Quantitative Abstraction Refinement

Dave Parker
Oxford University Computing Laboratory

Joint work with:
Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman

PEPA Club, University of Edinburgh, November 2009
Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic model checker
e.g. PRISM

Probabilistic temporal logic specification
e.g. PCTL, CSL, LTL

Result

\[P < 0.01 \ [F \text{ error}] \]

Quantitative results
Overview

- **Probabilistic model checking**
 - discrete-time Markov chains (DTMCs)
 - Markov decision processes (MDPs)
 - probabilistic reachability

- **Abstraction for probabilistic models**
 - abstractions of DTMCs (MDPs)
 - abstractions of MDPs (two-player stochastic games)

- **Quantitative abstraction refinement**
 - abstraction-refinement loop
 - verification of probabilistic software, real-time systems

- **Current/future work & Conclusions**
Probabilistic models

- **Discrete–time Markov chains (DTMCs)**
 - discrete states, discrete probability distributions

- **Markov decision processes (MDPs)**
 - discrete states, probability and nondeterminism
 - uses: concurrency, under–specification, abstraction
 - models: randomised distributed algorithms, randomised communication protocols, security protocols, …

- **Continuous–time Markov chains (CTMCs)**
 - discrete states, exponentially distributed delays
 - performance modelling, biological reaction systems, …
Discrete–time Markov chains (DTMCs)

- **Model fully probabilistic behaviour**
 - state–transition systems augmented with probabilistic choice

- **Transition probability matrix**
 - over state space S
 - $P : S \times S \to [0,1]$

- **Paths through a DTMC**
 - finite/infinite state sequences
 - $\text{Path}(s) = \text{set of all (infinite) paths from state } s$
 - define probability space \Pr_s over $\text{Path}(s)$

- **Probabilistic reachability (for a set of goal states $F \subseteq S$)**
 - probability of reaching F from state s
 - $p_s(F) = \Pr_s \{ s_0s_1s_2s_3\ldots \in \text{Path}(s) \mid s_i \in F \text{ for some } i \}$
 - reduces to solution of a linear equation system
Markov decision processes (MDPs)

- Model nondeterministic as well as probabilistic behaviour
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions

- Transition probability function
 - Steps : $S \rightarrow 2^{Act \times \text{Dist}(S)}$
 - maps states to non-empty sets of action–probability distribution pairs

- A (finite or infinite) path through an MDP
 - is a sequence of (connected) states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices
Strategies of MDPs

- A strategy (aka. “adversary”, “scheduler”, …) of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions

- E.g. strategy that picks b then c in s_1
 - $\sigma(s_0s_1) = (b, \mu_b)$, $\sigma(s_0s_1s_1) = (c, \mu_c)$,
 $\sigma(s_0s_1s_0s_1) = (c, \mu_c)$

- A strategy results in a fully probabilistic model
 - i.e. an (infinite-state) DTMC over finite paths
 - on which we can define a probability space over infinite paths

- Strategy σ is simple (memoryless) iff $\sigma(s_1...s_n) = \sigma(s_n)$
 - in this case, resulting model reduces to finite Markov chain
Example strategy

• Fragment of DTMC for strategy which picks b then c in s_1
Probabilistic reachability for MDPs

- **A strategy** σ **induces**, for each state s in the MDP:
 - a set of infinite paths $\text{Path}^\sigma(s)$
 - a probability space Pr^σ_s over $\text{Path}^\sigma(s)$

- **Probabilistic reachability** (for a set of goal states $F \subseteq S$)
 - probability of reaching F from state s under strategy σ
 - $p^\sigma_s(F) = \text{Pr}^\sigma_s \{ s_0s_1s_2s_3... \in \text{Path}^\sigma(s) \mid s_i \in F$ for some $i \}$

- **Minimum/maximum probabilities** over all strategies
 - $p^\text{min}_s(F) = \inf_\sigma p^\sigma_s(F)$
 - $p^\text{max}_s(F) = \sup_\sigma p^\sigma_s(F)$
 - simple strategies suffice

- **Used to reason about best/worst–case behaviour**
 - e.g. “maximum probability of an error occurring”
Probabilistic model checking for MDPs

- **Also: Bounded reachability properties**
 - e.g. “min. probability of algorithm termination within T steps”

- **Also: Cost– and reward–based properties**
 - augment states/transitions of MDP with real–valued costs
 - define properties as random variables over \(\text{Path}^\sigma(s) \)
 - e.g. “max. expected power consumption for the duration of the protocol”

- **Probabilistic temporal logics**
 - e.g. PCTL extends CTL

- **We focus on quantitative analysis**
 - i.e. just compute \(p_s^{\min}(F) \) and \(p_s^{\max}(F) \)
 - useful to spot patterns/trends
Probabilistic model checking for MDPs

- **Probabilistic reachability is efficiently computable**
 - linear optimisation problem (polynomial complexity)
 - or value iteration (dynamic programming) – simple iterative numerical method; more efficient in practice
 - *best/worst* case simple strategy can also be generated

- **Mature tool support exists, e.g. PRISM**
 - efficient (e.g. symbolic) implementations
 - successful application to wide range of application domains

- **But major challenges remain, e.g.**
 - state-space explosion
 - automating model extraction
Overview

• Probabilistic model checking
 – discrete-time Markov chains (DTMCs)
 – Markov decision processes (MDPs)
 – probabilistic reachability

• Abstraction for probabilistic models
 – abstractions of DTMCs (MDPs)
 – abstractions of MDPs (two–player stochastic games)

• Quantitative abstraction refinement
 – abstraction–refinement loop
 – verification of probabilistic software, real–time systems

• Current/future work & Conclusions
Abstraction

- Very successful in (non-probabilistic) model checking
 - essential for verification of large/infinite-state systems

- Construct abstract model A of concrete model M
 - details not relevant to some property of interest removed
 - e.g. partition of state space based on a set of predicates

- Non-probabilistic case: existential abstraction
 - conservative: existence of path in M implies existence in A
 - hence can model check A to verify safety properties of M

- Abstraction refinement
 - automate process of constructing abstraction
 - start with simple coarse abstraction, then iteratively refine
Abstraction + CEGAR

- **Counterexample-guided abstraction refinement**
 - (non-probabilistic) model checking of reachability properties
Abstraction + CEGAR

- Counterexample-guided abstraction refinement
 - (non-probabilistic) model checking of reachability properties
Abstraction of DTMCs

- We use MDPs as abstractions of DTMCs
 - based on a partition A of the (concrete) state space S
 - i.e. each element $a \in A$ is an abstract state

- Analysis of MDP yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
p_a^{\min}(F) \leq p_s(F) \leq p_a^{\max}(F)
\]
• Partition of (concrete) state space gives abstract states

Concrete model (DTMC)
Partition of (concrete) state space gives abstract states
DTMC \rightarrow MDP

- Distributions are lifted to the abstract state space

Concrete model (DTMC)
DTMC → MDP

- Choices in abstract states become choices in MDP

Concrete model (DTMC) Abstraction (MDP)
Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

 ![Diagram showing minimum and maximum probabilities](image)

 - what form does the abstraction of an MDP take?

- Our approach: two-player stochastic games [QEST'06]
- Key idea: separate two forms of nondeterminism
 - (a) from abstraction and (b) from original MDP
 - then generate separate lower/upper bounds for min/max

 ![Diagram showing separate bounds for minimum and maximum probabilities](image)
Two-player stochastic games

- **Subclass of simple stochastic games** [Shapley], [Condon]
 - two nondeterministic players and probabilistic choice
 - vertices V of game partitioned into V_1 and V_2 (player 1/2 vertices)
 - player 1 has choices between V_2 vertices
 - player 2 has choices between distributions over V_1 vertices

- **A resolution of the nondeterminism in the game**
 - corresponds to a pair of strategies for players 1 and 2: (σ_1,σ_2)
 - $p_{v}^{\sigma_1,\sigma_2}(F) = \text{probability of reaching } F \text{ from } v \text{ under } (\sigma_1,\sigma_2)$

- **Optimal reachability probabilities for player 1 and player 2**
 - informally: the maximum probability of reaching F a player can guarantee, no matter what the other player does
 - formally: $\sup_{\sigma_1} \inf_{\sigma_2} p_{v}^{\sigma_1,\sigma_2}(F)$ and $\sup_{\sigma_2} \inf_{\sigma_1} p_{v}^{\sigma_1,\sigma_2}(F)$
 - computable (and simple strategies) with value iteration
Games as abstractions of MDPs

- Abstraction of an MDP is a two-player stochastic game
 - based on a partition A of the concrete state space
- where:
 - player 1 controls the nondeterminism of the abstraction
 - player 2 controls the nondeterminism of the MDP

- Player 1 vertices: abstract states
 - elements of partition A

- Player 2 vertices: choices of MDP lifted to abstract states
 - sets of distributions over A
 - or equivalently, sets of concrete states with the same abstract choices
MDP \rightarrow Game
MDP \rightarrow Game

- Player 1 vertices are partition elements (abstract states)
MDP → Game

- (Sets of) distributions are lifted to the abstract state space
MDP → Game

• States with same (sets of) choices form player 2 vertices
• Complete transformation:

Concrete model (MDP) Abstraction (game)
Analysis of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
\inf_{\sigma_1,\sigma_2} p_{v}^{\sigma_1,\sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{v}^{\sigma_1,\sigma_2}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_{v}^{\sigma_1,\sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1,\sigma_2} p_{v}^{\sigma_1,\sigma_2}(F)
\]
Analysis of the abstraction

- Analysis of game yields lower/upper bounds:

 for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
\inf_{\sigma_1,\sigma_2} p_{a}^{\sigma_1,\sigma_2}(F) \leq p_{s}^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{a}^{\sigma_1,\sigma_2}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_{a}^{\sigma_1,\sigma_2}(F) \leq p_{s}^{\max}(F) \leq \sup_{\sigma_1,\sigma_2} p_{a}^{\sigma_1,\sigma_2}(F)
\]

min/max reachability probabilities for original MDP
Analysis of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

$$\inf_{\sigma_1, \sigma_2} p_{a^{\sigma_1, \sigma_2}}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{a^{\sigma_1, \sigma_2}}(F)$$

$$\sup_{\sigma_2} \inf_{\sigma_1} p_{a^{\sigma_1, \sigma_2}}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_{a^{\sigma_1, \sigma_2}}(F)$$

Optimal probabilities for player 1, player 2 in game
Analysis of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
\inf_{\sigma_1, \sigma_2} p_{a(\sigma_1, \sigma_2)}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{a(\sigma_1, \sigma_2)}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_{a(\sigma_1, \sigma_2)}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_{a(\sigma_1, \sigma_2)}(F)
\]

min/max reachability probabilities, treating game as MDP (i.e. assuming that players 1 and 2 cooperate)
Abstraction: Results

- Israeli & Jalfon’s Self Stabilisation [IJ90]
 - protocol for obtaining a stable state in a token ring
 - minimum probability of reaching a stable state by time T

![Graph showing minimum probability stabilised by time T](image)

- Concrete states: 1,048,575
- Abstract states: 627
Abstraction: Results

- IPv4 Zeroconf [CAG02]
 - protocol for obtaining an IP address for a new host
 - maximum probability the new host not configured by T

![Graph showing the relationship between maximum probability not configured by T and time T. The graph includes lines for upper bound, actual value, and lower bound.]

- Concrete states: 838,905
- Abstract states: 881
Abstraction: Results

- **Sliding Window Protocol**
 - protocol for sending data over an insecure medium
 - maximum probability of K timeouts

<table>
<thead>
<tr>
<th>D</th>
<th>Concrete States</th>
<th>Abstract States</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>189,952</td>
<td>742</td>
</tr>
<tr>
<td>10</td>
<td>987,136</td>
<td>964</td>
</tr>
<tr>
<td>20</td>
<td>??</td>
<td>2,074</td>
</tr>
</tbody>
</table>
Overview

• Probabilistic model checking
 – discrete-time Markov chains (DTMCs)
 – Markov decision processes (MDPs)
 – probabilistic reachability

• Abstraction for probabilistic models
 – abstractions of DTMCs (MDPs)
 – abstractions of MDPs (two-player stochastic games)

• **Quantitative abstraction refinement**
 – abstraction–refinement loop
 – verification of probabilistic software, real–time systems

• Current/future work & Conclusions
Abstraction refinement

- Consider (max) difference between lower/upper bounds
 - gives a quantative measure of the abstraction’s precision

- If the difference ("error") is too great, refine the abstraction
 - a finer partition yields a more precise abstraction
 - model checking results (bounds/strategies) guide refinement
Abstraction refinement

- Probabilistic reachability yields *simple* strategies

- Consider abstract state \(a \) with “error” 0.2:

 - Abstract state \(a \) represents a set of concrete states
 - each choice in \(a \) corresponds to a *subset* of these

- Refine (split) \(a \) accordingly:
 - “strategy-based” refinement or “value-based” refinement
Abstraction–refinement loop

- **Quantitative abstraction–refinement loop for MDPs**

Diagram:
- Initial partition
- Abstraction
- Bounds and strategies
- Return bounds
- New partition

Arrows:
- Abstract
- Model check
- Refine
- Error $\geq \epsilon$
- Error $< \epsilon$
Abstraction–refinement loop

- **Quantitative abstraction–refinement loop for MDPs**

![Diagram]

- Refinements yield strictly finer partition
- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation
Abstraction–refinement loop

- Implementations of quantitative abstraction refinement...

 1. Explicit–state prototype implementation
 - confirms viability of game–based abstraction/refinement

 2. Compositional abstraction of PRISM models [QAPL’08]
 - efficient construction of (manually specified) abstractions

 3. Verification of probabilistic software [VMCAI’09]
 - (predicate) abstraction/refinement of infinite–state MDPs

 4. Verification of probabilistic timed automata [FORMATS’09]
 - (DBM–based) abstraction/refinement of infinite–state MDPs
Probabilistic software

- Consider sequential ANSI C programs
 - support functions, pointers, arrays, but not dynamic memory allocation, unbounded recursion, floating point operations
 - probabilistic functions (for failures, randomisation)
 - nondeterministic functions (e.g. to abstract system calls)
 - infinite-state MDP semantics

- Quantitative properties based on probabilistic reachability
 - e.g. maximum probability of unsuccessful data transmission
 - e.g. minimum expected number of packets sent

- Prototype tool qprover
 - components from PRISM (model checking of stochastic games)
 - components from SATABS (predicate abstraction, SAT solvers)
 - analysed Linux network utilities (ping, tftp) – approx 1KLOC
Example – sample target program

```
bool fail = false;
int c = 0;
int main ()
{
    // nondeterministic
    c = num_to_send ();
    while (! fail && c > 0)
    {
        // probabilistic
        fail = send_msg ();
        c --;
    }
}
```

Φ: “what is the minimum/maximum probability of the program terminating with fail being true?”
Abstraction-refinement loop

- Probabilistic program
 - Abstraction (based on SAT)
 - Model extraction
- Boolean probabilistic program
- Abstraction (game)
 - Model construction
- Predicates
 - [error $\geq \varepsilon$
 - Refinement (weakest precondition)
- Bounds and strategies
 - [error $< \varepsilon$
- Return bounds

Software verification abstraction-refinement loop [VMCAI’09]
Verification of PTAs

• Verification of probabilistic timed automata (PTAs)
 – discrete states, discrete probabilistic choice, nondeterminism and real-valued clocks
 – infinite-state MDP semantics

• Timed automata + probabilities

• PRISM modelling language + clocks

```
module M
  s : [0..3];
  x : clock;
  [a] s=0 & x<10 → (s’=1);
  [b] s=1 → 0.5:(s’=2) + 0.5:(s’=3)&(x’=0);
endmodule
```
Verification of PTAs

- **Finite-state (game) abstractions using zones**
 - efficiently represented as difference bound matrices (DBMs)

- **Initial abstraction from forwards reachability**
 - subsequent refinements through zone splitting

- **Properties**:
 - guaranteed to converge in finite time for any $\epsilon \geq 0$
 - i.e. exact verification of PTAs

- **Outperforms existing PTA verification techniques**
 - on several large case studies
Overview

• Probabilistic model checking
 – discrete-time Markov chains (DTMCs)
 – Markov decision processes (MDPs)
 – probabilistic reachability

• Abstraction for probabilistic models
 – abstractions of DTMCs (MDPs)
 – abstractions of MDPs (two-player stochastic games)

• Quantitative abstraction refinement
 – abstraction-refinement loop
 – verification of probabilistic software, real-time systems

• Current/future work & Conclusions
We can consider a general class of “nondeterministic” abstractions for probabilistic models

<table>
<thead>
<tr>
<th>Concrete model:</th>
<th>Abstraction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTMC</td>
<td>MDP</td>
</tr>
<tr>
<td>MDP</td>
<td>TPSG</td>
</tr>
<tr>
<td>CTMC</td>
<td>CTMDP</td>
</tr>
<tr>
<td>CTMDP</td>
<td>CTTPSG</td>
</tr>
</tbody>
</table>

• CTMDP = continuous-time Markov decision process
• CTTPSG = continuous-time two-player stochastic game
Abstraction for CTMCs

• A useful subset of CTMC properties are untimed
 – unbounded probabilistic reachability
 – steady-state (long-run) probabilities
 – so can abstract embedded DTMC as an MDP

• More interesting: time-bounded (transient properties)
 – can abstract CTMCs as CTMDPs, yielding lower/upper bounds
 – [Smith], [Katoen et al.], …
 – moreover, abstractions are uniform CTMDPs

• But: How to refine?
 – time-bounded reachability does not yield simple strategies

• How to build abstraction? What high-level model?
Conclusions

- **Abstraction approach for probabilistic models**
 - DTMCs abstracted as MDPs
 - MDPs abstracted as two-player stochastic games
 - abstraction yields lower/upper bounds on probabilities

- **Quantitative abstraction refinement**
 - bounds give quantitative measure of utility of abstraction
 - bounds/strategies can be used to guide refinement
 - quantitative abstraction–refinement loop (for error < ε)
 - fully automatic generation of abstraction
 - works in practice: probabilistic software & timed automata

- **Current & future work**
 - CTMCs, timed properties
 - probabilistic/stochastic hybrid systems
 - improved refinement heuristics, imprecise abstractions