}(f, i)) \) if for every model \(P \) of \(\mathcal{H}^n \), fluent literal \(f (\neg f) \) belongs to the \(i \)th state of \(P \). We denote the entailment as \(\mathcal{H}^n \models Q \).
- A history which has a model is said to be consistent.

It can be shown that histories from Example 1 are consistent and that our entailment captures the corresponding intuition.

3.1.2 Reasoning with HL domain representation

The HL domain representation (\(\mathcal{D}_H \) and \(\mathcal{H} \)) is translated into a program in CR-Prolog, which incorporates consistency restoring rules in ASP [19, 20]; specifically, we use the knowledge representation language SPARC that expands CR-Prolog and provides explicit constructs to specify objects, relations, and their sorts [21]. ASP is a declarative language that can represent recursive definitions, defaults, causal relations, special forms of self-reference, and other language constructs that occur frequently in non-mathematical domains, and are difficult to express in classical logic formalisms [5]. ASP is based on the stable model semantics of logic programs, and builds on research in non-monotonic logics [4]. A CR-Prolog program is thus a collection of statements describing domain objects and relations between them. The ground literals in an answer set obtained by solving the program represent beliefs of an agent associated with the program, program consequences are statements that are true in all such belief sets. Algorithms for computing the entailment relation of AL and related tasks such as planning and diagnostics are thus based on reducing these tasks to computing answer sets of programs in CR-Prolog. First, \(\mathcal{D}_H \) and \(\mathcal{H} \) are translated into an ASP program \(\Pi(\mathcal{D}_H, \mathcal{H}) \) consisting of direct translation of causal laws of \(\mathcal{D}_H \), inertia axioms, closed world assumption for defined fluents, reality checks, records of observations, actions and defaults from \(\mathcal{H} \), and special axioms for init:

\[
\text{holds}(F, 0) \leftarrow \text{init}(F, \text{true}) \quad (9)
\]

\[
\neg \text{holds}(F, 0) \leftarrow \text{init}(F, \text{false})
\]

For more details, see [19]. In addition, every default of \(\mathcal{I} \) is turned into an ASP rule:

\[
\text{holds}(p(X), 0) \leftarrow c(X), \text{holds}(b(X), 0), \neg \text{holds}(p(X), 0) \quad (10)
\]

and a consistency-restoring rule:

\[
\neg \text{holds}(p(X), 0) \leftarrow c(X), \text{holds}(b(X), 0) \quad (11)
\]

which states that to restore consistency of the program one may assume that the conclusion of the default is false.

1SPARC uses DLV [22] to generate answer sets.
Proposition 1 [Models and Answer Sets]

A path \(P = (σ_0, a_0, σ_1, \ldots, σ_n-1, a_n) \) of \(τ_H \) is a model of history \(ℳ^n \) iff there is an answer set \(S \) of a program \(\Pi(\mathcal{H}, ℳ) \) such that:

1. A fluent \(f \in σ_i \) iff \(\text{holds}(f, i) \in S \).
2. A fluent literal \(\neg f \in σ_i \) iff \(\neg \text{holds}(f, i) \in S \).
3. An action \(e \in a_i \) iff \(\text{occurs}(e, i) \in S \).

The proposition reduces computation of models of \(ℳ \) to computing answer sets of a CR-Prolog program. This proposition allows us to reduce the task of planning to computing answer sets of a program obtained from \(\Pi(\mathcal{H}, ℳ) \) by adding the definition of a goal, a constraint stating that the goal must be achieved, and a rule generating possible future actions of the robot.

3.2 LL domain representation

The LL system description \(\mathcal{D}_L \) consists of a sorted signature and axioms that describe a transition diagram \(τ_L \). The sorted signature \(Σ_L \) of action theory describing \(τ_L \) includes the sorts from signature \(Σ_H \) of HL, with two additional sorts \text{room} \ and \text{cell}, which are subsorts of sort \text{place}. Their elements satisfy the static relation \text{part_of} \((\text{cell}, \text{room}) \). We also introduce the static \text{neighbor} \((\text{cell}, \text{cell}) \) to describe neighborhood relation between cells. Fluents of \(Σ_L \) include those of \(Σ_H \), an additional inertial fluent: \text{searched} \((\text{cell}, \text{object}) \)—robot searched a cell for an object—and two defined fluents: \text{found} \((\text{object}, \text{place}) \)—an object was found in a place—and \text{continue_search} \((\text{room}, \text{object}) \)—the search for an object is continued in a room.

The actions of \(Σ_L \) are viewed as HL actions represented at a higher resolution, e.g., movement is possible to specific cells. The causal law describing the effect of move may be stated as:

\[
\text{move} (\text{robot}, Y) \ \text{causes} \ \{\text{loc} (\text{robot}, Y) : \text{neighbor} (Y, X)\} \ \text{if} \ \text{loc} (\text{robot}, X)
\]

where \(X, Y \) are cells. This causal law states that moving from a cell can cause the robot to be in one of the neighboring cells. The LL includes an action search that enables robots to search for objects in cells; the corresponding causal laws and constraints may be written as:

\[
\begin{align*}
\text{search} (\text{cell}, \text{object}) & \ \text{causes} \ \text{searched} (\text{cell}, \text{object}) \\
\text{found} (\text{object}, \text{cell}) & \ \text{if} \ \text{searched} (\text{cell}, \text{object}), \text{loc} (\text{object}, \text{cell}) \\
\text{continue_search} (\text{room}, \text{object}) & \ \text{if} \ \neg \text{found} (\text{object}, \text{room}), \ \text{part_of} (\text{cell}, \text{room}), \\
& \ \neg \text{searched} (\text{cell}, \text{object})
\end{align*}
\]

We also introduce a defined fluent failure that holds iff the object under consideration is not in the room that the robot is searching—this fluent is defined as:

\[
\text{failure} (\text{object}, \text{room}) \ \text{if} \ \text{loc} (\text{robot}, \text{room}), \neg \text{continue_search} (\text{room}, \text{object}), \\
& \ \neg \text{found} (\text{object}, \text{room})
\]

This completes the action theory that describes \(τ_L \). The states of \(τ_L \) can be viewed as extensions of states of \(τ_H \) by physically possible fluents and statics defined in the language of LL. Moreover, for every HL state-action-state transition \((σ, a, σ') \) and every LL state \(s \) compatible with \(σ \) (i.e., \(σ \subset s \)), there is a path in the LL from \(s \) to some state compatible with \(σ' \).

Unlike the HL system description in which effects of actions and results of observations are always accurate, the action effects and observations in the LL are only known with some degree of probability. The state transition function \(T : S × A × S' \rightarrow [0, 1] \) defines the probabilities of state transitions in the LL. Due to perceptual limitations of the robot, only a subset of the fluents are observable in the LL; we denote this set of fluents by \(Z \). Observations are elements of \(Z \) associated with a probability, and are obtained by processing sensor inputs using probabilistic algorithms. The observation function \(O : S × Z \rightarrow [0, 1] \) defines the probability of observing specific observable fluents in specific states. Functions \(T \) and \(O \) are computed using prior knowledge, or by observing the effects of specific actions in specific states.

2This is a special case of a non-deterministic causal law defined in extensions of AL with non-boolean fluents, i.e., functions whose values can be elements of arbitrary finite domains.
States are partially observable in the LL, and we introduce (and reason with) belief states, probability distributions over the set of states. The initial belief state is represented by \(B_0 \), and is updated iteratively using Bayesian inference:

\[
B_{t+1}(s_{t+1}) \propto O(s_{t+1}, o_{t+1}) \sum_s T(s_a, s_{t+1}) \cdot B_t(s) \tag{15}
\]

The LL system description includes a reward specification \(R : S \times A \times S' \to \mathbb{R} \) that encodes the relative cost or value of taking specific actions in specific states. Planning in the LL then involves computing a policy that maximizes the reward over a planning horizon. This policy maps belief states to actions: \(\pi : B_t \mapsto a_{t+1} \). We use a point-based approximate algorithm to compute this policy \[23\]. In our illustrative example, an LL policy computed for HL action \textit{move} is guaranteed to succeed, and that the LL policy computed for HL action \textit{grasp} considers three LL actions: \textit{move}, \textit{search}, and \textit{grasp}. Plan execution in the LL corresponds to using the computed policy to repeatedly choose an action in the current belief state, and updating the belief state after executing that action and receiving an observation. We henceforth refer to this algorithm as “POMDP-1”.

Unlike the HL, history in the LL representation consists of observations and actions over one time step; the current belief state is assumed to be the result of all information obtained in previous time steps (first-order Markov assumption). In this paper, the LL domain representation is translated automatically into POMDP models, i.e., specific data structures for representing \(DL \) such that existing solvers can be used to obtain action policies.

We observe that the coupling between the LL and the HL has some key consequences. First, for any HL action, the relevant LL variables are identified automatically, improving the computational efficiency of computing the LL policies. Second, if LL actions cause different fluents, these fluents are independent. Finally, although defined fluents are crucial in determining what needs to be communicated between the levels of the architecture, they themselves need not be communicated.

3.3 Control loop

Algorithm [1] describes the architecture’s control loop. First, the LL observations obtained in the current location add statements to the HL history, and the HL initial state \(s_{H\text{init}} \) is communicated to the LL (line 1). The assigned task determines the HL goal state \(s_{H\text{goal}} \) for planning (line 2). Planning in the HL provides a sequence of actions with deterministic effects (line 3).

In some situations, planning in the HL may provide multiple plans, e.g., when the object that is to be grasped can be in one of multiple locations, tentative plans may be generated for the different hypotheses regarding the object’s location. In such situations, all the HL plans are communicated to the LL and compared based on their costs, e.g., the expected time to execute the plans. The plan with the least expected cost is communicated to the HL (lines 4-6).

If an HL plan exists, actions are communicated one at a time to the LL along with the relevant fluents (line 9). For HL action \(a_h^i \), the communicated fluents are used to automatically identify the relevant LL variables and set the initial belief state, e.g., a uniform distribution (line 10). An LL action policy is computed (line 11) and used to execute actions and update the belief state until \(a_h^i \) is achieved or inferred to be unachievable (lines 12-15). The outcome of executing the LL policy, and the LL
Algorithm 1 Control loop of architecture

Require: The HL and LL domain representations.
Require: Specific task for robot to perform.
1: LL observations reported to HL history; HL initial state (s^H_{init}) communicated to LL.
2: Assign goal state s^H_{goal} based on task.
3: Generate HL plan(s).
4: if multiple HL plans exist then
5: Send plans to the LL, select plan with lowest (expected) action cost and communicate to the HL.
6: end if
7: if HL plan exists then
8: for $a^H_i \in$ HL plan: $i \in [1,n]$ do
9: Pass a^H_i and relevant fluents to LL.
10: Determine initial belief state over the relevant LL state space.
11: Generate LL action policy.
12: while a^H_i not completed and a^H_i achievable do
13: Execute an action based on LL action policy.
14: Make an LL observation and update belief state.
15: end while
16: LL observations and action outcomes add statements to HL history.
17: if results unexpected then
18: Perform diagnostics in HL.
19: end if
20: if HL plan invalid then
21: Replan in the HL (line 3).
22: end if
23: end for
24: end if

observations, add to the HL history (line 16). For instance, if defined fluent failure is true for object ob_1 and room rm_1, the robot reports: $obs(loc(ob_1, rm_1), false)$ to the HL history. If the results are unexpected, diagnosis is performed in the HL (lines 17-19). If the HL plan is invalid, a new plan is generated (lines 20-22); else, the next action in the HL plan is executed.

4 Experimental setup and results

This section describes the experimental setup and results of evaluating the proposed architecture in indoor domains.

4.1 Experimental setup

The architecture was evaluated in simulation and on physical robots. To provide realistic observations in the simulator, we included object models that characterize objects using probabilistic functions of features extracted from images captured by a camera on physical robots [24]. The simulator also uses action models that reflect the motion of the robot. Specific instances of objects of different classes were simulated in a set of rooms. In each trial of the experimental results summarized below, the robot’s goal was to move specific objects to specific places; the robot’s location, target object, and locations of objects are chosen randomly in each trial. A sequence of actions extracted from an answer set obtained by solving the program of the HL domain representation provides an HL plan. If a robot (robot1) that is in the office is asked to fetch a textbook (tb1) from the main_library, the HL plan would be:

move(robot1, main_library)
grasp(robot1, tb1)
move(robot1, office)
putdown(robot1, tb1)
The LL action policies for each HL action are generated by solving the appropriate POMDP models using the APPL solver \cite{23,25}. In the LL, the location of an object is considered to be known with certainty if the belief (of the object’s occurrence) in a grid cell exceeds a threshold (0.85).

We experimentally compared our architecture, with the control loop described in Algorithm 1, henceforth referred to as “PA”, with two alternatives: (1) POMDP-1 (see Section 3.2); and (2) POMDP-2, which revises POMDP-1 by assigning arbitrary high probability values to defaults to bias the initial belief states. These comparisons evaluate two hypotheses: (H1) PA enables a robot to achieve the assigned goals more reliably and efficiently than using POMDP-1; (H2) our representation of defaults improves reliability and efficiency in comparison with not using default knowledge or assigning arbitrary high probability values to defaults.

4.2 Experimental Results

To evaluate H1, we first compared PA with POMDP1 in a set of trials in which the robot’s initial position is known but the position of the object to be moved is unknown. The solver used in POMDP-1 is given a fixed amount of time to compute action policies. Figure 2 summarizes the ability to successfully achieve the assigned goal, as a function of the number of cells in the domain. Each point in Figure 2 is the average of 1000 trials, and we set (for ease of interpretation) each room to have four cells. PA significantly improves the robot’s ability to achieve the assigned goal in comparison with POMDP-1. As the number of cells (i.e., size of the domain) increases, it becomes computationally difficult to generate good POMDP action policies which, in conjunction with incorrect observations (e.g., false positive sightings of objects) significantly impacts the ability to successfully complete the trials. PA, on the other hand, focuses the robot’s attention on relevant regions of the domain (e.g., specific rooms and cells). As the size of the domain increases, a large number of plans of similar cost may still be generated which, in conjunction with incorrect observations, may affect the robot’s ability to successfully complete the trials—the impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a plan as the size of the domain increases. Domain size is characterized based on the number of rooms and the number of objects in the domain. We conducted three sets of experiments in which the robot reasons with: (1) all available knowledge of domain objects and rooms; (2) only knowledge relevant to the assigned goal—e.g., if the robot knows an object’s default location, it need not reason about all other objects and rooms in the domain to locate this object; and (3) relevant knowledge and knowledge of an additional 20% of randomly selected domain objects and rooms. Figure 3 summarizes these results. We observe that PA supports the generation of appropriate plans for domains with a large number of rooms and objects. We also observe that using only the knowledge relevant to the goal significantly reduces the planning time—such knowledge can be automatically selected using the relationships included in the HL system description. Furthermore, if we only use a probabilistic approach (POMDP), it soon becomes computationally intractable to generate a plan for domains with many objects and rooms; these results are not shown in Figure 3.
Figure 3: Planning time as a function of the number of rooms and the number of objects in the domain—PA scales to larger number of rooms and objects.

Figure 4: Effect of using default knowledge—principled representation of defaults significantly reduces the number of actions (and thus time) for achieving assigned goal.

To evaluate H2, we first conducted multiple trials in which PA was compared with PA*, a version that does not include any default knowledge. Figure 4 summarizes the average number of actions executed per trial as a function of the number of rooms in the domain—each sample point is the average of 10000 trials. The goal in each trial is (as before) to move a specific object to a specific place. We observe that the principled use of default knowledge significantly reduces the number of actions (and hence time) required to achieve the assigned goal. Next PA was compared with POMDP − 2, which assigns arbitrary high probability values to default information and suitably revises the initial belief state. We observe that the effect of assigning a probability value to defaults is arbitrary depending on multiple factors: (a) the numerical value chosen; and (b) whether the ground truth matches the default information. For instance, if a large probability is assigned to the default knowledge that books are typically in the library, but the book the robot has to move is an exception to the default (e.g., a cookbook), it takes a significantly large amount of time for POMDP − 2 to revise (and recover from) the initial belief. PA, on the other hand, enables the robot to revise initial defaults and encode exceptions to defaults.

In addition to the trials in simulated domains, we compared PA with POMDP-1 on a wheeled robot on two floors of our department building. This domain includes places in addition to those included in our illustrative example. For instance, Figure 5 shows a subset of the domain map of the third floor of our department. Such domain maps are learned by the robot using laser range finder data, and revised incrementally over time. For experimental trials on the third floor, we considered 15 rooms, which includes faculty offices, research labs, common areas and a corridor. To make it feasible to use POMDP-1 in such large domains, we incorporated a hierarchical decomposition based on our prior work [26]. Over 15 trials (each), POMDP-1 takes 1.64 as much time as PA (on average) to
move specific objects to specific places. For paired trials, this 39% reduction in execution time provided by PA is statistically significant: $p - value = 0.0023$ at 95% significance level.

Consider a trial in which the robot’s objective is to bring a specific textbook to a specific place named study corner. The robot uses default knowledge to create an HL plan that causes the robot to move to and search for the textbook in the main library. When the robot does not find this textbook in the main library after searching using a suitable LL policy, replanning in the HL causes the robot to investigate the aux library. The robot finds the desired textbook in the aux library and moves it to the target location. A video of this trial can be viewed online: http://youtu.be/5zL4R8te6wg

5 Conclusions

This paper described a knowledge representation and reasoning architecture for robots that integrates the strengths of declarative programming and probabilistic graphical models. The system descriptions of the tightly coupled high-level (HL) and low-level (LL) domain representations are provided using an action language, and the HL definition of recorded history is expanded to allow prioritized defaults. Tentative plans created in the HL using defaults and commonsense reasoning are implemented in the LL using probabilistic algorithms, generating observations that add to the HL history. In the context of robots moving objects to specific places in indoor domains, experimental results indicate that the architecture supports knowledge representation, non-monotonic logical inference and probabilistic planning, and scales well as the domain becomes more complex. Future work will further explore the relationship between the two transition diagrams, and investigate a tighter coupling of logic programming and probabilistic reasoning.

Acknowledgments

The authors thank Evgenii Balai for making modifications to SPARC to support some of the experiments reported in this paper. This work was supported in part by ONR Award N00014-13-1-0766. Opinions and conclusions expressed in this paper are those of the authors.

References

