Probabilistic Model Checking and Controller Synthesis

Dave Parker

University of Birmingham

AVACS Autumn School, October 2015
Overview

• Probabilistic model checking
 – verification vs. strategy/controller synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management

• Permissive controller synthesis
Motivation

• Verifying probabilistic systems...
 − unreliable or unpredictable behaviour
 • failures of physical components
 • message loss in wireless communication
 • unreliable sensors/actuators
 − randomisation in algorithms/protocols
 • random back–off in communication protocols
 • random routing to reduce flooding or provide anonymity

• We need to verify quantitative system properties
 − “the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001”
 − not just correctness: reliability, timeliness, performance, …
 − not just verification: correctness by construction
Probabilistic model checking

• Construction and analysis of probabilistic models
 – state–transition systems labelled with probabilities (e.g. Markov chains, Markov decision processes)
 – from a description in a high–level modelling language

• Properties expressed in temporal logic, e.g. PCTL:
 – trigger → P_{≥0.999} [F_{≤20} deploy]
 – “the probability of the airbag deploying within 20ms of being triggered is at least 0.999”
 – properties checked against models using exhaustive search and numerical computation
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies

 - \(P_{\leq 0.1} \{ F \text{ fail} \} \) – “the probability of a failure occurring is at most 0.1”
 - \(P = \{ F \text{ fail} \} \) – “what is the probability of a failure occurring?”
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, …)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
 - compared to, for example, simulation
- Combines numerical & exhaustive analysis
 - especially useful for nondeterministic models
- Fully automated, tools available, widely applicable
 - network/communication protocols, security, biology, robotics & planning, power management, …
Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - widely used also in: AI, planning, optimal control, ...
 - model nondeterministic as well as probabilistic behaviour

- Nondeterminism for:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
 - abstraction, or under-specification, of unknown behaviour
• **A strategy** (or “policy”, “scheduler”, “adversary”)
 – is a resolution of nondeterminism, based on history
 – is (formally) a mapping σ from finite paths to distributions
 – induces an (infinite-state) discrete-time Markov chain

![Diagram of a Markov chain with states s_0, s_1, s_2, and s_3 and transitions labeled with probabilities and actions.]

• **Classes of strategies:**
 – randomisation: deterministic or randomised
 – memory: memoryless, finite-memory, or infinite-memory
Example strategy

- Strategy σ which picks b then c in s_1
 - σ is finite-memory and deterministic

- Fragment of induced Markov chain:
Verification vs. Strategy synthesis

1. Verification
 - quantify over all possible strategies (i.e. best/worst-case)
 - $P_{\leq 0.1} [\text{F err}]$: “the probability of an error occurring is ≤ 0.1 for all strategies”
 - applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis
 - generation of "correct-by-construction" controllers
 - $P_{\leq 0.1} [\text{F err}]$: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
 - applications: robotics, power management, security, ...

Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values
• **Example MDP**

 – robot moving through terrain divided into a 3x2 grid
Example – Reachability

Verify: $P \leq 0.6 \ [F \ \text{goal}_1 \]$

or

Synthesise for: $P \geq 0.4 \ [F \ \text{goal}_1 \]$

\Downarrow

Compute: $P_{\text{max}}=? \ [F \ \text{goal}_1 \]$

Optimal strategies: memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)
Example – Reachability

Verify: \(P_{\leq 0.6} [F \text{ goal}_1] \)

or

Synthesise for: \(P_{\geq 0.4} [F \text{ goal}_1] \)

\(\Downarrow \)

Compute: \(P_{\max} =? [F \text{ goal}_1] = 0.5 \)

Optimal strategies: memoryless and deterministic

Computation:
graph analysis + numerical soln. (linear programming, value iteration, policy iteration)
Example – Reachability

Verify: $P_{\leq 0.6} [F \text{ goal}_1]$

or

Synthesise for: $P_{\geq 0.4} [F \text{ goal}_1]$

⇓

Compute: $P_{\text{max}} = ? [F \text{ goal}_1] = 0.5$

Optimal strategies: memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)

Optimal strategy:
$$
\begin{align*}
\text{s}_0 &: \text{east} \\
\text{s}_1 &: \text{south} \\
\text{s}_2 &: - \\
\text{s}_3 &: - \\
\text{s}_4 &: \text{east} \\
\text{s}_5 &: -
\end{align*}
$$
Linear temporal logic (LTL)

- **Probabilistic LTL** (multiple temporal operators)
 - e.g. $P_{\text{max}} =? \ [(G\neg\text{hazard}) \land (GF \text{goal}_1)]$ - "maximum probability of avoiding hazard and visiting goal\(_1\) infinitely often?"
 - e.g. $P_{\text{max}} =? \ [\neg\text{zone}_3 \ U (\text{zone}_1 \land F \text{zone}_4)]$ - "max. probability of patrolling zones 1 then 4, without passing through 3".

- **Probabilistic model checking**
 - convert LTL formula ψ to deterministic automaton A_ψ (Buchi, Rabin, finite, ...)
 - build/solve product MDP $M \otimes A_\psi$
 - reduces to reachability problem
 - optimal strategies are:
 - deterministic
 - finite-memory

Det. Buchi automaton A_ψ
for $\psi = G\neg h \land GF g_1$
Example: Product MDP construction

\[M \otimes A_\psi \]

\[\psi = G\neg h \land GF g_1 \]

\[M \]

\[s_0 \xrightarrow{0.4, \text{east}} s_1 \]
\[s_0 \xrightarrow{0.1, \text{south}} s_3 \]
\[s_1 \xrightarrow{0.6, \text{east}} s_2 \]
\[s_1 \xrightarrow{0.1, \text{south}} s_4 \]
\[s_2 \xrightarrow{0.5, \text{east}} s_3 \]
\[s_2 \xrightarrow{0.9, \text{stuck}} s_4 \]
\[s_3 \xrightarrow{0.8, \text{south}} s_0 \]
\[s_3 \xrightarrow{0.6, \text{west}} s_4 \]
\[s_4 \xrightarrow{0.4, \text{west}} s_5 \]
\[s_5 \xrightarrow{0.1, \text{north}} s_2 \]

\[\{\text{goal}_2\} \]
\[\{\text{goal}_1\} \]
\[\{\text{hazard}\} \]

\[A_\psi \]

\[\psi = G\neg h \land GF g_1 \]

\[q_0 \xrightarrow{g_1 \land \neg h} q_1 \]
\[q_0 \xrightarrow{\neg g_1 \land \neg h} q_2 \]
\[q_1 \xrightarrow{h} q_2 \]
\[q_2 \xrightarrow{\text{true}} q_1 \]

\[\{\text{goal}_1\} \]
\[\{\text{goal}_2\} \]
\[\{\text{hazard}\} \]
Example: Product MDP construction

\[M \otimes A_\psi \]

\[\psi = G \neg h \land GF g_1 \]
MDPs – Other properties

• **Costs and rewards** (expected, accumulated values)

 – e.g. $R_{\text{max}}=? \ [\text{F end}]$ – "what is the worst-case (maximum) expected time for the protocol to complete?"

 – e.g. $R_{\text{min}}=? \ [\text{F goal}_2]$ – "what is the optimal (minimum) expected number of moves needed to reach goal$_2$?"

 – optimal strategies: memoryless and deterministic

 – similar computation to probabilistic reachability

• **Expected cost/reward to satisfy** (co-safe) LTL formula

 – e.g. $R_{\text{min}}=? \ [\neg \text{zone}_3 \ U \ (\text{zone}_1 \land \text{F zone}_4)]$ – "minimise exp. time to patrol zones 1 then 4, without passing through 3"

 – optimal strategies: finite-memory and deterministic

 – build/solve product of MDP and det. finite automaton

• **Nested properties**, e.g. using PCTL (branching time logic)
Application: Robot navigation

- **Navigation planning:** [IROS'14]
 - MDP models navigation through an uncertain environment
 - LTL used to formally specify tasks to be executed
 - synthesise finite-memory strategies to construct plans/controllers
 - links to continuous-space planner
Application: Robot navigation

• Navigation planning MDPs
 – expected timed on edges + probabilities
 – learnt using data from previous explorations

• LTL-based task specification
 – expected time to satisfy (one or more) co-safe LTL formulas
 – c.f. ad-hoc reward structures, e.g. with discounting
 – also: efficient re-planning [IROS’14]; progress metric [IJCAI’15]

• Implementation
 – MetraLabs Scitos A5 robot + ROS module based on PRISM
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management

• Permissive controller synthesis
Multi-objective model checking

- **Multi-objective probabilistic model checking**
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- **Achievability queries**: \(\text{multi}(P_{>0.95}[F \text{ send }], R_{time>10}[C]) \)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- **Numerical queries**: \(\text{multi}(P_{\text{max=?}}[F \text{ send }], R_{time>10}[C]) \)
 - e.g. “maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?”

- **Pareto queries**:
 - \(\text{multi}(P_{\text{max=?}}[F \text{ send }], R_{\text{time}\text{max=?}}[C]) \)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: \(\text{multi}(P_{>0.95}[F \text{ send}], R_{\text{time} > 10}[C]) \)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- Numerical queries: \(\text{multi}(P_{\text{max}=?}[F \text{ send}], R_{\text{time} > 10}[C]) \)
 - e.g. “maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?”

- Pareto queries:
 - \(\text{multi}(P_{\text{max}=?}[F \text{ send}], R_{\text{time max}=?}[C]) \)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
Multi-objective model checking

• Optimal strategies:
 – usually finite-memory (e.g. when using LTL formulae)
 – may also need to be randomised

• Computation:
 – construct a product MDP (with several automata),
 then reduces to linear programming [TACAS'07,TACAS'11]
 – can be approximated using iterative numerical methods,
 via approximation of the Pareto curve [ATVA'12]

• Extensions [ATVA'12]
 – arbitrary Boolean combinations of objectives
 • e.g. $\psi_1 \implies \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 • (e.g. for assume–guarantee reasoning)
 – time-bounded (finite–horizon) properties
Example – Multi-objective

- Achievability query
 - \(P_{\geq 0.7}[G \neg\text{hazard}] \land P_{\geq 0.2}[GF \text{ goal}_1] \) ? True (achievable)

- Numerical query
 - \(P_{\text{max}=?}[GF \text{ goal}_1] \) such that \(P_{\geq 0.7}[G \neg\text{hazard}] \) ? \(~0.2278\)

- Pareto query
 - for \(P_{\text{max}=?}[G \neg\text{hazard}] \land P_{\text{max}=?}[GF \text{ goal}_1] \) ?
Example – Multi-objective

Strategy 1
(deterministic)

\(s_0 : \text{east} \)
\(s_1 : \text{south} \)
\(s_2 : \text{–} \)
\(s_3 : \text{–} \)
\(s_4 : \text{east} \)
\(s_5 : \text{west} \)

\(\psi_1 = G \neg \text{hazard} \)
\(\psi_2 = GF \text{ goal}_1 \)
Example – Multi-objective

Strategy 2 (deterministic)

\[s_0 : \text{south} \]
\[s_1 : \text{south} \]
\[s_2 : - \]
\[s_3 : - \]
\[s_4 : \text{east} \]
\[s_5 : \text{west} \]

\[\psi_1 = G \neg \text{hazard} \]
\[\psi_2 = GF \text{ goal}_1 \]
Example – Multi-objective

Optimal strategy:
(randomised)

\[s_0 : 0.3226 : \text{east} \]
\[s_0 : 0.6774 : \text{south} \]

\[s_1 : 1.0 : \text{south} \]

\[s_2 : \text{-} \]

\[s_3 : \text{-} \]

\[s_4 : 1.0 : \text{east} \]

\[s_5 : 1.0 : \text{west} \]
Multi-objective: Applications

Synthesis of controllers for dynamic power management [TACAS'11]

IBM TravelStar VP disk drive
- switches between power modes:
- active/idle/idlelp/stby/sleep

MDP model in PRISM:
- power manager
- disk requests
- request queue
- power usage

Multi-objective:
"minimise energy consumption, subject to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs

Synthesis of team formation strategies [CLIMA'11, ATVA'12]

Pareto curve:
\[x = \text{"probability of completing task 1"}; \]
\[y = \text{"probability of completing task 2"}; \]
\[z = \text{"expected size of successful team"} \]
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management

• Permissive controller synthesis
Stochastic multi-player games (SMGs)

- **Stochastic multi-player games**
 - players control states; choose actions
 - models *competitive/collaborative* behaviour
 - applications: security (system vs. attacker), controller synthesis (controller vs. environment), distributed algorithms/protocols, ...

- **Property specifications: rPATL**
 - \(\langle \langle \{1,2\} \rangle \rangle P_{\geq 0.95} [F_{\leq 45} \text{ done }] : \) "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
 - formally: \(\langle \langle C \rangle \rangle \psi : \text{do there exist} \) strategies for players in \(C \) such that, for all strategies of other players, property \(\psi \) holds?

- **Model checking** [TACAS'12,FMSD'13]
 - zero sum properties: analysis reduces to 2-player games
 - PRISM-games: www.prismmodelchecker.org/games
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1–south→s_4 is in $[p,q] = [0.5-\Delta, 0.5+\Delta]$
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of $s_1 \rightarrow$ south → s_4 is in $[p,q] = [0.5-\Delta, 0.5+\Delta]$

rPATL: $\langle\langle 1 \rangle\rangle \ P_{\text{max}=?} \ [F \ \text{goal}_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1–south→s_4 is in $[p,q] = [0.5-\Delta, 0.5+\Delta]$
Example: Energy management

• Energy management protocol for Microgrid
 – Microgrid: local energy management
 – randomised demand management protocol
 – random back-off when demand is high

• Original analysis [Hildmann/Saffre'11]
 – protocol increases "value" for clients
 – simulation-based, clients are honest

• Our analysis
 – stochastic multi-player game model
 – clients can cheat (and cooperate)
 – model checking: PRISM–games
Example: Energy management

- Exposes protocol weakness
 - incentive for clients to act selfishly

- We propose a simple fix (and verify it)
 - clients can be punished

Value per client

Value per client, with fix
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management

• Permissive controller synthesis
Permissive controller synthesis

- **Multi-strategy synthesis** [TACAS'14]
 - for Markov decision processes and stochastic games
 - choose *sets* of actions to take in each state
 - controller is free to choose any action at runtime
 - flexible/robust (e.g. actions become unavailable or goals change)

- **Example**

 ![Diagram](image)

 Multi-strategy:
 - s_0 : east or south
 - s_1 : south
 - s_2 : stuck
 - s_3 : stuck
 - s_4 : east
 - s_5 : west
Permissive controller synthesis

• Multi-strategies and temporal logic
 – multi-strategy Θ satisfies a property $P_{>p}[F\text{ goal}]$ iff any strategy σ that adheres to Θ satisfies $P_{>p}[F\text{ goal}]$

• We quantify the permissivity of multi-strategies
 – by assigning penalties to each action in each state
 – a multi-strategy is penalised for every action it blocks
 – static and dynamic (expected) penalty schemes

• Permissive controller synthesis
 – \exists a multi-strategy satisfying $P_{\leq 0.6}[F\text{ goal}_1]$ with penalty $< c$?
 – what is the multi-strategy with optimum permissivity?
 – reduction to mixed-integer LP problems
 – applications: energy management, cloud scheduling, …
Conclusion

- **Probabilistic model checking**
 - verification vs. controller synthesis
 - Markov decision processes, temporal logic, applications

- **Recent directions and extensions**
 - multi-objective probabilistic model checking
 - model checking for stochastic games
 - permissive controller synthesis

- **Challenges**
 - stochastic games: multi-objective, equilibria, richer logics
 - partial information/observability
 - probabilistic models with continuous time (or space)
 - scalability, e.g. symbolic methods, abstraction
Thanks for your attention

More info here:
www.prismmodelchecker.org/lectures/avacs15/