Multi–objective Reasoning with Probabilistic Model Checking

Dave Parker

University of Birmingham

2nd Intl. Workshop on Multi–objective Reasoning in Verification and Synthesis (MoRe’19)

Vancouver, June 2019
Multi–objective Reasoning with Probabilistic Model Checking

Dave Parker

University of Birmingham

Joint work with:

Gabriel Santos, Gethin Norman, Marta Kwiatkowska, …
Probabilistic model checking

- Probabilistic model checking
 - formal construction/analysis of probabilistic models
 - “correctness” properties expressed in temporal logic
 - e.g. trigger $\rightarrow P \geq 0.999$ [$F \leq 20$ deploy]
 - mix of exhaustive & numerical/quantitative reasoning

- Trends and advances
 - increasingly expressive/powerful model classes
 - from verification problems to control problems
 - ever widening range of application domains
Overview

• **Multi–objective probabilistic model checking**
 – Markov decision processes (MDPs)
 – examples: robot navigation, task scheduling

• **Multiple players: competition/collaboration**
 – rPATL model checking and strategy synthesis
 – stochastic multi–player games (SMGs)
 – example: energy management
 – concurrent stochastic games (CSGs)
 • example: investor models

• **Multiple players and multiple objectives**
 – (social welfare) Nash equilibria
 • example: communication protocols
Verification vs. Strategy synthesis

• **Markov decision processes (MDPs)**
 – models nondeterministic (actions, strategies) and probabilistic behaviour
 – strategies: randomisation, memory, ...

• 1. **Verification**
 – quantify over all possible strategies (i.e. best/worst-case)
 – \(P_{\leq 0.1} \left[F \text{ err} \right] \): “the probability of an error occurring is \(\leq 0.1 \) for all strategies”

• 2. **Strategy synthesis**
 – generation of "correct-by-construction" controllers
 – \(P_{\leq 0.1} \left[F \text{ err} \right] \): "does there exist a strategy for which the probability of an error occurring is \(\leq 0.1 \)?"
Strategy synthesis for MDPs

- **Core property: probabilistic reachability**
 - solvable with **value iteration**, policy iteration, linear programming, interval iteration, ...

- **Wide range of useful extensions**
 - expected costs/rewards
 - linear temporal logic (LTL)
 - multi-objective model checking
 - real-time (PTAs)
 - partial observability (POMDPs)

- **Applications**
 - dynamic power management, robot navigation, UUV mission planning, task scheduling
Multi–objective model checking

- **Multi–objective probabilistic model checking**
 - investigate trade–offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- **Achievability queries**: multi($P_{\geq 0.95} [F \ send]$, $R_{\text{time} \geq 10} [C]$)
 - e.g. “is there a strategy such that the probability of message transmission is ≥ 0.95 and expected battery life ≥ 10 hrs?”

- **Numerical queries**: multi($P_{\max=?} [F \ send]$, $R_{\text{time} \geq 10} [C]$)
 - e.g. “maximum probability of message transmission, assuming expected battery life–time is ≥ 10 hrs?”

- **Pareto queries**:
 - multi($P_{\max=?} [F \ send]$, $R_{\text{time}\max=?} [C]$)
 - e.g. ”Pareto curve for maximising probability of transmission and expected battery life–time”
Multi-objective model checking

- PRISM implements two distinct approaches
 - 1. Linear programming
 - solve dual problem to classical LP formulation
 - 2. Value iteration based weighted sweep
 - approximate exploration/construction of Pareto curve
 - e.g. $P_{\geq r_1} \ [\ldots\] \land P_{\geq r_2} \ [\ldots\]$ for $r=(r_1,r_2)=(0.2,0.7)$
 - method 2 extends to step-bounded objectives
Application: Robot navigation

- **Robot navigation planning:** [IROS'14, IJCAI’15, ICAPS’17, IJRR’19]
 - learnt MDP models navigation through uncertain environment
 - co-safe LTL used to formally specify tasks to be executed by robot
 - finite-memory strategy synthesis to construct plans/controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment

G4S Technology, Tewkesbury (STRANDS)
Multi-objective: Partial satisfiability

- Partially satisfiable task specifications
 - e.g. $P_{\text{max}} = ? [\neg \text{zone}_3 \cup (\text{room}_1 \land (F \text{ room}_4 \land F \text{ room}_5))] < 1$

- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required

- Progress function constructed from DFA
 - (distance to accepting states, reward for decreasing distance)

- Encode prioritisation using multi-objective queries:
 - $p = P_{\text{max}} = ? [\text{task}]$
 - $r = \text{multi}(R_{\text{max}}^{\text{prog}} = ? [C], P_{\geq p} [\text{task}])$
 - $\text{multi}(R_{\text{min}}^{\text{time}} = ? [\text{task}], P_{\geq p} [\text{task}] \land R_{\geq r}^{\text{prog}} [C])$

- Or alternatively, using nested value iteration
Multi-obj: Time-bounded guarantees

• Often need probabilistic time-bounded guarantees
 – e.g. "probability of completing tasks within 5 mins is >0.99"
 – but verification techniques for these are less efficient/scalable
 – and often needed in conjunction with secondary objectives

• Efficient generation of time-bounded guarantees [ICAPS’17]
 – implemented in the PRISM model checker

• Key ideas:
 – optimize secondary goal wrt. guarantee
 – two phase verification: initial exploration of Pareto front on coarser untimed model
 – then generate guarantee from pruned model
 – significant gains in scalability
Overview

- Multi-objective probabilistic model checking
 - Markov decision processes (MDPs)
 - examples: robot navigation, task scheduling
- Multiple players: competition/collaboration
 - rPATL model checking and strategy synthesis
 - stochastic multi-player games (SMGs)
 - example: energy management
 - concurrent stochastic games (CSGs)
 - example: investor models
- Multiple players and multiple objectives
 - (social welfare) Nash equilibria
 - example: communication protocols
Competitive/collaborative behaviour

• **Open systems**
 – multiple system components, not all under our control
 – possibly with differing/opposing goals
 – giving rise to competitive/collaborative behaviour

• **Many occurrences in practice**
 – e.g. security protocols, algorithms for distributed consensus, energy management or sensor network co-ordination

• **Natural to adopt a game-theoretic view**
 – here: stochastic multi-player games
 – key ingredients: temporal logic, probabilistic model checking, tool support (PRISM-games), case studies
Stochastic multi-player games

- Stochastic multi-player game (SMGs)
 - nondeterminism + probability + multiple players
 - for now: turn-based (players control states)
 - applications: e.g. security (system vs. attacker), controller synthesis (controller vs. environment)

- A (turn-based) SMG is a tuple
 \((N, S, \langle S_i \rangle_{i \in N}, A, \delta, L)\) where:
 - \(N\) is a set of \(n\) players
 - \(S\) is a (finite) set of states
 - \(\langle S_i \rangle_{i \in N}\) is a partition of \(S\)
 - \(A\) is a set of action labels
 - \(\delta : S \times A \rightarrow \text{Dist}(S)\) is a (partial) transition probability function
 - \(L : S \rightarrow 2^{AP}\) is a labelling function
• **Strategy for player i:** resolves choices in S_i states
 – based on execution history, i.e. $\sigma_i : (SA)^*S_i \rightarrow \text{Dist}(A)$
 – can be: deterministic (pure), randomised, memoryless, finite-memory, ...
 – Σ_i denotes the set of all strategies for player i

• **Strategy profile:** strategies for all players: $\sigma=(\sigma_1,\ldots,\sigma_n)$
 – induces a set of (infinite) paths from some start state s
 – a probability measure \Pr_s^σ over these paths
 – expectation $E_s^{\sigma}(X)$ of random variable X over \Pr_s^σ

• **Rewards (or costs)**
 – non-negative values assigned to states/transitions
 – e.g. elapsed time, energy consumption, number of packets lost, net profit, ...
Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - branching-time temporal logic for SMGs
- CTL, extended with:
 - coalition operator $\langle\langle C\rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- In short:
 - zero-sum, probabilistic reachability + expected (total) reward
- Example:
 - $\langle\langle\{1,3\}\rangle\rangle P_{<0.01} [F_{\leq10} \text{error}]$
 - “players 1 and 3 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.01, regardless of the strategies of other players”
rPATL syntax/semantics

• Syntax:

\[\phi ::= \text{true} \mid a \mid \neg \phi \mid \phi \land \phi \mid \langle\langle C\rangle\rangle P_{\bowtie q}[\psi] \mid \langle\langle C\rangle\rangle R_{\bowtie x}^r[\rho] \]

\[\psi ::= X \phi \mid \phi U^{\leq k} \phi \mid \phi U \phi \]

\[\rho ::= I^{=k} \mid C^{\leq k} \mid F \phi \]

• where:

- \(a \in \text{AP} \) is an atomic proposition, \(C \subseteq \mathbb{N} \) is a coalition of players,
- \(\bowtie \in \{\leq, <, >, \geq\} \), \(q \in [0,1] \cap \mathbb{Q} \), \(x \in \mathbb{Q}_{\geq 0} \), \(k \in \mathbb{N} \)
- \(r \) is a reward structure

• Semantics:

• e.g. \(P \) operator: \(s \models \langle\langle C\rangle\rangle P_{\bowtie q}[\psi] \) iff:

 - “there exist strategies for players in coalition \(C \) such that, for all strategies of the other players, the probability of path formula \(\psi \) being true from state \(s \) satisfies \(\bowtie q \)”
rPATL and beyond

- Generalised reward operators [TACAS’12, FMSD’13]
 - $\langle\langle C \rangle\rangle R_{r \bowtie x}^r [F^* \Phi]$ where $* \in \{\infty, c, 0\}$
 - F^0 is tricky: needs finite-memory strategies

- Quantitative (numerical) properties:
 - $\langle\langle \{1\} \rangle\rangle P_{\max=?} [F \text{ error }]$, i.e. $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_{\sigma_1,\sigma_2} (F \text{ error})$
 - “what is the maximum probability of reaching an error state that player 1 can guarantee?” (against player 2)

- Nesting (and $n > 2$ players)
 - players: sensor$_1$, sensor$_2$, repairer
 - $\langle\langle \text{sensor}_1 \rangle\rangle P_{<0.01} [F (\neg \langle\langle \text{repairer} \rangle\rangle P_{\geq0.95} [F \text{ “operational” }])]$

- And more…
 - rPATL*, reward–bounded [FMSD], exact bounds [CONCUR’12]
 - multi–objective model checking [QEST’13, TACAS15, I&C’17]
rPATL model checking for SMGs

• Reduces to solving zero–sum stochastic 2–player games
 – complexity: NP ∩ coNP (without any R[F^0] operators)
 – complexity for full logic: NEXP ∩ coNEXP (due to R[F^0])

• In practice, we use value iteration (numerical fixed points)
 – and more: graph–algorithms, sequences of fixed points, ...

• E.g. probabilistic reachability: ⟨⟨C⟩⟩ P ≥ q F φ
 – compute sup_{σ_1 ∈ Σ_1} inf_{σ_2 ∈ Σ_2} Pr_{s, σ_1, σ_2} (F φ) for all states s
 – deterministic memoryless strategies suffice
 – value p(s) for state s is least fixed point of:

\[
p(s) = \begin{cases}
1 & \text{if } s \in \text{Sat}(φ) \\
\max_{a ∈ A(s)} \sum_{s′ ∈ S} δ(s, a)(s′) \cdot p(s′) & \text{if } s ∈ S_1 \setminus \text{Sat}(φ) \\
\min_{a ∈ A(s)} \sum_{s′ ∈ S} δ(s, a)(s′) \cdot p(s′) & \text{if } s ∈ S_2 \setminus \text{Sat}(φ)
\end{cases}
\]

 – convergence criteria need to be selected carefully
PRISM-games

- **PRISM-games**: www.prismmodelchecker.org/games
 - extension of PRISM modelling language (see later)
 - implementation in explicit engine
 - prototype MTBDD version also available

- **Example application domains**
 - security: attack–defence trees; DNS bandwidth amplification
 - self–adaptive software architectures
 - autonomous urban driving
 - human–in–the–loop UAV mission planning
 - collective decision making and team formation protocols
 - energy management protocols
Application: Energy management

• Energy management protocol for Microgrid
 – randomised demand management protocol
 – random back-off when demand is high

• Original analysis [Hildmann/Saffre'11]
 – protocol increases "value" for clients
 – simulation-based, clients are honest

• Our analysis
 – stochastic multi-player game model
 – clients can cheat (and cooperate)
 – model checking: PRISM-games
 – exposes protocol weakness (incentive for clients to act selfishly)
 – propose/verify simple fix using penalties
Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle\langle C\rangle\rangle R_{C_{\text{max}}} = \frac{[F^0_{\text{time}} = \text{max time}]}{|C|}$
 - where r_C is combined rewards for coalition C

![Graph showing competitive behaviour](image)

- All follow alg.
- No use of alg.
- Deviations of varying size

Strong incentive to deviate
Results: Competitive behaviour

- **Algorithm fix: simple punishment mechanism**
 - distribution manager can cancel some loads exceeding c_{lim}
Overview

• Multi–objective probabilistic model checking
 – Markov decision processes (MDPs)
 – examples: robot navigation, task scheduling

• **Multiple players: competition/collaboration**
 – rPATL model checking and strategy synthesis
 – stochastic multi–player games (SMGs)
 – example: energy management
 – concurrent stochastic games (CSGs)
 • example: investor models

• Multiple players and multiple objectives
 – (social welfare) Nash equilibria
 • example: communication protocols
Concurrent stochastic games

- **Concurrent stochastic games (CSGs)**
 - players choose actions concurrently
 - jointly determines (probabilistic) successor state
 - generalises turn-based stochastic games

- **Key motivation:**
 - more realistic model of components operating concurrently, making action choices without knowledge of others

- **Formally**
 - set of n players N, state space S, actions A_i for player i
 - transition probability function $\delta : S \times A \rightarrow \text{Dist}(S)$
 - where $A = (A_1 \cup \{\bot\}) \times \ldots \times (A_n \cup \{\bot\})$
 - strategies $\sigma_i : \text{FPath} \rightarrow \text{Dist}(A_i)$, strategy profiles $\sigma = (\sigma_1, \ldots, \sigma_n)$
 - probability measure \Pr_s^σ, expectations $E_s^\sigma(X)$
Example CSG: rock–paper–scissors

- Rock–paper–scissors game
 - 2 players repeated draw
 rock (r), paper (p), scissors (s),
 then restart the game (t)
 - rock > scissors, paper > rock,
 scissors > paper, otherwise draw

- Example CSG
 - 2 players: N={1,2}
 - A₁ = A₂ = {r,p,s,t}
 - NB: no probabilities here

```
S0
(r,r), (p,p), (s,s)
(t,t)
(r,s), (p,r), (s,p)
(S1)
{win₁}
(S2)
{win₂}
(S3)
{draw}
```

30
Matrix games

- **Matrix games**
 - finite, one-shot, 2-player, zero-sum games
 - utility function $u_i : A_1 \times A_2 \to \mathbb{R}$ for each player i
 - represented by matrix Z where $z_{ij} = u_1(a_i,b_j) = -u_2(a_i,b_j)$

- **Example:**
 - one round of rock-paper-scissors
 - represented by matrix Z where $z_{ij} = u_1(a_i,b_j) = -u_2(a_i,b_j)$

- **Optimal (player 1) strategy via LP solution (minimax):**
 - compute value $\text{val}(Z)$: maximise value v subject to:
 - $v \leq x_p - x_s$
 - $v \leq x_s - x_r$
 - $v \leq x_s - x_p$
 - $x_r + x_p + x_s = 1$
 - $x_r \geq 0, x_p \geq 0, x_s \geq 0$
 - Optimal strategy (randomised): $(x_r,x_p,x_s) = (\frac{1}{3},\frac{1}{3},\frac{1}{3})$
rPATL for CSGs

- We use the same logic rPATL as for SMGs

- Examples for rock-paper-scissors game:
 - $\langle\langle 1 \rangle\rangle \ P_{\geq 1} \ [F \ \text{win}_1]$ – player 1 can ensure it eventually wins a round of the game with probability 1
 - $\langle\langle 2 \rangle\rangle \ P_{\max=?} \ [\neg \text{win}_1 \ U \ \text{win}_2]$ – the maximum probability with which player 2 can ensure it wins before player 1
 - $\langle\langle 1 \rangle\rangle \ R_{\max=?}^{\text{utility}_1} \ [C \leq 2^K]$ – the maximum expected utility player 1 can ensure over K rounds (utility = 1/0/-1 for win/draw/lose)
rPATL model checking for CSGs

- Extends model checking algorithm for SMGs [QEST’18]
 - key ingredients are solution of (zero-sum) 2-player CSGs

- E.g. $\langle\langle C \rangle\rangle P_{\geq q}[F \phi] :$ max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1,\sigma_2}(F\phi)$ for all states s
 - note that optimal strategies are now randomised
 - solution of the 2-player CSG is in PSPACE
 - we use a value iteration based approach

- Value $p(s)$ for state s is least fixed point of:
 - $p(s) = 1$ if $s \in \text{Sat}(\phi)$ and otherwise $p(s) = \text{val}(Z)$ where:
 - Z is the matrix game with $z_{ij} = \sum_{s' \in S} \delta(s,(a_i,b_j))(s') \cdot p(s')$
 - so each iteration requires solution of a matrix game for each state (LP problem of size $|A|$, where $A = \text{action set}$)
CSGs in PRISM–games

- CSG model checking implemented in PRISM–games

- Extension of PRISM modelling language
 - player specification via partition of modules
 - unlike SMGs, all modules move simultaneously
 - concurrent updates modelled with multi-action commands, e.g. \([r1,r2] m1=0 \rightarrow \ldots\) and chained updates, e.g. \((m2'=m1')\)

- Explicit engine implementation
 - plus LPsolve library for minimax LP solution
 - experiments with CSGs up to \(~3\) million states

- Case studies:
 - future markets investor, trust models for user-centric networks, intrusion detection policies, jamming radio systems
CSGs in PRISM (rock–paper–scissors)

csg

player player1 M1 endplayer
player player2 M2 endplayer

module M1
 m1 : [0..3];
 [r1] m1=0 → (m1’=1); // rock
 [p1] m1=0 → (m1’=2); // paper
 [s1] m1=0 → (m1’=3); // scissors
 [t1] m1>0 → (m1’=0); // restart
endmodule

module M2 = M1 [m1=m2, r1=r2 , p1=p2, s1=s2, t1=t2] endmodule

label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
rewards “utility1” // utility for player 1
 [t1] (m1=1 & m2=3) | (m1=2 & m2=1) | (m1=3 & m2=2) : 1; // player 1 wins
 [t1] (m1=1 & m2=2) | (m1=2 & m2=3) | (m1=3 & m2=1) : -1; // player 2 wins
endrewards
Application: Future markets investor

- Model of interactions between:
 - stock market, evolves stochastically
 - two investors i_1, i_2 decide when to invest
 - market decides whether to bar investors

- Modelled as a 3-player CSG
 - extends simpler model originally from [McIver/Morgan’07]
 - investing/barring decisions are simultaneous
 - profit reduced for simultaneous investments
 - market cannot observe investors’ decisions

- Analysed with rPATL model checking & strategy synthesis
 - distinct profit models considered: ‘normal market’, ‘later cash–ins’ and ‘later cash–ins with fluctuation’
 - comparison between SMG and CSG models
Application: Future markets investor

- Example rPATL queries:
 - $\langle\langle\text{investor}_1\rangle\rangle R_{\text{max}}^{\text{profit}_1} =? [F \text{ finished}_1]$
 - $\langle\langle\text{investor}_1,\text{investor}_2\rangle\rangle R_{\text{max}}^{\text{profit}_1,2} =? [F \text{ finished}_{1,2}]$
 - i.e. maximising individual/joint profit

- Results (joint profit) – limited power of market shown
 - with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
Overview

• Multi–objective probabilistic model checking
 – Markov decision processes (MDPs)
 – examples: robot navigation, task scheduling

• Multiple players: competition/collaboration
 – rPATL model checking and strategy synthesis
 – stochastic multi–player games (SMGs)
 – example: energy management
 – concurrent stochastic games (CSGs)
 • example: investor models

• **Multiple players and multiple objectives**
 – (social welfare) Nash equilibria
 • example: communication protocols
Multiple objectives: Nash equilibria

- Now consider distinct objectives X_i for each player i
 - i.e., no longer restricted to zero-sum goals

- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - more precisely subgame-perfect ϵ-Nash equilibrium
 - a strategy profile $\sigma = (\sigma_1, \ldots, \sigma_n)$ for a CSG is a subgame-perfect ϵ-Nash equilibrium for objectives X_1, \ldots, X_n iff:
 - $E_s^\sigma (X_i) \geq \sup \{ E_s^{\sigma'} (X_i) \mid \sigma' = \sigma_{-i} [\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} - \epsilon$ for all i, s
 - ϵ-NE (but not 0-NE) guaranteed to exist for CSGs

- In particular: social welfare Nash equilibria (SWNE)
 - NE which maximise sum $E_s^\sigma (X_1) + \ldots + E_s^\sigma (X_n)$
Example

- **CSG example: Medium access control protocol**
 - 2 players (senders); states \(e_1s_1 \), \(e_2s_2 \)
 - \((\text{energy}_1/\text{sent}_1, \text{energy}_2/\text{sent}_2)\)
 - actions = \(t \) (transmit), \(w \) (wait)
 - \(q \) = probability of success if messages collide

- **If objectives** \(X_i = \text{probability to send successfully} \):
 - 2 SWNEs when one user waits for the other to transmit and then transmits

- **If the objectives** \(X_i = \text{probability of being first} to transmit their packet**:
 - only 1 SWNE: both immediately try to transmit

(probabilistic extension of [Brenguier’13])
rPATL + Nash operator

- Extension of rPATL for Nash equilibria [FM’19]

\[
\phi ::= \text{true} | a | \neg \phi | \phi \land \phi |
\langle\langle C \rangle\rangle P_{\bowtie q} [\psi] | \langle\langle C \rangle\rangle R_{\bowtie x} [\rho] | \langle\langle C, C' \rangle\rangle_{\text{max} \bowtie x} [\theta]
\]

\[
\theta ::= P[\psi] + P[\psi] | R^r[\rho] + R^r[\rho]
\]

\[
\psi ::= X \phi | \phi U^{\leq k} \phi | \phi U \phi
\]

\[
\rho ::= I^{=k} | C^{\leq k} | F \phi
\]

- where:

- \(a \in \text{AP} \) is an atomic proposition, \(C \subseteq N \) is a coalition of players and \(C' = N \setminus C, \bowtie \in \{\leq, <, >, \geq\}, q \in [0, 1] \cap \mathbb{Q}, x \in \mathbb{Q}_{\geq 0}, k \in \mathbb{N} \)

- \(r \) is a reward structure

- Semantics:

- \(\langle\langle C, C' \rangle\rangle_{\text{max} \bowtie x} [\theta] \) is satisfied if there exist strategies for all players that form a SWNE between coalitions \(C \) and \(C' (=N \setminus C) \), and under which the \textit{sum} of the two objectives in \(\theta \) is \(\bowtie x \)
Model checking for extended rPATL

- Key ingredient is now:
 - solution of SWNEs for bimatrix games
 - (basic problem is EXPTIME)
 - we adapt known approach using labelled polytopes, and implement using an encoding to SMT

- Two types of model checking operator
 - bounded: backwards induction
 - unbounded: value iteration, e.g.:

$$V_{G^C}(s, \theta, n) = \begin{cases}
(1, 1) & \text{if } s \in \text{Sat}(\phi^1) \cap \text{Sat}(\phi^2) \\
(1, P_{G,s}^\text{max}(F \phi^2)) & \text{else if } s \in \text{Sat}(\phi^1) \\
(P_{G,s}^\text{max}(F \phi^1), 1) & \text{else if } s \in \text{Sat}(\phi^2) \\
(0, 0) & \text{else if } n=0 \\
\text{val}(Z_1, Z_2) & \text{otherwise}
\end{cases}$$

- where Z_1 and Z_2 encode matrix games similar to before
PRISM–games support

• **Implementation in PRISM–games**
 – needed further extensions to modelling language
 – extends CSG rPATL model checking implementation
 – bimatrix games solved using Z3 encoding
 – optimised filtering of dominated strategies
 – scales up to CSGs with ~2 million states

• **Applications**
 – robot navigation in a grid, medium access control, Aloha communication protocol, power control
 – SWNE strategies outperform those found with rPATL
 – \(\varepsilon\)-Nash equilibria found typically have \(\varepsilon=0\)
Conclusions

• **Probabilistic model checking: PRISM & PRISM-games**
 – multi-objective techniques for MDPs
 – rPATL model checking for
 - stochastic multi-player games (SMGs)
 - concurrent stochastic games (CSGs)
 – CSGs + (social welfare) Nash equilibria
 – wide variety of case studies studied

• **Challenges & directions**
 – extending to >2 players
 – scalability, e.g. symbolic methods, abstraction
 – partial information/observability & greater efficiency
 – further applications and case studies