Verification of Probabilistic Systems

Dave Parker

University of Oxford

MOVEP’08 – Orléans – June 2008
Motivation – Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real–world protocols featuring randomisation:
 – Randomised back–off schemes
 - CSMA protocol, 802.11 Wireless LAN
 – Random choice of waiting time
 - IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 – Random choice over a set of possible addresses
 - IPv4 Zeroconf dynamic configuration (link–local addressing)
 – Randomised algorithms for anonymity, contract signing, …
Motivation – Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
 – to quantify rate of failures, express Quality of Service

• Examples:
 – computer networks, embedded systems
 – power management policies
 – nano-scale circuitry: reliability through defect-tolerance
Motivation – Why probability?

- Some systems are inherently probabilistic…
- Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 – to quantify rate of failures, express Quality of Service
- To model biological processes
 – reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion
Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:
 – security, privacy, trust, anonymity, fairness
 – safety, reliability, performance, dependability
 – resource usage, e.g. battery life
 – and much more...

• Quantitative, as well as qualitative requirements:
 – how reliable is my car’s Bluetooth network?
 – how efficient is my phone’s power management policy?
 – is my bank’s web-service secure?
 – what is the expected long-run percentage of protein X?
Verification via model checking

Finite-state model

Temporal logic specification

¬EF error

Model checker

Result

Error trace
Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic model checker
e.g. PRISM

Result

\[P_{<0.01} \ [\ F \ error \] \]

Probabilistic temporal logic specification
e.g. PCTL

Quantitative results
Overview

- Discrete-time Markov chains (DTMCs)
- Properties of DTMCs: The logic PCTL
- PCTL model checking for DTMCs
- Beyond PCTL: Costs and rewards
- Tool support + A case study: contract signing
- Adding nondeterminism: Markov decision processes (MDPs)
Discrete–time Markov chains

- Discrete–time Markov chains (DTMCs)
 - state–transition systems augmented with probabilities

- States
 - discrete set of states representing possible configurations of the system being modelled

- Transitions
 - transitions between states occur in discrete time–steps

- Probabilities
 - probability of making transitions between states is given by discrete probability distributions
Discrete–time Markov chains

- Formally, a DTMC D is a tuple \((S, s_{\text{init}}, P, L)\) where:
 - \(S\) is a finite set of states ("state space")
 - \(s_{\text{init}} \in S\) is the initial state
 - \(P : S \times S \rightarrow [0,1]\) is the transition probability matrix
 where \(\sum_{s' \in S} P(s,s') = 1\) for all \(s \in S\)
 - \(L : S \rightarrow 2^{\text{AP}}\) is function labelling states with atomic propositions

- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - can add self loops to represent final/terminating states
DTMCs: An alternative definition

• Alternative definition: a DTMC is:
 – a family of random variables \(\{ X(k) \mid k=0,1,2,\ldots \} \)
 – \(X(k) \) are observations at discrete time-steps
 – i.e. \(X(k) \) is the state of the system at time-step \(k \)

• Memorylessness (Markov property)
 – \(\Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, \ldots, X(0)=s_0) \)
 \[= \Pr(X(k)=s_k \mid X(k-1)=s_{k-1}) \]

• We consider homogenous DTMCs
 – transition probabilities are independent of time
 – \(P(s_{k-1},s_k) = \Pr(X(k)=s_k \mid X(k-1)=s_{k-1}) \)
Paths and probabilities

• A (finite or infinite) path through a DTMC
 – is a sequence of states \(s_0s_1s_2s_3 \ldots \) such that \(P(s_i,s_{i+1}) > 0 \ \forall i \)
 – represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling

• To reason (quantitatively) about this system
 – need to define a probability space over paths

• Intuitively:
 – sample space: \(\text{Path}(s) = \) set of all infinite paths from a state \(s \)
 – events: sets of infinite paths from \(s \)
 – basic events: cylinder sets (or “cones”)
 – cylinder set \(C(\omega) \), for a finite path \(\omega \)
 = set of infinite paths with the common finite prefix \(\omega \)
 – for example: \(C(ss_1s_2) \)
Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\bigcup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Theorem: For any family F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F
- Probability space $(\Omega, \Sigma, \text{Pr})$
 - Ω is the sample space
 - Σ is the set of events: σ-algebra on Ω
 - $\text{Pr} : \Sigma \rightarrow [0,1]$ is the probability measure:
 \[
 \text{Pr}(\Omega) = 1 \text{ and } \text{Pr}(\bigcup_i A_i) = \sum \text{Pr}(A_i) \text{ for countable disjoint } A_i
 \]
Probability space over paths

- **Sample space** $\Omega = \text{Path}(s)$
 set of infinite paths with initial state s

- **Event set** $\Sigma_{\text{Path}(s)}$
 - the **cylinder set** $C(\omega) = \{ \omega' \in \text{Path}(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{\text{Path}(s)}$ is the least σ–algebra on $\text{Path}(s)$ containing $C(\omega)$ for all finite paths ω starting in s

- **Probability measure** \Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - define $\Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths ω
 - \Pr_s extends uniquely to a probability measure $\Pr_s : \Sigma_{\text{Path}(s)} \to [0,1]$

- **See** [KSK76] for further details
Probability space – Example

• Paths where sending fails the first time
 - \(\omega = s_0s_1s_2 \)
 - \(C(\omega) = \) all paths starting \(s_0s_1s_2 \ldots \)
 - \(P_{s_0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2) \)
 \[= 1 \cdot 0.01 = 0.01 \]
 - \(Pr_{s_0}(C(\omega)) = P_{s_0}(\omega) = 0.01 \)

• Paths which are eventually successful and with no failures
 - \(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \ldots \)
 - \(Pr_{s_0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \ldots) \)
 \[= P_{s_0}(s_0s_1s_3) + P_{s_0}(s_0s_1s_1s_3) + P_{s_0}(s_0s_1s_1s_1s_3) + \ldots \]
 \[= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \ldots \]
 \[= 0.9898989898\ldots \]
 \[= 98/99 \]
Overview

- Discrete-time Markov chains (DTMCs)
- Properties of DTMCs: The logic PCTL
- PCTL model checking for DTMCs
- Beyond PCTL: Costs and rewards
- Tool support + A case study: contract signing
- Adding nondeterminism: Markov decision processes (MDPs)
PCTL

• **Temporal logic for describing properties of DTMCs**
 – $\text{PCTL} = \text{Probabilistic Computation Tree Logic}$ [HJ94]
 – essentially the same as the logic pCTL of [ASB+95]

• **Extension of (non-probabilistic) temporal logic CTL**
 – key addition is probabilistic operator P
 – quantitative extension of CTL’s A and E operators

• **Example**
 – $\text{send} \rightarrow P_{\geq 0.95} [\text{true U}^{\leq 10} \text{deliver}]$
 – “if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95”
PCTL syntax

- **PCTL syntax:**

 \[\phi ::= \text{true} | a | \phi \land \phi | \neg \phi | P_{\sim p} [\psi] \]
 (state formulas)

 \[\psi ::= X \phi | \phi U^{\leq k} \phi | \phi U \phi \]
 (path formulas)

- where \(a \) is an atomic proposition, used to identify states of interest, \(p \in [0,1] \) is a probability, \(\sim \in \{<,>,\leq,\geq\} \), \(k \in \mathbb{N} \)

- **A PCTL formula is always a state formula**
 - path formulas only occur inside the P operator
PCTL semantics for DTMCs

- **PCTL formulas interpreted over states of a DTMC**
 - \(s \models \phi \) denotes \(\phi \) is “true in state \(s \)” or “satisfied in state \(s \)”

- **Semantics of (non–probabilistic) state formulas:**
 - for a state \(s \) of the DTMC \((S, s_{\text{init}}, P, L)\):
 - \(s \models a \) \iff \(a \in L(s) \)
 - \(s \models \phi_1 \land \phi_2 \) \iff \(s \models \phi_1 \) and \(s \models \phi_2 \)
 - \(s \models \neg \phi \) \iff \(s \models \phi \) is false

- **Examples**
 - \(s_3 \models \text{succ} \)
 - \(s_1 \models \text{try} \land \neg \text{fail} \)
PCTL semantics for DTMCs

• **Semantics of path formulas:**
 - for a path $\omega = s_0s_1s_2...$ in the DTMC:
 - $\omega \models X \phi \iff s_1 \models \phi$
 - $\omega \models \phi_1 U^{\leq k} \phi_2 \iff \exists i \leq k \text{ such that } s_i \models \phi_2 \text{ and } \forall j < i, s_j \models \phi_1$
 - $\omega \models \phi_1 U \phi_2 \iff \exists k \geq 0 \text{ such that } \omega \models \phi_1 U^{\leq k} \phi_2$

• **Some examples of satisfying paths:**
 - $X \text{ succ}$
 {try} {succ} {succ} {succ}
 \[S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow S_3 \rightarrow \ldots \]
 - $\neg \text{fail} U \text{ succ}$
 {try} {try} {succ} {succ}
 \[S_0 \rightarrow S_1 \rightarrow S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \ldots \]
PCTL semantics for DTMCs

- **Semantics of the probabilistic operator P**
 - Informal definition: $s \models P_{\neg p} [\psi]$ means that “the probability, from state s, that ψ is true for an outgoing path satisfies $\neg p$”
 - Example: $s \models P_{<0.25} [X \text{ fail }] \iff$ “the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25”
 - Formally: $s \models P_{\neg p} [\psi] \iff \text{Prob}(s, \psi) \sim p$
 - Where: $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \}$

![Diagram showing PCTL semantics for DTMCs]
More PCTL…

• **Usual temporal logic equivalences:**

 - false $\equiv \neg$true

 - $\phi_1 \lor \phi_2 \equiv \neg(\neg\phi_1 \land \neg\phi_2)$ (disjunction)

 - $\phi_1 \rightarrow \phi_2 \equiv \neg\phi_1 \lor \phi_2$ (implication)

 - $F\phi \equiv \Diamond \phi \equiv \text{true U } \phi$ (eventually, “future”)

 - $G\phi \equiv \Box \phi \equiv \neg(F \neg \phi)$ (always, “globally”)

 - bounded variants: $F\leq k \phi$, $G\leq k \phi$

• **Negation and probabilities**

 - e.g. $\neg P_{>p}[\phi_1 \lor \phi_2] \equiv P_{\leq p}[\phi_1 \lor \phi_2]$

 - e.g. $P_{>p}[G\phi] \equiv P_{<1-p}[F\neg\phi]$
PCTL and measurability

• All the sets of paths expressed by PCTL are measurable
 – i.e. are elements of the σ–algebra $\Sigma_{\text{Path}(s)}$
 – see for example [Var85] (for a stronger result in fact)

• Recall: probability space $(\text{Path}(s), \Sigma_{\text{Path}(s)}, \text{Pr}_s)$
 – $\Sigma_{\text{Path}(s)}$ contains cylinder sets $C(\omega)$ for all finite paths ω starting
 in s and is closed under complementation, countable union

• Next $(X \phi)$
 – cylinder sets constructed from paths of length one

• Bounded until $(\phi_1 U^{\leq k} \phi_2)$
 – (finite number of) cylinder sets from paths of length at most k

• Until $(\phi_1 U \phi_2)$
 – countable union of paths satisfying $\phi_1 U^{\leq k} \phi_2$ for all $k \geq 0$
Qualitative vs. quantitative properties

• P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)

• A PCTL property $P_{\sim_p} [\psi]$ is...
 – qualitative when p is either 0 or 1
 – quantitative when p is in the range (0,1)

• $P_{>0} [F \phi]$ is identical to $EF \phi$
 – there exists a finite path to a ϕ–state

• $P_{\geq1} [F \phi]$ is (similar to but) weaker than $AF \phi$
 – e.g. AF “tails” (CTL) $\neq P_{\geq1} [F “tails”]$ (PCTL)
Quantitative properties

- Consider a PCTL formula $P_{\sim p} \ [\psi \]$
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P =? \ [\psi \]$
 - “what is the probability that path formula ψ is true?”
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P =? \ [F \ err/total>0.1 \]$
 - “what is the probability that 10% of the NAND gate outputs are erroneous?”
Some real PCTL examples

• NAND multiplexing system
 – \(P_{=?} [F \text{ err/total} > 0.1] \)
 – “what is the probability that 10% of the NAND gate outputs are erroneous?”

• Bluetooth wireless communication protocol
 – \(P_{=?} [F \leq t \text{ reply_count} = k] \)
 – “what is the probability that the sender has received \(k \) acknowledgements within \(t \) clock-ticks?”

• Security: EGL contract signing protocol
 – \(P_{=?} [F (\text{pairs_a} = 0 & \text{pairs_b} > 0)] \)
 – “what is the probability that the party B gains an unfair advantage during the execution of the protocol?”
Overview

• Discrete–time Markov chains (DTMCs)
• Properties of DTMCs: The logic PCTL
• PCTL model checking for DTMCs
• Beyond PCTL: Costs and rewards
• Tool support + A case study: contract signing
• Adding nondeterminism: Markov decision processes (MDPs)
PCTL model checking for DTMCs

• **Algorithm for PCTL model checking** [CY88,HJ94,CY95]
 – inputs: DTMC $D=\langle S, s_{\text{init}}, P, L \rangle$, PCTL formula ϕ
 – output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \} = \text{set of states satisfying } \phi$

• **What does it mean for a DTMC D to satisfy a formula ϕ?**
 – sometimes, want to check that $s \models \phi \ \forall \ s \in S$, i.e. $\text{Sat}(\phi) = S$
 – sometimes, just want to know if $s_{\text{init}} \models \phi$, i.e. if $s_{\text{init}} \in \text{Sat}(\phi)$

• **Sometimes, focus on quantitative results**
 – e.g. compute result of $P=? [F \text{ error }]$
 – e.g. compute result of $P=? [F \leq k \text{ error }]$ for $0 \leq k \leq 100$
PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ
 - example: $\phi = (\neg\text{fail} \land \text{try}) \rightarrow P_{>0.95} [\neg\text{fail} \mathbf{U} \text{succ}]$

- For the non-probabilistic operators:
 - $\text{Sat}(\text{true}) = S$
 - $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 - $\text{Sat}(\neg\phi) = S \setminus \text{Sat}(\phi)$
 - $\text{Sat}(\phi_1 \land \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$

- For the $P_{\sim p}[\psi]$ operator
 - need to compute the probabilities $\text{Prob}(s, \psi)$ for all states $s \in S$
PCTL until for DTMCs

- Computation of probabilities $\text{Prob}(s, \phi_1 \ U \ \phi_2)$ for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{\text{yes}} = \text{Sat}(P \geq 1 [\ \phi_1 \ U \ \phi_2 \])$
 - $S^{\text{no}} = \text{Sat}(P \leq 0 [\ \phi_1 \ U \ \phi_2 \])$
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically
 - gives exact results for the states in S^{yes} and S^{no} (no round-off)
 - for $P_{\sim p}[\cdot]$ where p is 0 or 1, no further computation required
Precomputation – Prob0

- **Prob0 algorithm to compute** $S^{no} = \text{Sat}(P_{\leq 0} [\phi_1 U \phi_2])$:
 - first compute $\text{Sat}(P_{> 0} [\phi_1 U \phi_2])$
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2-state without leaving ϕ_1-states
 - i.e. find all states from which there is a finite path through ϕ_1-states to a ϕ_2-state: simple graph-based computation
 - subtract the resulting set from S

Example:
$P_{\sim_p} [\neg a U b]$
Precomputation – Prob0

- **Prob0 algorithm to compute** $S^{no} = \text{Sat}(P \leq 0 [\phi_1 U \phi_2])$:
 - first compute $\text{Sat}(P > 0 [\phi_1 U \phi_2])$
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2-state without leaving ϕ_1-states
 - i.e. find all states from which there is a finite path through ϕ_1-states to a ϕ_2-state: simple graph-based computation
 - subtract the resulting set from S

Example:

$P_{\sim p} [\neg a U b]$
Precomputation – Prob0

- **Prob0 algorithm to compute** $S^{\text{no}} = \text{Sat}(P_{\leq 0} [\phi_1 \cup \phi_2])$:
 - first compute $\text{Sat}(P_{> 0} [\phi_1 \cup \phi_2])$
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2-state without leaving ϕ_1-states
 - i.e. find all states from which there is a finite path through ϕ_1-states to a ϕ_2-state: simple graph-based computation
 - subtract the resulting set from S

Example:

- $P_{\sim p} [\neg a \cup b]$

- $\text{Sat}(P_{> 0} [\neg a \cup b])$
Precomputation – Prob0

- **Prob0 algorithm to compute** $S^{no} = \text{Sat}(P_{\leq 0} [\phi_1 U \phi_2]):$
 - first compute $\text{Sat}(P_{> 0} [\phi_1 U \phi_2])$
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2-state without leaving ϕ_1-states
 - i.e. find all states from which there is a finite path through ϕ_1-states to a ϕ_2-state: simple graph-based computation
 - subtract the resulting set from S

Example:

$P_{\sim p} [\neg a U b]$

\[S^{no} = \text{Sat}(P_{\leq 0} [\neg a U b]) \]
Precomputation – Prob1

• **Prob1 algorithm to compute** $S^{yes} = \text{Sat}(P_{\geq 1} \lbrack \phi_1 \cup \phi_2 \rbrack)$:
 – first compute $\text{Sat}(P_{< 1} \lbrack \phi_1 \cup \phi_2 \rbrack)$, reusing S^{no}
 – this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1–states
 – again, this is a simple graph–based computation
 – subtract the resulting set from S

Example:

$P_{\sim p} \lbrack \neg a \cup b \rbrack$
Precomputation – Prob1

• **Prob1 algorithm to compute** $S_{\text{yes}} = \text{Sat}(P_{\geq 1} [\phi_1 \cup \phi_2])$:

 – first compute $\text{Sat}(P_{< 1} [\phi_1 \cup \phi_2])$, reusing S_{no}

 – this is equivalent to the set of states which have a non-zero probability of reaching S_{no}, passing only through ϕ_1–states

 – again, this is a simple graph–based computation

 – subtract the resulting set from S

Example:

$P_{\sim p} [\neg a \cup b]$

$S_{\text{no}} = \text{Sat}(P_{\leq 0} [\neg a \cup b])$

![Diagram of a graph showing states and transitions](image)
Precomputation – Prob1

- **Prob1 algorithm to compute** $S^{yes} = \text{Sat}(P_{\geq 1} [\phi_1 U \phi_2]) :$
 - first compute $\text{Sat}(P_{< 1} [\phi_1 U \phi_2]),$ reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching $S^{no},$ passing only through ϕ_1–states
 - again, this is a simple graph–based computation
 - subtract the resulting set from S

Example:
$P_{\sim p} [\neg a U b]$

![Diagram](image-url)
Precomputation – Prob1

- **Prob1 algorithm to compute** $S^{yes} = \text{Sat}(P_{\geq 1} [\phi_1 \cup \phi_2]) :$
 - first compute $\text{Sat}(P_{< 1} [\phi_1 \cup \phi_2])$, reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1-states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

Example:
$P_{\sim p} [\neg a \cup b]$

![Diagram](image.png)

$S^{yes} = \text{Sat}(P_{\geq 1} [\neg a \cup b])$.

PCTL until – linear equations

- Probabilities $\text{Prob}(s, \phi_1 \cup \phi_2)$ can now be obtained as the unique solution of the following set of linear equations:

$$
\text{Prob}(s, \phi_1 \cup \phi_2) = \begin{cases}
1 & \text{if } s \in S^{\text{yes}} \\
0 & \text{if } s \in S^{\text{no}} \\
\sum_{s' \in S} P(s, s') \cdot \text{Prob}(s', \phi_1 \cup \phi_2) & \text{otherwise}
\end{cases}
$$

- can be reduced to a system in $|S^?|$ unknowns instead of $|S|$ where $S^? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$

- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss–Seidel, … (preferred in practice due to scalability)
PCTL until – linear equations

• Example: $P_{\neg p} [\neg a \cup b]$
• Let $x_s = \text{Prob}(s, \neg a \cup b)$

\[S^{\text{no}} = \text{Sat}(P_{\leq 0} [\neg a \cup b]) \]

\[
\begin{align*}
x_1 &= x_3 = 0 \\
x_4 &= x_5 = 1 \\
x_2 &= 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = \frac{8}{9} \\
x_0 &= 0.1x_1 + 0.9x_2 = 0.8
\end{align*}
\]

$S^{\text{yes}} = \text{Sat}(P_{\geq 1} [\neg a \cup b])$
PCTL model checking – Summary

• Computation of set $\text{Sat}(\Phi)$ for DTMC D and PCTL formula Φ
 – recursive descent of parse tree
 – combination of graph algorithms, numerical computation
 – complexity is linear in $|\Phi|$ and polynomial in $|S|$

• Probabilistic operator P:
 – $\chi \Phi$: one matrix–vector multiplication, $O(|S|^2)$
 – $\Phi_1 U^{\le k} \Phi_2$: k matrix–vector multiplications, $O(k|S|^2)$
 – $\Phi_1 U \Phi_2$: linear equation system, at most $|S|$ variables, $O(|S|^3)$
Overview

• Discrete-time Markov chains (DTMCs)
• Properties of DTMCs: The logic PCTL
• PCTL model checking for DTMCs
• Beyond PCTL: Costs and rewards
• Tool support + A case study: contract signing
• Adding nondeterminism: Markov decision processes (MDPs)
Beyond PCTL

• PCTL, although useful in practice, has limited expressivity
 – essentially: probability of reaching states in \(X \), passing only through states in \(Y \), and (possibly) within \(k \) time-steps

• More expressive logics can be used, for example:
 – LTL, the non-probabilistic linear-time temporal logic
 – PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

• Both allow combinations of temporal operators
 – e.g. for liveness: \(P_{\sim_p} [G F \phi] \) – “...always eventually \(\phi \)”

• Model checking algorithms exist (but more expensive)
 – translate to Rabin automata, construct product DTMC, graph algorithms (BSCCs) + probabilistic reachability

• Another direction: extend DTMCs with costs and rewards...
Costs and rewards

- **We augment DTMCs with rewards (or, conversely, costs)**
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations

- **Some examples:**
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

- **Costs? or rewards?**
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology “rewards” regardless
Reward–based properties

- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL

- More precisely, we use two distinct classes of property...

- Instantaneous properties
 - the expected value of the reward at some time point

- Cumulative properties
 - the expected cumulated reward over some period
DTMC reward structures

- For a DTMC \((S, s_{\text{init}}, P, L)\), a reward structure is a pair \((\rho, \iota)\)
 - \(\rho : S \to \mathbb{R}_{\geq 0}\) is the state reward function (vector)
 - \(\iota : S \times S \to \mathbb{R}_{\geq 0}\) is the transition reward function (matrix)

- Example (for use with instantaneous properties)
 - “size of message queue”: \(\rho\) maps each state to the number of jobs in the queue in that state, \(\iota\) is not used

- Examples (for use with cumulative properties)
 - “time-steps”: \(\rho\) returns 1 for all states and \(\iota\) is zero
 (equivalently, \(\rho\) is zero and \(\iota\) returns 1 for all transitions)
 - “number of messages lost”: \(\rho\) is zero and \(\iota\) maps transitions corresponding to a message loss to 1
 - “power consumption”: \(\rho\) is defined as the per-time-step energy consumption in each state and \(\iota\) as the energy cost of each transition
PCTL and rewards

• Extend PCTL to incorporate reward-based properties
 – add an R operator, which is similar to the existing P operator

\[\phi ::= \ldots \mid P_{\sim p} [\psi] \mid R_{\sim r} [I = k] \mid R_{\sim r} [C \leq k] \mid R_{\sim r} [F \phi] \]

– where \(r \in \mathbb{R}_{\geq 0}, \sim \in \{<,>,\leq,\geq\}, k \in \mathbb{N} \)

• \(R_{\sim r} [\cdot] \) means “the expected value of \(\cdot \) satisfies \(\sim r \)”
Types of reward formulas

• Instantaneous: $R_{\sim r}[I=k]$
 - “the expected value of the state reward at time-step k is $\sim r$”
 - e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: $R_{\sim r}[C\leq k]$
 - “the expected reward cumulated up to time-step k is $\sim r$”
 - e.g. “the expected power consumption over one hour”

• Reachability: $R_{\sim r}[F \phi]$
 - “the expected reward cumulated before reaching a state satisfying ϕ is $\sim r$”
 - e.g. “the expected time for the algorithm to terminate”
Reward formula semantics

• **Formal semantics of the three reward operators**
 – based on random variables over (infinite) paths

• **Recall:**
 – \(s \models P_p [\psi] \iff \Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \} \sim p \)

• **For a state** \(s \) **in the DTMC:**
 – \(s \models R_r [I=k] \iff \text{Exp}(s, X_{I=k}) \sim r \)
 – \(s \models R_r [C\leq k] \iff \text{Exp}(s, X_{C\leq k}) \sim r \)
 – \(s \models R_r [F \Phi] \iff \text{Exp}(s, X_{F\Phi}) \sim r \)

where: \(\text{Exp}(s, X) \) denotes the expectation of the random variable \(X : \text{Path}(s) \to \mathbb{R}_{\geq 0} \) with respect to the probability measure \(\Pr_s \)
Reward formula semantics

• Definition of random variables:
 – for an infinite path \(\omega = s_0s_1s_2... \)

\[
X_{\omega_{\sim k}}(\omega) = \rho(s_k)
\]

\[
X_{\omega_{\sim k}}(\omega) = \begin{cases}
0 & \text{if } k = 0 \\
\sum_{i=0}^{k-1} \rho(s_i) + \ell(s_i, s_{i+1}) & \text{otherwise}
\end{cases}
\]

\[
X_{\omega_{\sim k}}(\omega) = \begin{cases}
0 & \text{if } s_0 \in \text{Sat}(\phi) \\
\infty & \text{if } s_i \not\in \text{Sat}(\phi) \text{ for all } i \geq 0 \\
\sum_{i=0}^{k_{\phi}-1} \rho(s_i) + \ell(s_i, s_{i+1}) & \text{otherwise}
\end{cases}
\]

– where \(k_{\phi} = \min\{ j \mid s_j \models \phi \} \)
Model checking reward properties

- **Instantaneous**: $R_{\sim r} [I^{=k}]$
- **Cumulative**: $R_{\sim r} [C^{\leq t}]$
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations

- **Reachability**: $R_{\sim r} [F \phi]$
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation

- **For more details, see e.g.** [KNP07a]
Overview

- Discrete-time Markov chains (DTMCs)
- Properties of DTMCs: The logic PCTL
- PCTL model checking for DTMCs
- Beyond PCTL: Costs and rewards
- Tool support + A case study: contract signing
- Adding nondeterminism: Markov decision processes (MDPs)
Tools – Probabilistic model checkers

- **PRISM (Probabilistic Symbolic Model Checker)**
 - DTMCs, MDPs, CTMCs + rewards, [Birmingham/Oxford]
- **MRMC (Markov Reward Model Checker)**
 - DTMCs, CTMCs + reward extensions, [Twente/Aachen]
- **LiQuor: LTL model checking for MDPs, Probmela language (probabilistic version of SPIN’s Promela), [Dresden]**

- Simulation-based probabilistic model checking:
 - APMC, Ymer (both based on PRISM language), VESTA
- Many other related tools/prototypes
 - RAPTURE, CADP, Möbius, APNN-Toolbox, SMART, GreatSPN, GRIP, CASPA, Premo, PASS, ...
The PRISM tool

• PRISM: Probabilistic symbolic model checker
 – developed at Birmingham/Oxford University, since 1999
 – free, open source (GPL), Linux/Unix/Mac/Windows/64-bit

• Modelling of:
 – DTMCs, MDPs, CTMCs + costs/rewards

• Verification of:
 – PCTL, CSL + extensions + costs/rewards

• Features:
 – high-level modelling language
 – wide range of model analysis methods
 – graphical user interface, simulator/debugger, graph plotting
 – efficient symbolic (BDD-based) implementation

• See: www.prismmodelchecker.org
PRISM modelling language

- Simple, state-based language for DTMCs/MDPs/CTMCs
 - based on Reactive Modules [AH99]
- Modules (system components, composed in parallel)
- Variables (finite-valued, local or global)
- Guarded commands (labelled with probabilities/rates)
- Synchronisation (CSP-style) + process-algebraic operators (parallel composition, action hiding/renaming)

\[
\text{[send]} \ (s=2) \rightarrow \ p_{\text{loss}} : (s' = 3) \& (\text{lost}' = \text{lost} + 1) \ + \ (1 - p_{\text{loss}}) : (s' = 4);
\]
// Herman's self-stabilisation algorithm [Her90]

dtmc // Algorithm is fully synchronous

module process1 // First of N=5 symmetric processes
 x1 : [0..1]; // One bit per process; xi=x(i-1) means proc i has a token
 [step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
 [step] !x1=x5 -> (x1'=x5);
endmodule

// Add further processes through renaming

module process2 = process1 [x1=x2, x5=x1] endmodule
module process3 = process1 [x1=x3, x5=x2] endmodule
module process4 = process1 [x1=x4, x5=x3] endmodule
module process5 = process1 [x1=x5, x5=x4] endmodule

// Can start in any possible configuration
init true endinit
Case study: Contract signing

- Two parties want to agree on a contract
 - each will sign if the other will sign, but do not trust each other
 - there may be a trusted third party (judge)
 - but it should only be used if something goes wrong

- In real life: contract signing with pen and paper
 - sit down and write signatures simultaneously

- On the Internet...
 - how to exchange commitments on an asynchronous network?
 - “partial secret exchange protocol” [EGL85]
Contract signing – EGL protocol

• Partial secret exchange protocol for 2 parties (A and B)

• A (B) holds 2N secrets \(a_1, \ldots, a_{2N}, (b_1, \ldots, b_{2N})\)
 – a secret is a binary string of length \(L\)
 – secrets partitioned into pairs: e.g. \(\{ (a_i, a_{N+i}) \mid i=1, \ldots, N \}\)
 – A (B) committed if B (A) knows one of A’s (B’s) pairs

• Uses “1–out–of–2 oblivious transfer protocol” \(OT(S,R,x,y)\)
 – S sends \(x\) and \(y\) to R
 – R receives \(x\) with probability \(\frac{1}{2}\) otherwise receives \(y\)
 – S does not know which one R receives
 – if S cheats then R can detect this with probability \(\frac{1}{2}\)
Contract signing – EGL protocol

(step 1)

for (i=1,…,N)
 OT(A, B, a_i, a_{N+i})
 OT(B, A, b_i, b_{N+i})

(step 2)

for (i=1,…,L) (where L is the bit length of the secrets)
 for (j=1,…,2N)
 A transmits bit i of secret a_j to B
 for (j=1,…,2N)
 B transmits bit i of secret b_j to A
EGL protocol – Step 1

Party A

1...L

1...N

N+1...2N

1...L

1...N

N+1...2N

OT(A,B,a_i,a_{N+i})

OT(B,A,b_i,b_{N+i})

(repeat for i=1...N)
EGL protocol – Step 2

Party A

A sends bit i of a_j to B for $j=1\ldots2N$

Then B does the same for b_j

(repeat for $i=1\ldots L$)

Party B

(repeat for $i=1\ldots L$)
Contract signing – Results

• Modelled in PRISM as a DTMC (no concurrency) [NS06]

• Highlights a weakness in the protocol
 – party B can act maliciously by quitting the protocol early
 – this behaviour not considered in the original analysis

• PRISM analysis shows
 – if B stops participating in the protocol as soon as he/she has obtained one of A’s pairs, then, with probability 1, at this point:
 • B possesses a pair of A’s secrets
 • A does not have complete knowledge of any pair of B’s secrets
 – protocol is not fair under this attack:
 – B has a distinct advantage over A
Contract signing – Results

• The protocol is unfair because in step 2:
 – A sends a bit for each of its secret before B does

• Can we make this protocol fair by changing the message sequence scheme?

• Since the protocol is asynchronous the best we can hope for is
 – B (or A) has this advantage with probability \(\frac{1}{2} \)

• We consider 3 possible alternative message sequence schemes (EGL2, EGL3, EGL4)
(step 1)
...
(step 2)
for (i=1,...,L)
 for (j=1,...,N) A transmits bit i of secret a_j to B
 for (j=1,...,N) B transmits bit i of secret b_j to A
 for (j=N+1,...,2N) A transmits bit i of secret a_j to B
 for (j=N+1,...,2N) B transmits bit i of secret b_j to A
Modified step 2 for EGL2

Party A

1...L

1...N

N+1...2N

A sends bit i of a_j to B for $j=1...N$

Then B does the same for b_j

(after $j=1...N$, send $j=N+1...2N$)

(then repeat for $i=1...L$)

Party B

1...L

1...N

N+1...2N
(step 1)
...
(step 2)
for (i=1,...,L) for (j=1,...,N)
 A transmits bit i of secret a_j to B
 B transmits bit i of secret b_j to A
for (i=1,...,L) for (j=N+1,...,2N)
 A transmits bit i of secret a_j to B
 B transmits bit i of secret b_j to A
Modified step 2 for EGL3

Party A

A sends bit i of a_j to B for

Then B does the same for b_j

(repeat for $j=1\ldots N$ and for $i=1\ldots L$)

(then send $j=N+1\ldots 2N$ for $i=1\ldots L$)
(step 1)
...
(step 2)
\textbf{for} \ (i=1,\ldots,L) \
A transmits bit i of secret a_1 to B \\
\hspace{1em} \textbf{for} \ (j=1,\ldots,N) \ B \ transmits \ bit \ i \ of \ secret \ b_j \ to \ A \\
\hspace{2em} \textbf{for} \ (j=2,\ldots,N) \ A \ transmits \ bit \ i \ of \ secret \ a_j \ to \ B \\
\textbf{for} \ (i=1,\ldots,L) \
A \ transmits \ bit \ i \ of \ secret \ a_{N+1} \ to \ B \\
\hspace{1em} \textbf{for} \ (j=N+1,\ldots,2N) \ B \ transmits \ bit \ i \ of \ secret \ b_j \ to \ A \\
\hspace{2em} \textbf{for} \ (j=N+2,\ldots,2N) \ A \ transmits \ bit \ i \ of \ secret \ a_j \ to \ B
Modified step 2 for EGL4

Party A

A sends bit \(i \) of \(a_j \) to B for \(j = 2 \ldots N \)

Then A sends bit \(i \) of \(a_j \) to B for \(j = 2 \ldots N \)

(repeat for \(i = 1 \ldots L \))

(then send \(j = N+1 \ldots 2N \) in same fashion)

Party B

Then B sends bit \(i \) of \(b_j \) to B for \(j = 1 \ldots N \)

B sends bit \(i \) of \(b_j \) to B for \(j = 1 \ldots N \)
Contract signing – Results

- The chance that the protocol is unfair
 - probability that one party gains knowledge first
 - $P_{=?} [F \text{ know}_B \land \lnot \text{ know}_A]$ and $P_{=?} [F \text{ know}_A \land \lnot \text{ know}_B]$
Contract signing – More properties

- (1) How unfair the protocol is to each party
 - expected number of bits that a party needs to know a pair once the other party knows a pair

- (2) The influence that each party has on the fairness
 - once a party knows a pair, the expected number of messages from this party required before the other party knows a pair

- (3) The duration of unfairness of the protocol
 - once a party knows a pair, the expected total number of messages that need to be sent before the other knows a pair
Overview

- Discrete-time Markov chains (DTMCs)
- Properties of DTMCs: The logic PCTL
- PCTL model checking for DTMCs
- Beyond PCTL: Costs and rewards
- Tool support + A case study: contract signing

- Adding nondeterminism: Markov decision processes (MDPs)
Other models

• What’s missing from DTMCs?

• Nondeterminism
 – Markov decision processes (MDPs)…

• Real–time
 – continuous–time Markov chains (CTMCs)
 • exponentially distributed delays
 – probabilistic timed automata (PTAs)
 • real–valued clocks, discrete probabilistic choice, nondeterminism
Nondeterminism

• Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:

 • **Concurrency** – scheduling of parallel components
 – e.g. randomised distributed algorithms – multiple probabilistic processes operating asynchronously

 • **Underspecification** – unknown model parameters
 – e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

 • **Unknown environments**
 – e.g. probabilistic security protocols – unknown adversary
Markov decision processes

• **Markov decision processes (MDPs)**
 – extension of DTMCs which allow **nondeterministic choice**

• **Like DTMCs:**
 – discrete set of states representing possible configurations of the system being modelled
 – transitions between states occur in discrete time-steps

• **Probabilities and nondeterminism**
 – in each state, a nondeterministic choice between several discrete probability distributions over successor states
Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{\text{init}}, \text{Steps}, L)$ where:
 - S is a finite set of states ("state space")
 - $s_{\text{init}} \in S$ is the initial state
 - $\text{Steps} : S \rightarrow 2^{\text{Act} \times \text{Dist}(S)}$ is the transition probability function
 where Act is a set of actions and $\text{Dist}(S)$ is the set of discrete probability distributions over the set S
 - $L : S \rightarrow 2^\text{AP}$ is a labelling with atomic propositions

- Notes:
 - $\text{Steps}(s)$ is always non-empty, i.e. no deadlocks
 - the use of actions to label distributions is optional
Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart
Example – Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here
Paths and probabilities

• **A (finite or infinite) path through an MDP**

 - is a sequence of states and action/distribution pairs

 - e.g. \(s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2... \)

 - such that \((a_i,\mu_i) \in \text{Steps}(s_i)\) and \(\mu_i(s_{i+1}) > 0\) for all \(i \geq 0\)

 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling

 - note that a path resolves both types of choices: nondeterministic and probabilistic

• **To consider the probability of some behaviour of the MDP**

 - first need to resolve the nondeterministic choices

 - ...which results in a **DTMC**

 - ...for which we can define a probability measure over paths
Adversaries

- An adversary resolves nondeterministic choice in an MDP
- adversaries are also known as “schedulers” or “policies”

- Formally:
 - an adversary A of an MDP M is a function mapping every finite path $\omega = s_0(a_1, \mu_1)s_1...s_n$ to an element of $\text{Steps}(s_n)$

- For each A can define a probability measure \Pr^A_s over paths
 - constructed through an infinite state DTMC $(\text{Path}^A_{\text{fin}}(s), s, P^A_s)$
 - states of the DTMC are the finite paths of A starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P^A_s(\omega, \omega') = \mu(s)$ if $\omega' = \omega(a, \mu)s$ and $A(\omega) = (a, \mu)$
 - $P^A_s(\omega, \omega') = 0$ otherwise
Adversaries – Examples

• Consider the simple MDP below
 – note that s_1 is the only state for which $|\text{Steps}(s)| > 1$
 – i.e. s_1 is the only state for which an adversary makes a choice
 – let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1

• Adversary A_1
 – picks action c the first time
 – $A_1(s_0s_1) = (c, \mu_c)$

• Adversary A_2
 – picks action b the first time, then c
 – $A_2(s_0s_1) = (b, \mu_b)$, $A_2(s_0s_1s_1) = (c, \mu_c)$, $A_2(s_0s_1s_0s_1) = (c, \mu_c)$
Adversaries – Examples

- Fragment of DTMC for adversary A_1
 - A_1 picks action c the first time
Adversaries – Examples

- Fragment of DTMC for adversary A_2
 - A_2 picks action b, then c
Simple adversaries

- **Simple adversaries** always pick same choice in a given state
 - formally, for adversary A:
 - $A(s_0(a_1,u_1)s_1...s_n)$ depends only on s_n
 - resulting DTMC can be mapped to a $|S|$-state DTMC

- From previous example:
 - adversary A_1 (picks c in s_1) is simple, A_2 is not
PCTL for MDPs

- The temporal logic PCTL can also describe MDP properties
- Identical syntax to the DTMC case:

\[
\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p}[\psi]
\]

\[
\psi ::= X \phi \mid \phi U \leq k \phi \mid \phi U \phi
\]

- Semantics are also the same as DTMCs for:
 - atomic propositions, logical operators, path formulas

\[\psi \text{ is true with probability } \sim p\]
PCTL semantics for MDPs

- **Semantics of the probabilistic operator P**
 - can only define probabilities for a specific adversary A
 - $s \models P_{\neg p}[\psi]$ means “the probability, from state s, that ψ is true for an outgoing path satisfies $\neg p$ for all adversaries A”
 - formally $s \models P_{\neg p}[\psi] \iff \text{Prob}^A(s, \psi) \sim p$ for all adversaries A
 - where $\text{Prob}^A(s, \psi) = \text{Pr}^A_s \{ \omega \in \text{Path}^A(s) \mid \omega \models \psi \}$

$s \models P_{\neg \psi} \iff \text{Prob}^A(s, \neg \psi) \sim p$
Minimum and maximum probabilities

• Letting:
 - \(p_{\text{max}}(s, \psi) = \sup_A \text{Prob}^A(s, \psi) \)
 - \(p_{\text{min}}(s, \psi) = \inf_A \text{Prob}^A(s, \psi) \)

• We have:
 - if \(\sim \in \{\geq,>\} \), then \(s \models P_{\sim p}[\psi] \iff p_{\text{min}}(s, \psi) \sim p \)
 - if \(\sim \in \{<,\leq\} \), then \(s \models P_{\sim p}[\psi] \iff p_{\text{max}}(s, \psi) \sim p \)

• Model checking \(P_{\sim p}[\psi] \) reduces to the computation over all adversaries of either:
 - the minimum probability of \(\psi \) holding
 - the maximum probability of \(\psi \) holding

• Crucial result for model checking PCTL on MDPs
 - simple adversaries suffice, i.e. there are always simple adversaries \(A_{\text{min}} \) and \(A_{\text{max}} \) for which:
 - \(\text{Prob}^{A_{\text{min}}}(s, \psi) = p_{\text{min}}(s, \psi) \) and \(\text{Prob}^{A_{\text{max}}}(s, \psi) = p_{\text{max}}(s, \psi) \)
Quantitative properties

• For PCTL properties with P as the outermost operator
 – quantitative form (two types): \(P_{\text{min}} =? [\psi] \) and \(P_{\text{max}} =? [\psi] \)
 – i.e. “what is the minimum/maximum probability (over all adversaries) that path formula \(\psi \) is true?”
 – corresponds to an analysis of best-case or worst-case behaviour of the system
 – model checking is no harder since compute the values of \(p_{\text{min}}(s, \psi) \) or \(p_{\text{max}}(s, \psi) \) anyway
 – useful to spot patterns/trends

• Example: CSMA/CD protocol
 – “min/max probability that a message is sent within the deadline”
Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv

- Only change is:
 - \(s \models_{\text{Adv}} P_{\sim p} [\psi] \iff \operatorname{Prob}^{A}(s, \psi) \sim p \) for all adversaries \(A \in \text{Adv} \)

- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP

- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]
Some real PCTL examples

- **Byzantine agreement protocol**
 - $P_{\min} \subseteq \tau [F (\text{agreement} \land \text{rounds} \leq 2)]$
 - “what is the minimum probability that agreement is reached within two rounds?”

- **CSMA/CD communication protocol**
 - $P_{\max} \subseteq \tau [F \text{collisions}=\text{k}]$
 - “what is the maximum probability of k collisions?”

- **Self-stabilisation protocols**
 - $P_{\min} \subseteq \tau [F \leq t \text{ stable}]$
 - “what is the minimum probability of reaching a stable state within k steps?”
PCTL model checking for MDPs

- **Algorithm for PCTL model checking** [BdA95]
 - inputs: MDP $M=(S,s_{init},Steps,L)$, PCTL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \}$ = set of states satisfying ϕ

- **As for PCTL model checking for DTMCs**
 - sometimes check: $s \models \phi$ for all $s \in S$, sometimes: $s_{init} \models \phi$
 - or compute quantitative results
 - e.g. compute result of $\text{P}_{\text{max}}=\? [F_{\leq k} \text{ error }]$ for $0 \leq k \leq 100$

- **Basic algorithm proceeds by induction on parse tree of the PCTL formula ϕ**
PCTL model checking for MDPs

- Only need to consider $P_{\sim_p} [\psi]$ formulas
 - reduces to computation of $p_{\min}(s, \psi)$ or $p_{\max}(s, \psi)$ for all $s \in S$
 - dependent on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$

- Here, we cover the algorithm for computing $p_{\min}(s, \psi)$
 - i.e. the case where $\sim \in \{\geq, >\}$
 - computation of $p_{\max}(s, \psi)$ is very similar

- Focus on until formulas, i.e. $p_{\min}(s, \phi_1 U \phi_2)$
 - next ($X \phi$) and bounded until ($\phi_1 U_{\leq k} \phi_2$) are simple extensions of DTMC case
 - see e.g. [BdA95], [KNP04a] for further details
PCTL until for MDPs

- Computation of probabilities $p_{min}(s, \phi_1 U \phi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - “precomputation” algorithms, yielding sets S^{yes}, S^{no}
- Then compute (min) probabilities for remaining states ($S^?$)
 - either: solve linear optimisation problem
 - or: approximate with an iterative solution method

Example:

$$P \geq p \left[F \text{ goal } \right] \equiv P \geq p \left[\text{true } U \text{ goal } \right]$$
PCTL until – Precomputation

- Identify all states where $p_{\text{min}}(s, \phi_1 U \phi_2)$ is 1 or 0
 - $S_{\text{yes}} = \text{Sat}(P \geq 1 [\phi_1 U \phi_2])$, $S_{\text{no}} = \text{Sat}(\neg P > 0 [\phi_1 U \phi_2])$

- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes S_{yes}
 - for all adversaries the probability of satisfying $\phi_1 U \phi_2$ is 1
 - algorithm Prob0E computes S_{no}
 - there exists an adversary for which the probability is 0

Example:

$P \geq p [F \text{ goal }]$

$S_{\text{yes}} = \text{Sat}(P \geq 1 [F \text{ goal }])$

$S_{\text{no}} = \text{Sat}(\neg P > 0 [F \text{ goal }])$
Method 1 – Linear optimisation problem

• Probabilities $p_{\text{min}}(s, \phi_1 \cup \phi_2)$ for remaining states in the set $S' = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$ can be obtained as the unique solution of the following linear optimisation problem:

$$\text{maximize } \sum_{s \in S'} x_s \text{ subject to the constraints :}$$

$$x_s \leq \sum_{s' \in S'} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{\text{yes}}} \mu(s')$$

for all $s \in S'$ and for all $(a, \mu) \in \text{Steps}(s)$

• Simple case of a more general problem known as the stochastic shortest path problem [BT91]

• This can be solved with standard techniques
 – e.g. Simplex, ellipsoid method
PCTL until – Example

Let \(x_i = p_{\text{min}}(s_i, F \text{ goal}) \)

\(S^{\text{yes}}: x_2 = 1 \), \(S^{\text{no}}: x_3 = 0 \)

For \(S^? = \{x_0, x_1\} \):

Maximise \(x_0 + x_1 \) subject to constraints:

- \(x_0 \leq x_1 \)
- \(x_0 \leq 0.25 \cdot x_0 + 0.5 \)
- \(x_1 \leq 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4 \)
PCTL until – Example

Let $x_i = \min(s_i, F \text{ goal})$

S^yes: $x_2=1$, S^no: $x_3=0$

For $S? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq \frac{2}{3}$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$
Let $x_i = p_{\text{min}}(s_i, F_{\text{goal}})$

$S^{\text{yes}}: x_2 = 1$, $S^{\text{no}}: x_3 = 0$

For $S = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

Solution: $(x_0, x_1) = (2/3, 14/15)$
Let $x_i = p_{\text{min}}(s_i, F \text{ goal})$

S^{yes}: $x_2 = 1$, S^{no}: $x_3 = 0$

For $S^? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

Two simple adversaries
Method 2 – Iterative solution

- For probabilities $p_{\text{min}}(s, \phi_1 \cup \phi_2)$ it can be shown that:

$$- p_{\text{min}}(s, \phi_1 \cup \phi_2) = \lim_{n \to \infty} x_s^{(n)}$$

where:

$$x_s^{(n)} = \begin{cases}
1 & \text{if } s \in S^{\text{yes}} \\
0 & \text{if } s \in S^{\text{no}} \\
0 & \text{if } s \in S^? \text{ and } n = 0 \\
\min_{(a, \mu) \in \text{Steps}(s)} \left(\sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \right) & \text{if } s \in S^? \text{ and } n > 0
\end{cases}$$

- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently
 - equivalent to well–known “value iteration” method for MDPs
PCTL until – Example

Compute: $p_{\min}(s_i, F \text{ goal})$

$S^{\text{yes}} = \{x_2\}$, $S^{\text{no}} = \{x_3\}$, $S^? = \{x_0, x_1\}$

$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$

$n=0$: $[0, 0, 1, 0]$

$n=1$: $[\min(0, 0.25 \cdot 0 + 0.5),$

$0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0]$

$= [0, 0.4, 1, 0]$

$n=2$: $[\min(0.4, 0.25 \cdot 0 + 0.5),$

$0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0]$

$= [0.4, 0.6, 1, 0]$

$n=3$: $...$
PCTL until – Example

\[
\begin{align*}
\text{n=0:} & \quad [0.000000, 0.000000, 1, 0] \\
\text{n=1:} & \quad [0.000000, 0.400000, 1, 0] \\
\text{n=2:} & \quad [0.400000, 0.600000, 1, 0] \\
\text{n=3:} & \quad [0.600000, 0.740000, 1, 0] \\
\text{n=4:} & \quad [0.650000, 0.830000, 1, 0] \\
\text{n=5:} & \quad [0.662500, 0.880000, 1, 0] \\
\text{n=6:} & \quad [0.665625, 0.906250, 1, 0] \\
\text{n=7:} & \quad [0.666406, 0.919688, 1, 0] \\
\text{n=8:} & \quad [0.666602, 0.926484, 1, 0] \\
\text{n=9:} & \quad [0.666650, 0.929902, 1, 0] \\
\cdots & \quad \text{...} \\
\text{n=20:} & \quad [0.666667, 0.933332, 1, 0] \\
\text{n=21:} & \quad [0.666667, 0.933332, 1, 0] \\
\end{align*}
\]

\[
\approx [2/3, 14/15, 1, 0]
\]
PCTL until – Example

![Graph showing PCTL until Example](image)

<table>
<thead>
<tr>
<th>n</th>
<th>[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=0</td>
<td>[0.000000, 0.000000, 1, 0]</td>
</tr>
<tr>
<td>n=1</td>
<td>[0.000000, 0.400000, 1, 0]</td>
</tr>
<tr>
<td>n=2</td>
<td>[0.400000, 0.600000, 1, 0]</td>
</tr>
<tr>
<td>n=3</td>
<td>[0.600000, 0.740000, 1, 0]</td>
</tr>
<tr>
<td>n=4</td>
<td>[0.650000, 0.830000, 1, 0]</td>
</tr>
<tr>
<td>n=5</td>
<td>[0.662500, 0.880000, 1, 0]</td>
</tr>
<tr>
<td>n=6</td>
<td>[0.665625, 0.906250, 1, 0]</td>
</tr>
<tr>
<td>n=7</td>
<td>[0.666406, 0.919688, 1, 0]</td>
</tr>
<tr>
<td>n=8</td>
<td>[0.666602, 0.926484, 1, 0]</td>
</tr>
<tr>
<td>n=9</td>
<td>[0.666650, 0.929902, 1, 0]</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n=20</td>
<td>[0.666667, 0.933332, 1, 0]</td>
</tr>
<tr>
<td>n=21</td>
<td>[0.666667, 0.933332, 1, 0]</td>
</tr>
</tbody>
</table>

\[\approx [2/3, 14/15, 1, 0]\]
Costs and rewards

- Can use costs and rewards in similar fashion to DTMCs:

- Augment MDPs with rewards (or costs)
 - (but often assign to states/actions, not states/transitions)

- Extend logic PCTL with R operator
 - semantics extended in same way as P operator
 - e.g. \(s \models R_{\sim r} [F \phi] \iff \text{Exp}^A(s, X_{F\phi}) \sim r \) for all adversaries \(A \)
 - quantitative properties: \(R_{\min} \subseteq \cdots \) and \(R_{\max} \subseteq \cdots \)

- Examples:
 - “the minimum expected queue size after exactly 90 seconds”
 - “the maximum expected power consumption over one hour”
 - the maximum expected time for the algorithm to terminate
Model checking MDP reward formulas

• **Instantaneous:** $R_{\sim r} [I=k]$
 – similar to the computation of bounded until probabilities
 – solution of **recursive equations**

• **Cumulative:** $R_{\sim r} [C\leq k]$
 – extension of bounded until computation
 – solution of **recursive equations**

• **Reachability:** $R_{\sim r} [F \phi]$
 – similar to the case for P operator and until
 – graph–based precomputation (identify ∞–reward states)
 – then **linear optimization problem** (or iterative solution)
MDP model checking – Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 – recursive descent of parse tree
 – combination of graph algorithms, numerical computation
 – complexity is linear in |Φ| and polynomial in |S|
 – S is states in MDP, assume |Steps(s)| is constant

• Probabilistic operator P:
 – X Φ: one matrix–vector multiplication, \(O(|S|^2) \)
 – \(\Phi_1 \cup^k \Phi_2 \): k matrix–vector multiplications, \(O(k|S|^2) \)
 – \(\Phi_1 \cup \Phi_2 \): linear optimisation problem, polynomial in |S|

• Expected reward operator R
 – I=^k: k matrix–vector multiplications, \(O(k|S|^2) \)
 – C\leq^k: k iterations of matrix–vector multiplication + summation
 – F Φ: linear optimisation problem in at most |S| variables
Summary

• Probabilistic model checking
 – automated quantitative verification of stochastic systems
 – to model randomisation, failures, ...

• Probabilistic models
 – discrete-time Markov chains (DTMCs)
 – Markov decision processes (MDPs)

• Property specifications:
 – probabilistic extensions of temporal logic, e.g. PCTL
 – expected value of costs/rewards

• Model checking algorithms
 – combination of graph-based algorithms, numerical
 computation (linear equations, linear optimisation, …)

• Tool support, case studies
 – PRISM, randomised contract signing algorithm
Further information

• **Slides from full lecture course at:**
 – www.prismmodelchecker.org/lectures/
 – DTMCs/MDPs/CTMCs/PTAs
 – case studies, implementation, advanced topics

• **See also the PRISM web site:**
 – www.prismmodelchecker.org
 – related publications
 – case study repository
 – tool download, tutorial, manual
 – and much more...