Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model Checking

Dave Parker
School of Computer Science, University of Birmingham

Joint work with:
Matthew Lakin, Luca Cardelli, Marta Kwiatkowska and Andrew Phillips

Centre for Systems Biology, Birmingham, June 2012
Overview

• **Quantitative verification**
 – probabilistic model checking and PRISM

• **Modelling and analysis of biological systems**
 – a discrete stochastic approach
 – probabilistic model checking: “in-silico” experiments

• **Two-domain DNA strand displacement**
 – gate correctness, reliability and performance
 – design optimisation: garbage collection
 – a larger example: approximate majority
 – see: [Lakin/Parker/…, Royal Society Interface, 2012]

• **Summary, challenges & directions**
Verification via model checking

Model checking: Automatic formal verification of correctness properties of computerised systems

- **System**
- **Finite-state model**
- **Temporal logic specification**
- **¬EF fail**
- **Model checker** e.g. SMV, Spin
- **Result**
 - ✓
 - ✗
- **Counter-example**
Probabilistic model checking

• Why and what?

• Why probability?
 – unreliability (e.g. component failures)
 – uncertainty (e.g. message losses/delays over wireless)
 – randomisation (e.g. in protocols such as Bluetooth, ZigBee)
 – stochasticity (e.g. biological/chemical reaction rates)

• Quantitative properties
 – reliability, performance, quality of service, ...
 – “the probability of an airbag failing to deploy within 0.02s”
 – “the expected power usage of a sensor network over 1 hour”
 – “the expected time for a cell signalling pathway to complete”
Probabilistic model checking: Automatic verification of quantitative properties of systems with stochastic behaviour.
• Construction and analysis of finite probabilistic models
 – e.g. Markov chains, Markov decision processes, …
 – specified in high-level modelling formalisms
 – exhaustive model exploration (all possible states/executions)

• Automated analysis of wide range of quantitative properties
 – properties specified using temporal logic
 – “exact” results obtained via numerical computation
 – linear equation systems, iterative methods, uniformisation, …
 – as opposed to, for example, Monte Carlo simulations
 – efficient techniques from verification + performance analysis
 – mature tool support available
The PRISM tool

• **PRISM: Probabilistic symbolic model checker**
 – developed at Birmingham/Oxford University, since 1999
 – free, open source software (GPL), runs on all major OSs

• **Support for:**
 – models: Markov chains, Markov decision processes, ...
 – properties: PCTL, CSL, LTL, PCTL*, costs/rewards, ...

• **Features:**
 – simple but flexible high-level modelling language
 – user interface: editors, simulator, experiments, graph plotting
 – multiple efficient model checking engines (e.g. symbolic)

• **Many import/export options, tool connections**
 – in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, ...
 – out: Matlab, MRMC, INFAMY, PARAM, ...

• **See:** http://www.prismmodelchecker.org/
PRISM – Case studies

• Randomised communication protocols
 – Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...

• Randomised distributed algorithms
 – consensus, leader election, self-stabilisation, ...

• Security protocols/systems
 – pin cracking, anonymity, quantum crypto, contract signing, ...

• Planning & controller synthesis
 – robotics, dynamic power management, ...

• Performance & reliability
 – nanotechnology, cloud computing, manufacturing systems, ...

• Biological systems
 – cell signalling pathways, DNA computation, ...

• See: www.prismmodelchecker.org/casestudies
Overview

• Quantitative verification
 – probabilistic model checking and PRISM

• Modelling and analysis of biological systems
 – a discrete stochastic approach
 – probabilistic model checking: “in-silico” experiments

• Two-domain DNA strand displacement
 – gate correctness, reliability and performance
 – design optimisation: garbage collection
 – a larger example: approximate majority

• Summary, challenges & directions
Modelling biological systems

- **Aim:** model a mixture of interacting molecules
 - multiple molecular species, interacting through reactions
 - cell signalling pathway, gene regulatory network, ...
 - fixed volume (spatially uniform), pressure and temperature

- **Simple example:**
 - 3 species A, B and AB; 3 reactions:
 - reversible binding of A and B to form AB; degradation of A

\[
\begin{align*}
A + B & \xrightleftharpoons[k_2]{k_1} AB \\
A & \xrightarrow[k_3]{}
\end{align*}
\]

- **Two approaches to modelling**
 - discrete, stochastic
 - continuous, deterministic
Modelling biological systems

• **Discrete, stochastic approach**
 – (integer) counts of number of each molecule: \(x = (x_A, x_B, x_{AB}) \)
 – inherently stochastic process [McQuarrie, Gillespie]
 – continuous–time Markov chain with states \(x \)
 – stochastic simulation, numerical soln., probabilistic model checking, …

• **Continuous, deterministic approach**
 – (real–valued) concentrations: \([A], [B], [AB]\)
 – solution of system of coupled ordinary differential equations
 – good approximation of \(E[x] \) for very large num.s of molecules
Discrete stochastic approach

- **Chemical master equation**
 - state vector \(\mathbf{x} = (x_A, x_B, x_{AB}) \)
 - probability \(P(\mathbf{x}, t) \) that at time \(t \) there will be \(x_Z \) of species \(Z \)

\[
\frac{\delta P(\mathbf{x}, t)}{\delta t} = \sum_{i=1}^{3} a_i(\mathbf{x} - \mathbf{v}_i)P(\mathbf{x} - \mathbf{v}_i, t) - a_i(\mathbf{x})P(\mathbf{x}, t)
\]

- stoichiometric vectors: \(\mathbf{v}_1 = (-1, -1, 1) \), \(\mathbf{v}_2 = (1, 1, -1) \), \(\mathbf{v}_3 = (-1, 0, 0) \)
- \(a_i(\mathbf{x}) \) are time-independent propensity functions
- mass-action: proportional to reactant combinations
 - e.g. \(a_1(x_A, x_B, x_{AB}) = k_1 \cdot x_A \cdot x_B \)

- **Stochastic process**: continuous-time Markov chain (CTMC)
 - transition rates (of exponential delays) derived from \(a_i \)
Continuous–time Markov chain (CTMC)

- **CTMC C = (S, s_i, R)**
 - states \(S \), initial state \(s_i \in S \)
 - rate matrix \(R : S \times S \rightarrow \mathbb{R}_{\geq 0} \)
 - \(R(s,s') \): rate of exponential delay before moving \(s \rightarrow s' \)
 - probability \(s \rightarrow s' \) triggered before time \(t = 1 - e^{-R(s,s') \cdot t} \)

- **Example: CTMC with:**
 - states \((x_A, x_B, x_{AB}) \in S = \{0,1,2\}^3\)
 - initial state \((2,2,0)\)

- **Rates for reactions**
 - \(r_1 \) (binding): rate = \(x_A \cdot x_B \cdot k_1 \)
 - \(r_2 \) (unbinding) rate = \(x_{AB} \cdot k_2 \)
 - \(r_3 \) (degradation): rate = \(x_A \cdot k_3 \)
Probabilistic model checking

Probabilistic model checking for systems biology...

Biological system

System model

CTMC

PRISM

Result

Quantitative results

Counter-example

System properties

Temporal logic

\[P=? \left[F^t \quad a>0 \right] \]
PRISM modelling language

- Simple, textual, state-based modelling language
 - for Markov chains (and other models)

- Language basics
 - networks formed from interacting modules
 - state of each module given by finite-ranging variables
 - behaviour of each module specified by guarded commands
 - interactions between modules through synchronisation
 - interactions are associated with state-dependent rates

\[
[r_1] \quad (a > 0) \quad \rightarrow \quad k_1 \cdot a \quad : \quad (a' = a - 1) \& (ab' = ab + 1);
\]

- action
- guard
- rate
- update
module A
 a : [0..N] init N;
 ab : [0..N] init 0;
 [r_1] a>0 → k_1*a : (a'=a-1) & (ab'=ab+1);
 [r_2] ab>0 → k_2*ab : (a'=a+1) & (ab'=ab-1);
 [r_3] a>0 → k_3*a : (a'=a-1);
endmodule

module B
 b : [0..N] init N;
 [r_1] b>0 → b : (b'=b-1);
 [r_2] b<N → b : (b'=b+1);
endmodule

Reactions r_1/r_2:

A + B \[\xrightarrow{k_1} \xleftarrow{k_2} AB\]

Reaction r_3:

A \[\xrightarrow{k_3} \]

Example (r_1):

(a,ab,b) \[\xrightarrow{k_1 \cdot a \cdot b} \]

(a-1,ab+1,b-1)
Property specifications

- **Property specifications are based on temporal logic**
 - PRISM uses continuous stochastic logic (CSL) + extensions
 - also supports linear temporal logic (LTL)
 - flexible, compact, unambiguous definition
 - small subset of patterns/templates in common use
 - can express properties about the probability of occurrence of an event or the expected value of some cost/reward measure

- **CSL example:** $P_{>0.9} [F^{\leq T} k_{pp}>0]$
 - “with probability greater than 0.9, at least some MAPK is activated within the first T seconds”

- **Usually focus on “quantitative” CSL:** $P_{=} [F^{\leq T} k_{pp}>0]$
 - “what is the probability that at least some MAPK is activated within the first T seconds?”
 - typically compute/plot for a range of parameter values
Example (FGF)

- Probability that a signal is present at time T
 \[P_{=?} \left[F^T (\text{FRS2}_{GRB}>0 \& \text{relocFRS2}=0 \& \text{degFRS2}=0) \right] \]
More examples of (extended) CSL

- $P_{= \tau} \left[F_{[t,t]} \ a=i \right]$
 - “the probability that there are exactly i A after t seconds”

- $P_{= \tau} \left[F \ a=0 \right]$
 - “probability that all A proteins are eventually degraded”

- $S_{= \tau} \left[c+d>M \right]$
 - “long-run probability that the total number of Cs and Ds activated is above M”

- $P_{= \tau} \left[c=0 \ U>^{t} c>0 \ \{c=0\}^{\text{max}} \right]$
 - “highest probability of it taking more than t seconds for C to become activated, from any state where there are none”

- $P_{= \tau} \left[F \ c=N \right] / P_{= \tau} \left[F \ c>0 \right]$
 - “the (conditional) probability that all C proteins are eventually activated, given that at least some of them are”

- $R_{t^{\text{“active_d”}}}=? \left[l=t \right]$
 - “the expected number of activated D at time instant t”
Case studies

• Fibroblast Growth Factor (FGF) pathway
 – [Heath/Kwiatkowska/Norman/Parker/Tymchyshyn/Gaffney]
 – 12 species, 14 sets of reaction rules
 – model checking (PRISM) + simulation (stochastic π-calculus)
 – “in-silico” experiments: systematic removal of components
 – results validated by subsequent lab experiments

• RKIP–inhibited ERK pathway [Calder/Vyshemirsky/Gilbert/Orton]
 – model checking using PEPA and PRISM models
 – formal analysis highlighted errors in existing models
 – corrected models then validated against experimental data

• And more: Codon bias, Ribosome kinetics, Sorbitol dehydrogenase, T Cell Signalling Events, …
 – www.prismmodelchecker.org/casestudies/index.php#biology
Overview

• Quantitative verification
 – probabilistic model checking and PRISM

• Modelling and analysis of biological systems
 – a discrete stochastic approach
 – probabilistic model checking: “in-silico” experiments

• Two-domain DNA strand displacement
 – gate correctness, reliability and performance
 – design optimisation: garbage collection
 – a larger example: approximate majority

• Summary, challenges & directions
Two-Domain DNA Strand Displacement

- DNA computing with a restricted class of DNA strand displacement structures
 - double strands with nicks (interruptions) in the top strand
 - and two-domain single strands consisting of one (short) toehold domain and one recognition domain
 - "toehold exchange": branch migration of strand $<t^x>$ leading to displacement of strand $<x t^>$

- Used to construct transducers, fork/join gates
 - which can emulate Petri net transitions

Example: Transducer

- Transducer: converts input \(<t^x>\) into output \(<t^y>\)
Example: Transducer

- **Transducer: full reaction list**

 \[
 \begin{align*}
 &txttatata \quad \leftrightarrow \quad tx \\
 &txttatata \quad \leftrightarrow \quad ta \\
 &xtytatat \quad \leftrightarrow \quad at \\
 &xtytatat \quad \leftrightarrow \quad yt \\
 &xtytatat \quad \rightarrow \quad xt \\
 &txttatat \quad \rightarrow \quad ta \\
 &txttatat \quad \rightarrow \quad x \\
 &txttatat \quad \rightarrow \quad a \\
 \end{align*}
 \]

 Input \quad \longleftrightarrow \quad \text{unreactive structures (no exposed toeholds)} \quad \leftrightarrow \quad Output
DNA programming

- Challenge: correct, reliable designs; avoid interference

- [Cardelli’10] proposes a “nick algebra” to formalise the definition and behaviour of these two-domain DNA strands
 - syntax, algebraic equivalence relation, reduction rules

- Strict subset of DSD (DNA Strand Displacement) language
 - [Cardelli, Phillips, et al.]
 - accompanying software Visual DSD for analysis/simulation
 - now extended to include auto-generation of PRISM models

- Example:

 new t@0.0003,0.1126
def T(N, x, y) =
 (N* <t^ a> | N* <y t^> | N* t^:[x t^]:[a t^]:[a] | N* [x]:[t^ y]:[t^ a]:t^)
 (T(1, x, y) | 1 * <t^ x>)
Formalising correctness…

- identify states where gate has terminated correctly: "all_done"
- (correct number of outputs, no reactive gates left)

Check:

- (i) any possible deadlock state that can be reached must satisfy "all_done"
- (ii) there is at least one path through the system that reaches a state satisfying "all_done"

In temporal logic (CTL):

- \(A \ [G \ "deadlock" \Rightarrow "all_done"] \)
- \(E \ [F \ "all_done"] \)

Verify using PRISM…

- for one transducer: both properties true
- for two transducers in series: (ii) is true, but (i) is false
Transducer flaw

- PRISM identifies a 5-step trace to the "bad" deadlock state
 - problem caused by "crosstalk" (interference) between DSD species from the two copies of the gates
 - previously found manually [Cardelli’10]
 - detection now fully automated

- Bug is easily fixed (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,0,1,1,1,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)
We can also use PRISM to study the kinetics of the pair of (faulty) transducers:

- $P = ? \ [F^{[T,T]} "deadlock"]$
- $P = ? \ [F^{[T,T]} "deadlock" \ & \ !"all_done"]$
- $P = ? \ [F^{[T,T]} "deadlock" \ & \ "all_done"]$

success/error equally likely

![Graph showing probability over time]

- Blue line: Terminate
- Green line: Error
- Red line: Success

Probability

$T \times 10^4$
Transducers: Reliability

• Even without fixing the flaw in the transducer design...
 – we can improve reliability by using larger numbers of copies

• Plot: Expected number of reactive gates in the final state
 – for N copies of the faulty transducer pair
Transducers: Performance

- We analyse the performance of the (corrected) transducers
 - circuit composed of chain of K transducers
 - Seelig/Soloveichik showed execution time linear in depth

- Analysed for DSD model in PRISM:
 - $R_{\{\text{time}\}=? \ [F \ "\text{all_done}\" \]}$

![Graph showing expected time versus K with a linear relationship]
Catalysts in DSD

- Slightly more complex DSD gate design
 - extension of the transducer gate design
- Chemical reaction $X \rightarrow Z$ catalysed by 3^{rd} species Y
 - i.e. $X + Y \rightarrow Y + Z$
- Design decision:
 - can/should we implement garbage collection (GC)?
 - i.e. tidying up of intermediate species into inert structures
 - omitting GC makes design simpler and cheaper
 - but is it still correct?
 and what about efficiency?
- PRISM analysis:
 - both designs correct
 - GC speeds up gate execution significantly
 - due to extra reactions

![Graph](image)
Approximate Majority

- **Approximate majority population protocol** [Angluin et al.]
 - two populations X, Y and an auxiliary species B
 - aim is to converge to a consensus: either X or Y
 - should converge to population with initial majority

- **Reactions:**

\[
\begin{align*}
 X + Y & \xrightarrow{k_1} Y + B \\
 B + X & \xrightarrow{k_3} X + X \\
 Y + X & \xrightarrow{k_2} X + B \\
 B + Y & \xrightarrow{k_4} Y + Y
\end{align*}
\]

- We implement the approximate majority protocol in DSD
 - using the catalyst reactions shown earlier
 - and then analyse its correctness
Approximate majority: Simulation

- **Typical simulation run:**
 - in this instance, the protocol chooses Y
Approximate majority: Analysis

- Plot probability of choosing X for varying initial X/Y
 - 0.5 for equal initX and initY
 - rapidly approaches 1 as majority increases
Approximate majority: Analysis

- [Angluin et al.] prove correct consensus obtained with high probability if the initX-initY margin is above $\omega(\sqrt{N \log N})$
 - re-plot same data against (relative) initX-initY margin
 - for various total initial population sizes N (=4,…,10)
 - note increasingly clear threshold for larger N
Model checking DNA: Limitations

• **Key challenge (as always): state space explosion**
 - CTMCs solved for this work up to approx. 2m states

• **Already using various methods to reduce state space:**
 - careful gate design to reduce number of asynchronous steps
 - highest level of abstraction for reactions in DSD tool
 - for approximate majority, fuels modelled as “constant species”

• **Some positive results:**
 - bugs found in small systems, which also exist in bigger ones
 - we illustrated useful design trade-offs with small populations
 - earlier work (FGF): successful expt. validation for small sizes

• **On the other hand:**
 - transducer bug only arises for a transducer pair, not when studied in isolation; can we explore all possible interfaces?
 - how can we formally relate results obtained from smaller models to larger ones?
Overview

• Quantitative verification
 – probabilistic model checking and PRISM

• Modelling and analysis of biological systems
 – a discrete stochastic approach
 – probabilistic model checking: “in-silico” experiments

• Two-domain DNA strand displacement
 – gate correctness, reliability and performance
 – design optimisation: garbage collection
 – a larger example: approximate majority

• Summary, challenges & directions
Summary

- **Probabilistic model checking**
 - automatic, exhaustive construction of probabilistic models
 - analysis of formally specified quantitative properties
 - efficient techniques, tools available

- **Probabilistic model checking for systems biology**
 - discrete, stochastic model: chemical master equation
 - solution of continuous–time Markov chains
 - quantitative properties expressed in temporal logic

- **DNA strand displacement**
 - two–domain DSD designs analysed with Visual DSD, PRISM
 - correctness, reliability, performance, design decisions
Challenges and Directions

Challenges
- scalability, infinite-state systems
- correct level of abstraction for formal languages?
- appropriate (and testable) model checking queries?
- closer integration of model checking tools, engines

Directions
- model abstractions (and automatic construction of)
- infinite state systems: truncation for time-bounded properties
- model reduction techniques: bisimulation, symmetry, ...
- approximate/statistical model checking (simulation-based)
- stochastic hybrid systems: discrete + continuous populations
- compositional probabilistic model checking