Task Scheduling and Execution for Long-Term Autonomy

Nick Hawes Dave Parker

University of Birmingham

ICAPS Summer School, June 2016
Overview

• **Formal verification**
 – probabilistic model checking

• **Markov decision processes (MDPs)**
 – verification vs. strategy synthesis

• **Linear temporal logic (LTL)**
 – probabilistic model checking + MDPs + LTL

• **Multi-objective probabilistic model checking**
 – partially satisfiable task specifications
Formal verification

- **Formal verification**
 - the application of *rigorous*, mathematics–based techniques to check the *correctness* of computerised systems

- **Verifying probabilistic systems…**
 - *unreliable* or unpredictable behaviour
 - e.g. failures, message loss, delays, unreliable sensors/actuators
 - *randomisation* in algorithms/protocols
 - e.g. random back-off in communication protocols

- **We need to verify quantitative system properties**
 - “the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001”
 - not just correctness: reliability, timeliness, performance, …
 - not just verification: correctness by construction
Probabilistic model checking

• Construction and analysis of probabilistic models
 – state–transition systems labelled with probabilities (e.g. Markov chains, Markov decision processes)
 – from a description in a high–level modelling language

• Properties expressed in temporal logic, e.g. PCTL:
 – trigger → P_{\geq 0.999} [F_{\leq 20} \text{ deploy }]
 – “the probability of the airbag deploying within 20ms of being triggered is at least 0.999”
 – properties checked against models using exhaustive search and numerical computation
Probabilistic model checking

- **Key benefits**
 - *exact* results: guarantees, optimality, ...
 - fully automated, tools available (e.g. PRISM)
 - wide range of models, properties expressible

- **Key challenges**
 - scalability! state space explosion problem
 - results are only as good as the model

- **Application domains**
 - network/communication protocols, security, biology, power management, robotics & planning, ...
Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - model **nondeterministic** as well as **probabilistic** behaviour

![MDP Diagram]

- **Nondeterminism for:**
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
 - abstraction, or under-specification, of unknown behaviour
• **A strategy** (or “policy”, “adversary”, “scheduler”)
 – is a resolution of nondeterminism, based on history
 – i.e. a mapping from finite paths to (distributions over) actions
 – induces (infinite–state) Markov chain (and probability space)

• **Classes of strategies:**
 – **memory**: memoryless, finite–memory, or infinite–memory
 – **randomisation**: deterministic or randomised
1. Verification
 - quantify over all possible strategies (i.e. best/worst-case)
 - $P_{\leq 0.1} [F \text{ err }]$: “the probability of an error occurring is ≤ 0.1 for all strategies”
 - applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Controller synthesis
 - generation of "correct-by-construction" controllers
 - $P_{\leq 0.1} [F \text{ err }]$: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
 - applications: robotics, power management, security, ...

Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values
Running example

- Example MDP
 - robot moving through terrain divided into 3 x 2 grid
Larger example

Task scheduler Map generator

Navigation planner Motion planner
Example – Reachability

Verify: $P_{\leq 0.6} [F \text{goal}_1]$

or

Synthesise for: $P_{\geq 0.4} [F \text{goal}_1]$

⇓

Compute: $P_{\text{max}=?} [F \text{goal}_1]$

Optimal strategies: memoryless and deterministic

Computation:
graph analysis + numerical soln. (linear programming, value iteration, policy iteration)
Example – Reachability

Optimal strategy:

\[s_0 : \text{east} \]
\[s_1 : \text{south} \]
\[s_2 : _ \]
\[s_3 : _ \]
\[s_4 : \text{east} \]
\[s_5 : _ \]

Verify: \(P \leq 0.6 \) \([F \ \text{goal}_1] \)

or

Synthesise for: \(P \geq 0.4 \) \([F \ \text{goal}_1] \)

⇓

Compute: \(P_{\text{max}} = 0.5 \) \([F \ \text{goal}_1] \)

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)
Linear temporal logic (LTL)

- Logic for describing properties of executions [Pnueli]

- **LTL syntax:**
 - \(\psi ::= \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \)

- **Propositional logic + temporal operators:**
 - \(a \) is an atomic proposition (labelling a state)
 - \(X \psi \) means "\(\psi \) is true in the next state"
 - \(F \psi \) means “\(\psi \) is eventually true”
 - \(G \psi \) means “\(\psi \) remains true forever”
 - \(\psi_1 U \psi_2 \) means "\(\psi_2 \) is true eventually and \(\psi_1 \) is true until then”

- **Simple examples**
 - \(G \neg (\text{critical}_1 \land \text{critical}_2) \) – "the two processes never enter the critical section simultaneously"
 - \(\neg \text{error U end} \) – "the program terminates without any errors"
Linear temporal logic (LTL)

• LTL syntax:
 \[\psi ::= \text{true} \mid a \mid \psi \land \psi \mid \neg\psi \mid X \psi \mid \psi \lor \psi \mid F \psi \mid G \psi \]

• Commonly used LTL formulae:
 - \(G (a \rightarrow F b) \) – "b always eventually follows a"
 - \(G (a \rightarrow X b) \) – "b always immediately follows a”
 - \(G F a \) – "a is true infinitely often"
 - \(F G a \) – "a becomes true and remains true forever"

• Robot task specifications in LTL
 - \((G \neg \text{hazard}) \land (G F \text{ goal}_1) \) – "avoid hazard and visit goal\(_1\) infinitely often"
 - \(\neg \text{zone}_3 \lor (\text{zone}_1 \land (F \text{ zone}_4)) \) – "patrol zone 1 then 4, without passing through 3".
LTL for robot navigation

- **Probabilistic LTL on MDPs**
 - e.g. $P_{>0.7} [(\neg \text{hazard}) \land (GF \text{ goal}_1)]$ – "is the probability of avoiding hazard and visiting goal$_1$ infinitely often > 0.7?"
 - e.g. $P_{\max=?} [\neg \text{zone}_3 \ U (\text{zone}_1 \land (F \text{ zone}_4))]$ – "max. probability of patrolling zones 1 then 4, without passing through 3?"

- **LTL + expected costs/times on MDPs**
 - minimise expected time to satisfy (co–safe) LTL formulas

- **Benefits of the approach**
 - LTL: flexible, unambiguous property specification
 - guarantees on performance ("correct by construction")
 - meaningful properties: probabilities, time, energy,…
 - c.f. ad–hoc reward structures, e.g. with discounting
 - efficient, fully–automated techniques
 - LTL–to–automaton conversion, MDP solution
Probabilistic model checking of LTL on MDPs

- convert LTL formula \(\psi \) to deterministic automaton \(A_\psi \) (Buchi, Rabin, finite, ...)
- build/solve product MDP \(M \otimes A_\psi \) (i.e. reduce to simpler problem)
- optimal strategies are deterministic, finite-memory

Det. Buchi automaton \(A_\psi \)
for \(\psi = G\neg h \land GF g_1 \)
Example: Product MDP construction

\[M \otimes A_\psi \]

\[\psi = G\neg h \land GF g \]
Example: Product MDP construction

$$M \otimes A_\psi$$
Co-safe LTL (and expected cost)

- Often focus on tasks completed in finite time
 - can restrict to co-safe fragment(s) of LTL
 - (any satisfying execution has a "good prefix")
 - e.g. $P_{\text{max}=?} \left[\neg \text{zone}_3 \mathop{U} (\text{zone}_1 \land (F \text{ zone}_4)) \right]$
 - for simplicity, can restrict to syntactically co-safe LTL

- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{\text{min}=?} \left[\neg \text{zone}_3 \mathop{U} (\text{zone}_1 \land (F \text{ zone}_4)) \right]$ – "minimise exp. time to patrol zones 1 then 4, without passing through 3".

- Solution:
 - product of MDP and DFA
 - expected cost to reach accepting states in product
• Further use of probabilistic model checking…
 – (various probabilistic models, query languages)

• Nested queries
 – e.g. \(R_{\text{min}}=? \) [safe U (zone\(_1\) \(\land \) (F zone\(_4\)))] – "minimise exp. time to patrol zones 1 then 4, passing only through safe".
 – where safe denotes states satisfying \(\langle \langle \text{ctrl} \rangle \rangle R_{<2} [F \text{ base }] \) – "there is a strategy to return to base with expected time < 2"

• Analysis of generated controllers
 – expected power consumption to complete tasks?
 – conditional expectation, e.g. expected time to complete task, assuming it is completed successfully?
 – more detailed timing information (not just mean time)
Multi-objective model checking

- **Multi-objective probabilistic model checking**
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected costs

- **Achievability queries**: multi($P_{>0.95}[F\ send\],\ R_{time>10}\ [\ C\]$)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- **Numerical queries**: multi($P_{\text{max}}=?[F\ send\],\ R_{\text{time}>10}\ [\ C\]$)
 - e.g. “maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?”

- **Pareto queries**:
 - multi($P_{\text{max}}=?[F\ send\],\ R_{\text{time max}}=?[\ C\]$)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: \(\text{multi}(P_{>0.95}[F \text{ send}], \text{R}_{\text{time}>10}[C]) \)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”
- Numerical queries: \(\text{multi}(P_{\text{max=?}}[F \text{ send}], \text{R}_{\text{time}>10}[C]) \)
 - e.g. “maximum probability of message transmission, assuming expected battery life–time is > 10 hrs?”
- Pareto queries:
 - \(\text{multi}(P_{\text{max=?}}[F \text{ send}], \text{R}_{\text{time max=?}}[C]) \)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life–time"
Multi-objective model checking

• **Optimal strategies:**
 – usually *finite-memory* (e.g. when using LTL formulae)
 – may also need to be *randomised*

• **Computation:**
 – construct a product MDP (with several automata), then reduces to linear programming [TACAS'07, TACAS'11]
 – can be approximated using iterative numerical methods, via approximation of the Pareto curve [ATVA'12]

• **Extensions** [ATVA'12]
 – arbitrary Boolean combinations of objectives
 • e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 • (e.g. for assume–guarantee reasoning)
 – time–bounded (finite–horizon) properties
Example – Multi-objective

- **Achievability query**
 - \(P \geq 0.7 \left[G \neg \text{hazard} \right] \land P \geq 0.2 \left[GF \text{ goal}_1 \right] \) ? True (achievable)

- **Numerical query**
 - \(P_{\text{max}=?} \left[GF \text{ goal}_1 \right] \) such that \(P \geq 0.7 \left[G \neg \text{hazard} \right] \) ? \(\sim 0.2278 \)

- **Pareto query**
 - for \(P_{\text{max}=?} \left[G \neg \text{hazard} \right] \land P_{\text{max}=?} \left[GF \text{ goal}_1 \right] \) ?
Example – Multi-objective

\[
\psi_1 = G \neg \text{hazard}
\]

\[
\psi_2 = GF \text{goal}_1
\]

Strategy 1
(deterministic)

\[
\begin{align*}
\text{s}_0 & : \text{east} \\
\text{s}_1 & : \text{south} \\
\text{s}_2 & : - \\
\text{s}_3 & : - \\
\text{s}_4 & : \text{east} \\
\text{s}_5 & : \text{west}
\end{align*}
\]
Example – Multi-objective

Strategy 2
(deterministic)

$s_0 : \text{south}$
$s_1 : \text{south}$
$s_2 : -$
$s_3 : -$
$s_4 : \text{east}$
$s_5 : \text{west}$

$\psi_1 = G \neg \text{hazard}$
$\psi_2 = GF \text{ goal}_1$
Example – Multi-objective

Optimal strategy:
(randomised)

\[s_0 : 0.3226 : \text{east} \]
\[0.6774 : \text{south} \]

\[s_1 : 1.0 : \text{south} \]
\[s_2 : - \]
\[s_3 : - \]
\[s_4 : 1.0 : \text{east} \]
\[s_5 : 1.0 : \text{west} \]
Application: Partially satisfiable tasks

- Partially satisfiable task specifications
 - via multi-objective probabilistic model checking [IJCAI'15]
 - e.g. $P_{\text{max}=?} [\neg \text{zone}_3 \ U (\text{room}_1 \land (F \text{room}_4 \land F \text{room}_5))] < 1$

- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required

- Progress metric constructed from DFA
 - (distance to accepting states, reward for decreasing distance)

- Encode prioritisation using multi-objective queries:
 - $p = P_{\text{max}=?} [\text{task}]$
 - $r = \text{multi}(R_{\text{max}=?}^{\text{prog}} [C], P_{\geq p} [\text{task}])$
 - $\text{multi}(R_{\text{min}=?}^{\text{time}} [\text{task}], P_{\geq p} [\text{task}] \land R_{\geq r}^{\text{prog}} [C])}$
Conclusion

• **Rigorous probabilistic guarantees for robot navigation**
 – formal verification + probabilistic model checking
 – Markov decision processes (MDPs)
 – linear temporal logic (LTL)
 – multi-objective model checking

• **More details**
 – Lacerda/Parker/Hawes. Optimal & Dynamic Planning for Markov Decision Processes with Co-Safe LTL Specifications, IROS'14
 – Lacerda/Parker/Hawes. Optimal Policy Generation for Partially Satisfiable Co-Safe LTL Specifications, IJCAI'15
 – PRISM: www.prismmodelchecker.org