Dr Nick Hawes

Reader in Autonomous Intelligent Robotics

School of Computer Science
University of Birmingham
Edgbaston, Birmingham, B15 2TT
United Kingdom

Email: n.a.hawes@cs.bham.ac.uk
Twitter: @hawesie
Phone: +44 (0) 121 41 43739
Office: 133 (first floor, back right)
Office Hours: Mon 12:00, Tues 11:00 (term-time only)
Availability: Doodle MeetMe
[faeulhammer2016] Faeulhammer, T., Ambrus, R., Burbridge, C., Zillich, M., Folkesson, J., Hawes, N., Jensfelt, P. and Vincze, M.. Autonomous Learning of Object Models on a Mobile Robot. IEEE Robotics and Automation Letters, 2(1), pages 26 - 33. January 2016. [pdf] [bib]
Abstract. In this article, we present and evaluate a system, which allows a mobile robot to autonomously detect, model, and re-recognize objects in everyday environments. While other systems have demonstrated one of these elements, to our knowledge, we present the first system, which is capable of doing all of these things, all without human interaction, in normal indoor scenes. Our system detects objects to learn by modeling the static part of the environment and extracting dynamic elements. It then creates and executes a view plan around a dynamic element to gather additional views for learning. Finally, these views are fused to create an object model. The performance of the system is evaluated on publicly available datasets as well as on data collected by the robot in both controlled and uncontrolled scenarios.
Download:  pdf pdf (3.54 MB)  bib bib
Links: [Google Scholar] [CiteSeer]