Dr Nick Hawes

Reader in Autonomous Intelligent Robotics

School of Computer Science
University of Birmingham
Edgbaston, Birmingham, B15 2TT
United Kingdom

Email: n.a.hawes@cs.bham.ac.uk
Twitter: @hawesie
Phone: +44 (0) 121 41 43739
Office: 133 (first floor, back right)
Office Hours: Mon 12:00, Tues 11:00 (term-time only)
Availability: Doodle MeetMe
[hawesetal12cdsr] Nick Hawes, Matthew Klenk, Kate Lockwood, Graham S. Horn and John D. Kelleher. Towards a Cognitive System That Can Recognize Spatial Regions Based on Context. In Proceedings of the 26th National Conference on Artificial Intelligence (AAAI'12). July 2012. [pdf] [bib]
Abstract. In order to collaborate with people in the real world, cognitive systems must be able to represent and reason about spatial regions in human environments. Consider the command "go to the front of the classroom". The spatial region mentioned (the front of the classroom) is not perceivable using geometry alone. Instead it is defined by its functional use, implied by nearby objects and their configuration. In this paper, we define such areas as context-dependent spatial regions and present a cognitive system able to learn them by combining qualitative spatial representations, semantic labels, and analogy. The system is capable of generating a collection of qualitative spatial representations describing the configuration of the entities it perceives in the world. It can then be taught context-dependent spatial regions using anchor pointsdefined on these representations. From this we then demonstrate how an existing computational model of analogy can be used to detect context-dependent spatial regions in previously unseen rooms. To evaluate this process we compare detected regions to annotations made on maps of real rooms by human volunteers.
Download:  pdf pdf (502 KB)  bib bib
Links: [Google Scholar] [CiteSeer]