Probabilistic Model Checking
and Strategy Synthesis
for Robot Navigation

Dave Parker
University of Birmingham
(joint work with Bruno Lacerda, Nick Hawes)

Overview

• **Probabilistic model checking**
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)

• **Application: Robot navigation**
 – probabilistic model checking + MDPs + LTL

• **Strategy synthesis techniques**
 – multi-objective probabilistic model checking
 – partially satisfiable task specifications
 – uncertainty + stochastic games
 – permissive controller synthesis
Quantitative verification

- Formal verification + quantitative aspects
- Probability
 - component failures, lossy communication, unreliable sensors/actuators, randomisation in algorithms/protocols
- Time: delays, time-outs, failure rates, ...
- Costs & rewards
 - energy consumption, resource usage, ...
- Not just about correctness...
 - reliability, timeliness, performance, efficiency, ...
 - “the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001”
 - “the expected energy consumption of the sensor is...”
Probabilistic model checking

- Construction and analysis of probabilistic models
 - state-transition systems labelled with probabilities (e.g. Markov chains, Markov decision processes)
 - from a description in a high-level modelling language

- Properties expressed in temporal logic, e.g. PCTL:
 - trigger $\rightarrow P_{\geq 0.999} [F_{\leq 20} \text{ deploy}]$
 - “the probability of the airbag deploying within 20ms of being triggered is at least 0.999”
 - properties checked against models using exhaustive search and numerical computation
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, …)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies

- \(P_{\leq 0.1}[F \text{ fail}] \) – “the probability of a failure occurring is at most 0.1”

- \(P_{=?}[F \text{ fail}] \) – “what is the probability of a failure occurring?”
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, …)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
 - compared to, for example, simulation/heuristics
 - combines numerical & exhaustive analysis
- Fully automated, tools available, widely applicable
 - network/communication protocols, security, biology, robotics & planning, power management, …
- Key challenge: scalability
Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - also widely used also in: AI, planning, optimal control, ...

- A strategy (or “policy” or “adversary”)
 - resolves choices in an MDP based on its history so far

- Used to model:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components

- Classes of strategies:
 - memory: memoryless, finite-memory, or infinite-memory
 - randomisation: deterministic or randomised
Verification vs. Strategy synthesis

1. Verification
 - quantify over all possible strategies (i.e. best/worst-case)
 - $P_{\leq 0.1} [F_{err}]$: “the probability of an error occurring is ≤ 0.1 for all strategies”
 - applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis
 - generation of "correct-by-construction" controllers
 - $P_{\leq 0.1} [F_{err}]$: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
 - applications: robotics, power management, security, ...

Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values
Applications

• **Examples of PRISM–based strategy synthesis**

 Synthesis of dynamic power management controllers [TACAS'11]

 Motion planning for a service robot using LTL [IROS'14]

 Team formation strategy synthesis [CLIMA'11, ATVA'12]

Minimise disk drive energy consumption, subject to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs

Pareto curve:

\[x = "\text{probability of completing task 1}"; \]
\[y = "\text{probability of completing task 2}"; \]
\[z = "\text{expected size of successful team}" \]
Example

- Example MDP
 - robot moving through terrain divided in to 3 x 2 grid
Example – Reachability

Verify: $P_{\leq 0.6} \left[F \text{ goal}_1 \right]$

or

Synthesise for: $P_{\geq 0.4} \left[F \text{ goal}_1 \right]$

⇓

Compute: $P_{\max}=? \left[F \text{ goal}_1 \right]$

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln. (linear programming, value iteration, policy iteration)
Example – Reachability

Verify: $P_{\leq 0.6} \left[F \text{ goal}_1 \right]$
or
Synthesise for: $P_{\geq 0.4} \left[F \text{ goal}_1 \right]$

\Downarrow
Compute: $P_{\text{max}} = ? \left[F \text{ goal}_1 \right] = 0.5$

Optimal strategies: memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)

Optimal strategy:
$s_0 : \text{east}$
$s_1 : \text{south}$
$s_2 : -$
$s_3 : -$
$s_4 : \text{east}$
$s_5 : -$
Linear temporal logic (LTL)

- **Probabilistic LTL** (multiple temporal operators)
 - e.g. $P_{\text{max}} = \text{?} \left[(G\neg \text{hazard}) \land (GF \text{ goal}_1) \right]$ - "maximum probability of avoiding hazard and visiting goal$_1$ infinitely often?"
 - e.g. $P_{\text{max}} = \text{?} \left[\neg \text{zone}_3 \lor (\text{zone}_1 \land (F \text{ zone}_4)) \right]$ - "max. probability of patrolling zones 1 then 4, without passing through 3".

- **Probabilistic model checking**
 - convert LTL formula ψ to deterministic automaton A_ψ (Buchi, Rabin, finite, …)
 - build/solve product MDP $M \otimes A_\psi$
 - reduction to simpler problem
 - optimal strategies are:
 - deterministic
 - finite-memory

\[
\text{Det. Buchi automaton } A_\psi \\
\text{for } \psi = G \neg h \land GF g_1
\]
Example: Product MDP construction

\[
M \otimes A_\psi
\]
Example: Product MDP construction

\[M \otimes A_\psi \]

\[\psi = G \neg h \land GF g \]
Co-safe LTL (and expected cost)

- Often focus on tasks completed in finite time
 - can restrict to co-safe fragment(s) of LTL
 - (any satisfying execution has a "good prefix")
 - e.g. $P_{\text{max}}= \neg \text{zone}_3 \up U (\text{zone}_1 \land (F \text{zone}_4))$
 - for simplicity, can restrict to syntactically co-safe LTL

- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{\text{min}}= \neg \text{zone}_3 \up U (\text{zone}_1 \land (F \text{zone}_4))$ - "minimise exp. time to patrol zones 1 then 4, without passing through 3".

- Solution:
 - product of MDP and DFA
 - expected cost to reach accepting states in product
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)

• Application: Robot navigation
 – probabilistic model checking + MDPs + LTL

• Strategy synthesis techniques
 – multi-objective probabilistic model checking
 – partially satisfiable task specifications
 – uncertainty + stochastic games
 – permissive controller synthesis
Application: Robot navigation

- **Navigation planning:**
 - **MDP** models navigation through an uncertain environment
 - **LTL** used to formally specify tasks to be executed
 - synthesise finite-memory strategies to construct plans/controllers

![Diagram of robot navigation](Image)
Application: Robot navigation

- **Navigation planning MDPs**
 - expected timed on edges + probabilities
 - learnt using data from previous explorations

- **LTL-based task specification**
 - expected time to satisfy (one or more) co-safe LTL formulas

- **Benefits of the approach**
 - LTL: flexible, unambiguous property specification
 - efficient, fully-automated techniques
 - LTL-to-automaton conversion, MDP solution
 - c.f. ad-hoc reward structures, e.g. with discounting
 - meaningful properties: probabilities, time, energy,…
 - guarantees on performance ("correct by construction")
Implementation & deployment

- **Implementation**
 - MetraLabs Scitos A5 robot
 - ROS module based on PRISM
 - with extensions:
 - co-safe LTL expectation
 - efficient re-planning [IROS'14]

- **Example deployment:**

 G4S Technology, Tewkesbury (STRANDES)
Probabilistic model checking

• Further use of probabilistic model checking…
 – (various probabilistic models, query languages)

• Nested queries
 – e.g. $R_{\text{min=?}} [\text{safe} \ U (\text{zone}_1 \land (F \text{zone}_4))]$ – "minimise exp. time to patrol zones 1 then 4, passing only through safe".
 – where safe denotes states satisfying $\langle \langle \text{ctrl} \rangle \rangle R_{<2} [F \text{base}]$ – "there is a strategy to return to base with expected time < 2"

• Analysis of generated controllers
 – expected power consumption to complete tasks?
 – conditional expectation, e.g. expected time to complete task, assuming it is completed successfully?
 – more detailed timing information (not just mean time)
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)

• Application: Robot navigation
 – probabilistic model checking + MDPs + LTL

• Strategy synthesis techniques
 – multi–objective probabilistic model checking
 – partially satisfiable task specifications
 – uncertainty + stochastic games
 – permissive controller synthesis
Multi-objective model checking

- **Multi-objective probabilistic model checking**
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected costs

- **Achievability queries**: \(\text{multi}(P_{>0.95}[F \text{ send }], R^\text{time}_{>10}[C]) \)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- **Numerical queries**: \(\text{multi}(P_{\max=?}[F \text{ send }], R^\text{time}_{>10}[C]) \)
 - e.g. “maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?”

- **Pareto queries**:
 - \(\text{multi}(P_{\max=?}[F \text{ send }], R^\text{time}_{\max=?}[C]) \)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: multi($P_{>0.95} [F \text{ send}], R_{\text{time}>10} [C])$
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- Numerical queries: multi($P_{\text{max}=?} [F \text{ send}], R_{\text{time}>10} [C])$
 - e.g. “maximum probability of message transmission, assuming expected battery life–time > 10 hrs?”

- Pareto queries:
 - multi($P_{\text{max}=?} [F \text{ send}], R_{\text{time}_{\text{max}=?}} [C])$
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life–time"
Multi-objective model checking

- **Optimal strategies:**
 - usually **finite-memory** (e.g. when using LTL formulae)
 - may also need to be **randomised**

- **Computation:**
 - construct a product MDP (with several automata), then reduces to linear programming [TACAS'07,TACAS'11]
 - can be approximated using iterative numerical methods, via approximation of the Pareto curve [ATVA'12]

- **Extensions** [ATVA'12]
 - arbitrary Boolean combinations of objectives
 - e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 - (e.g. for assume–guarantee reasoning)
 - time–bounded (finite–horizon) properties
Example – Multi-objective

- Achievability query
 - $P_{\geq 0.7} [G \neg \text{hazard}] \land P_{\geq 0.2} [GF \text{ goal}_1]$? True (achievable)

- Numerical query
 - $P_{\text{max}=?} [GF \text{ goal}_1]$ such that $P_{\geq 0.7} [G \neg \text{hazard}]$? ~ 0.2278

- Pareto query
 - for $P_{\text{max}=?} [G \neg \text{hazard}] \land P_{\text{max}=?} [GF \text{ goal}_1]$?
Example – Multi-objective

Strategy 1 (deterministic)

- $s_0 : \text{east}$
- $s_1 : \text{south}$
- $s_2 : -$ (stuck)
- $s_3 : -$ (stuck)
- $s_4 : \text{east}$
- $s_5 : \text{west}$

$\psi_1 = \text{GF} \text{goal}_1$

$\psi_2 = \text{G} \neg\text{hazard}$
Example – Multi-objective

\[\psi_1 = G \neg \text{hazard} \]
\[\psi_2 = GF \text{ goal}_1 \]

Strategy 2
(deterministic)
\[s_0 : \text{south} \]
\[s_1 : \text{south} \]
\[s_2 : \text{--} \]
\[s_3 : \text{--} \]
\[s_4 : \text{east} \]
\[s_5 : \text{west} \]
Example – Multi-objective

Optimal strategy: (randomised)

\[s_0 : 0.3226 : \text{east} \]
\[0.6774 : \text{south} \]

\[s_1 : 1.0 : \text{south} \]

\[s_2 : - \]

\[s_3 : - \]

\[s_4 : 1.0 : \text{east} \]

\[s_5 : 1.0 : \text{west} \]
Application: Partially satisfiable tasks

- Partially satisfiable task specifications
 - via multi-objective probabilistic model checking [IJCAI'15]
 - e.g. $P_{\text{max}=?} [\neg \text{zone}_3 U (\text{room}_1 \land (F \text{room}_4 \land F \text{room}_5))] < 1$

- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required

- Progress metric constructed from DFA
 - (distance to accepting states, reward for decreasing distance)

- Encode prioritisation using multi-objective queries:
 - $p = P_{\text{max}=?} [\text{task}]$
 - $r = \text{multi}(R_{\text{max}=?}^{\text{prog}} [C], P_{\geq p} [\text{task}])$
 - $\text{multi}(R_{\text{min}=?}^{\text{time}} [C], P_{\geq p} [\text{task}] \land R_{\geq r}^{\text{prog}} [C])$.
Overview

- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)

- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL

- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis
MDPs + uncertainty

• Modelling uncertainty
 – e.g., transitions probabilities (or costs) specified as intervals

• Worst-case analysis
 – i.e. adversarial choice of probability values
 – stochastic game: controller vs. environment
 – "min–max" analysis
MDPs + uncertainty

- **Modelling uncertainty**
 - e.g., transitions probabilities (or costs) specified as intervals

- **Worst-case analysis**
 - i.e. adversarial choice of probability values
 - stochastic game: controller vs. environment
 - "min–max" analysis

- **PRISM-games** [FMSD'13]
 - stochastic multi-player games
 - temporal logic queries (rPATL)
 - e.g. $\langle\langle \text{ctrl} \rangle \rangle P_{\max} = ? [F \text{goal}_1]$
 - reduces to solving 2-player game

\[[p,q] = [0.5-\Delta, 0.5+\Delta] \]
Permissive controller synthesis

- **Multi-strategy** synthesis [TACAS'14]
 - for Markov decision processes and stochastic games
 - choose sets of actions to take in each state
 - controller is free to choose any action at runtime
 - flexible/robust (e.g. actions become unavailable or goals change)

- **Example**

 ![Diagram]

 Multi-strategy:
 - s_0: east or south
 - s_1: south
 - s_2:
 - s_3:
 - s_4: east
 - s_5: west
Permissive controller synthesis

- **Multi-strategies and temporal logic**
 - multi-strategy Θ satisfies a property $P_{>p}[F\text{ goal}]$ iff any strategy σ that adheres to Θ satisfies $P_{>p}[F\text{ goal}]$

- **We quantify the permissivity of multi-strategies**
 - by assigning penalties to each action in each state
 - a multi-strategy is penalised for every action it blocks
 - static and dynamic (expected) penalty schemes

- **Permissive controller synthesis**
 - \exists a multi-strategy satisfying $P_{\leq0.6}[F\text{ goal}_1]$ with penalty $< c$?
 - what is the multi-strategy with optimum permissivity?
 - reduction to mixed-integer LP problems
 - other applications: energy management, cloud scheduling, …
Conclusion

- **Probabilistic model checking & strategy synthesis**
 - Markov decision processes, temporal logic, PRISM
- **Robot navigation using MDPs & LTL**
 - PRISM extension embedded in ROS navigation stack
- **Recent extensions**
 - multi-objective probabilistic model checking
 - uncertainty & stochastic games, permissive controller synthesis
- **Challenges & directions**
 - partial information/observability, e.g. POMDPs
 - probabilistic models with continuous time (or space)
 - scalability, e.g. symbolic methods, abstraction

www.prismmodelchecker.org