Automated Verification of Probabilistic Real-time Systems

Dave Parker

University of Birmingham

MOVEP'14 Summer School, Nantes, July 2014
Overview

• Probabilistic model checking
 – example: FireWire protocol
• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification
• Verification techniques for PTAs
 – region graphs + digital clocks + zone-based methods
 – abstraction-refinement
• Tool support: PRISM
• Verification vs. controller synthesis
 – example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
High-level model/design

System requirements

Specification (temporal logic)

System

module A
a : [0..N] init N;
ab : [0..N] init 0;
[r_1] a>0 → k_1*a : (a'=a-1)&(ab'=ab+1);
[r_2] ab>0 → k_2*ab : (a'=a+1)&(ab'=ab-1);
[r_3] a>0 → k_3*a : (a'=a-1);

P<0.1 [F fail]

Probabilistic model checking

0.1
0.4
0.5

Low-level model (states, transitions)

Verification results

Numerical results

Probabilistic model checker

System

Probabilistic model checking
Reminder: Why probability?

• Many real-world systems are inherently probabilistic…

• Unreliable or unpredictable behaviour
 – failures of physical components
 – message loss in wireless communication

• Use of randomisation (e.g. to break symmetry)
 – random back-off in communication protocols
 – in gossip routing to reduce flooding
 – in security protocols, e.g. for anonymity

• And many others…
 – biological processes, e.g. DNA computation
 – quantum computing algorithms
Probabilistic real-time systems

- Systems with probability, nondeterminism and real-time
 - e.g. wireless communication protocols
 - e.g. randomised security protocols

- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)

- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire

- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)

- Random choice of a destination
 - Crowds anonymity, gossip-based routing
Probabilistic models

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic automata (PAs)</td>
</tr>
<tr>
<td></td>
<td>Probabilistic timed automata (PTAs)</td>
<td>Interactive Markov chains (IMCs), …</td>
</tr>
</tbody>
</table>
Verifying probabilistic systems

- **Quantitative notions of correctness**
 - “the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001”
 - in temporal logic: \(P_{\leq 0.001} [G_{\leq 0.02} ! \text{deploy}] \)

- **Not just correctness**
 - reliability, dependability, performance, resource usage (e.g. battery life), security, privacy, trust, anonymity, ...

- **Usually focus on numerical properties:**
 - e.g.: \(P_{=} [G_{\leq 0.02} ! \text{deploy}] \)
 - or \(P_{=} [G_{\leq T} ! \text{deploy}] \) for varying \(T \)

- **Combine numerical + exhaustive aspects**
 - i.e. worst–case (or best–case) probabilities
 - e.g.: \(P_{\max=} [G_{\leq 0.02} ! \text{deploy}] \)
Overview

• Probabilistic model checking
 – example: FireWire protocol
• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification
• Verification techniques for PTAs
 – region graphs + digital clocks + zone–based methods
 – abstraction–refinement
• Tool support: PRISM
• Verification vs. controller synthesis
 – example: task–graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, …
Case study: FireWire protocol

• **FireWire (IEEE 1394)**
 – high-performance serial bus for networking multimedia devices; originally by Apple
 – "hot-pluggable" – add/remove devices at any time
 – no requirement for a single PC (but need acyclic topology)

• **Root contention protocol**
 – leader election algorithm, when nodes join/leave
 – symmetric, distributed protocol
 – uses **randomisation** (electronic coin tossing) and **timing** delays
 – nodes send messages: "be my parent"
 – root contention: when nodes contend leadership
 – random choice: "fast"/"slow" delay before retry
FireWire leader election

Root node
FireWire root contention
FireWire root contention
FireWire analysis

- **Detailed probabilistic model:**
 - probabilistic timed automaton (PTA), including:
 - concurrency: messages between nodes and wires
 - timing delays taken from official standard
 - underspecification of delays (upper/lower bounds)
 - maximum model size: 170 million states

- **Probabilistic model checking (with PRISM)**
 - verified that root contention always resolved with probability 1
 - $P_{\geq 1} [F (\text{end} \land \text{elected})]$
 - investigated worst-case expected time taken for protocol to complete
 - $R_{\text{max}} = ? [F (\text{end} \land \text{elected})]$
 - investigated the effect of using biased coin
FireWire: Analysis results

"minimum probability of electing a leader by time T"
FireWire: Analysis results

“minimum probability of electing leader by time T”

(short wire length)

Using a biased coin
FireWire: Analysis results

"maximum expected time to elect a leader"

(短的线长)

Using a biased coin
FireWire: Analysis results

“maximum expected time to elect a leader”

(short wire length)

Using a biased coin is beneficial!
Overview

• Probabilistic model checking
 – example: FireWire protocol

• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification

• Verification techniques for PTAs
 – region graphs + digital clocks + zone-based methods
 – abstraction-refinement

• Tool support: PRISM

• Verification vs. controller synthesis
 – example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
Probabilistic Models

<table>
<thead>
<tr>
<th>Discrete Time</th>
<th>Continuous Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully probabilistic</td>
<td>Nondeterministic</td>
</tr>
<tr>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic automata (PAs)</td>
</tr>
</tbody>
</table>

- Probabilistic timed automata (PTAs)
- Interactive Markov chains (IMCs), …
Recap: DTMCs

- **Discrete-time Markov chains (DTMCs)**
 - state-transition systems augmented with probabilities

- **Model checking, e.g. with PCTL**
 - based on probability measure over paths
 - e.g. $P_{<0.15}[F \text{ lost}]$ – maximum probability of loss is < 0.15
Recap: MDPs

- **Markov decision processes (MDPs)** (or probabilistic automata)
 - mix probability and nondeterminism
 - states: nondeterministic choice over actions
 - each action leads to a probability distributions over successor states

- **Adversaries (schedulers, policies, …)**
 - resolve nondeterministic choices based on history so far
 - properties quantify over all possible adversaries
 - e.g. $P_{<0.15}[F\text{ lost}]$ – maximum probability of loss is < 0.15
Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour

- PTAs comprise:
 - clocks (increase simultaneously)
 - locations (labelled with invariants)
 - transitions (action + guard + probabilities + resets)

- Semantics
 - PTA represents an infinite-state MDP
 - states are location/clock valuation pairs \((l,v) \in \text{Loc} \times \mathbb{R}^X\)
 - nondeterminism: choice of actions + elapse of time
Time, clocks and clock valuations

- **Dense (continuous) time domain**: non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}

- **Finite set of clocks** $x \in X$
 - variables taking values from time domain \mathbb{R}
 - increase at the same rate as real time

- **A clock valuation is a tuple** $v \in \mathbb{R}^X$. Some notation:
 - $v(x)$: value of clock x in v
 - $v + t$: time increment of t for v
 - $v[Y:=0]$: clock reset of clocks $Y \subseteq X$ in v
Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted Zones(X):

$$\zeta ::= x \leq d \mid c \leq x \mid x+c \leq y+d \mid \neg \zeta \mid \zeta \lor \zeta$$

 - where $x, y \in X$ and $c, d \in \mathbb{N}$
 - e.g.: $x \leq 2$, $x \leq y$, $(x \geq 2) \land (x < 3) \land (x \leq y)$

- Can derive:
 - logical connectives, e.g. $\zeta_1 \land \zeta_2 \equiv \neg(\neg \zeta_1 \lor \neg \zeta_2)$
 - strict inequalities, through negation, e.g. $x > 5 \equiv \neg(x \leq 5)$…

- Used for both:
 - syntax of PTAs/properties
 - algorithms/implementations for model checking
Zones and clock valuations

• A clock valuation \(v \) satisfies a zone \(\zeta \), written \(v \triangleright \zeta \) if
 – \(\zeta \) resolves to true after substituting each clock \(x \) with \(v(x) \)

• The semantics of a zone \(\zeta \in \text{Zones}(X) \) is the set of clock valuations which satisfy it (i.e. a subset of \(\mathbb{R}^X \))
 – NB: multiple zones may have the same semantics
 – e.g. \((x \leq 2) \land (y \leq 1) \land (x \leq y+2)\) and \((x \leq 2) \land (y \leq 1) \land (x \leq y+3)\)
 – but we assume canonical ("tight") zones
 – allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

• Some useful classes of zones:
 – closed: no strict inequalities (e.g. \(x > 5 \))
 – diagonal-free: no comparisons between clocks (e.g. \(x \leq y \))
 – convex: define a convex set, efficient to manipulate
c-equivalence and c-closure

- Clock valuations \(v \) and \(v' \) are \textit{c-equivalent} if for any \(x, y \in X \)
 - either \(v(x) = v'(x) \), or \(v(x) > c \) and \(v'(x) > c \)
 - either \(v(x) - v(y) = v'(x) - v'(y) \) or \(v(x) - v(y) > c \) and \(v'(x) - v'(y) > c \)

- The \textit{c-closure} of the zone \(\zeta \), denoted \(\text{close}(\zeta, c) \), equals
 - the greatest zone \(\zeta' \supseteq \zeta \) such that, for any \(v' \in \zeta' \),
 there exists \(v \in \zeta \) and \(v \) and \(v' \) are c-equivalent
 - c-closure ignores all constraints which are greater than \(c \)
 - for a given \(c \), there are only a \textit{finite number of c-closed zones}
Operations on zones

- Operations on zones:
 - Set-theoretic operations
 - $\zeta_1 \cap \zeta_2$
 - $\zeta_1 \cup \zeta_2$
 - $\zeta_1 \setminus \zeta_2$
 - Time operations
 - ζ
 - $\zeta_1 \zeta_2$
 - $\zeta_2 [y:=0]$
 - $\text{close}(\zeta_1, c)$
A probabilistic timed automata (PTA) is:
- a tuple \((\text{Loc}, \text{l}_{\text{init}}, \text{Act}, \text{X}, \text{inv}, \text{prob}, \text{L})\)

where:
- \text{Loc} is a finite set of locations
- \text{l}_{\text{init}} \in \text{Loc} is the initial location
- \text{Act} is a finite set of actions
- \text{X} is a finite set of clocks
- \text{inv} : \text{Loc} \rightarrow \text{Zones(X)} is the invariant condition
- \text{prob} \subseteq \text{Loc} \times \text{Zones(X)} \times \text{Dist(\text{Loc} \times 2^\text{X})} is the probabilistic edge relation
- \text{L} : \text{Loc} \rightarrow 2^{\text{AP}} is a labelling function
Probabilistic edge relation

- **Probabilistic edge relation**
 - \(\text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Act} \times \text{Dist}(\text{Loc}\times 2^{X}) \)

- **Probabilistic edge** \((l,g,a,p) \in \text{prob}\)
 - \(l\) is the **source location**
 - \(g\) is the **guard**
 - \(a\) is the **action**
 - \(p\) target **distribution**

- **Edge** \((l,g,a,p,l',Y)\)
 - from probabilistic edge \((l,g,a,p)\) where \(p(l',Y) > 0\)
 - \(l'\) is the **target location**
 - \(Y\) is the set of **clocks to be reset** (to zero)
Models a simple probabilistic communication protocol

- starts in location **init**; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location **done**
 - with probability 0.1 data is lost, move to location **lost**
- in location **lost**, after 2 to 3 time units, attempts to resend
 - correctly sent with probability 0.95 and lost with probability 0.05
PTAs – Behaviour

• A state of a PTA is a pair \((l, v) \in \text{Loc} \times \mathbb{R}^x\) such that \(v \triangleright inv(l)\)

• Start in the initial location with all clocks set to zero
 – i.e. initial state is \((l_{\text{init}}, 0)\)

• For any state \((l, v)\), there is nondeterministic choice between making a discrete transition and letting time pass
 – discrete transition \((l, g, a, p)\) enabled if \(v \triangleright g\) and probability of moving to location \(l'\) and resetting the clocks \(Y\) equals \(p(l', Y)\)
 – time transition available only if invariant \(inv(l)\) is continuously satisfied while time elapses
PTA – Example execution:

PTA:

Example execution:

(init, x=0)

1.1

(init, x=1.1)

0.9

0.1

send

x ≥ 2

0.95

retry

x ≤ 2

x := 0

0.1

x := 0

0.05

x := 0

x ≥ 1

true

done

0.

x := 0

lost

8.66

x := 0

(done, x=0) (lost, x=0)

2.7

(done, x=8.66) (lost, x=2.7)

0.95

retry

0.05

(done, x=0) (lost, x=0)

...
PTAs – Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, \alpha_P, \delta_P, L_P)$ with:

 - States: $S_P = \{ (l,v) \in \text{Loc} \times \mathbb{R}^X \text{ such that } v \triangleright \text{inv}(l) \}$
 - Initial state: $s_{init} = (l_{init}, 0)$

- Actions: $\alpha_P = \text{Act} \cup \mathbb{R}$

- $\delta_P \subseteq S_P \times \alpha_P \times \text{Dist}(S_P)$ such that $(s, a, \mu) \in \delta_P$ iff:
 - (time transition) $a \in \mathbb{R}$, $\mu(l,v+t)=1$ and $v+t' \triangleright \text{inv}(l)$ for all $t' \leq t$
 - (discrete transition) $a \in \text{Act}$ and there exists $(l,g,a,p) \in \text{prob}$ such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l', v') = \sum_{Y \subseteq X \land v[\text{Y}:=0]=v'} p(l', Y)$

- Labelling: $L_P(l,v) = L(l)$

actions of MDP M_P are the actions of PTA P or real time delays
multiple resets may give same clock valuation
Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/
 - slides, tutorial papers, reference list, ...
Properties of PTAs – PTCTL

- **PTCTL**: Probabilistic timed computation tree logic [KNSS02]
 - derived from **PCTL** [BdA95] and **TCTL** [AD94]

- **Syntax**:
 \[\phi ::= \text{true} \mid a \mid \zeta \mid z. \phi \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\phi \cup \phi] \]

 - Where:
 - \(Z \) is a set of formula clocks, \(\zeta \in \text{Zones}(X \cup Z), z \in Z \),
 - \(a \) is an atomic proposition, \(p \in [0,1] \) and \(\sim \in \{<,>,\leq,\geq\} \)

- **Usual equivalences**
 - e.g. \(F \phi \equiv \text{true} \cup \phi \) and \(G \phi \equiv \neg F(\neg \phi) \)
PTCTL – Examples

• $z \cdot \mathbb{P}_{>0.99} [F \text{ delivered } \land (z < 5)]$
 – “with probability greater than 0.99, the system delivers the packet within 5 time units”

• $z \cdot \mathbb{P}_{>0.95} [(x \leq 3) \lor (z = 8)]$
 – “with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse”

• $z \cdot \mathbb{P}_{\leq0.1} [G (\text{failure} \lor (z \leq 60))]$
 – “the system fails after the first 60 time units have elapsed with probability at most 0.01”
Properties of PTAs (PRISM)

- PRISM property specification for PTAs [NPS13]
 - PCTL + zones + time bounds + expected rewards

- Syntax:
 - $\phi ::= \text{true} \mid a \mid \zeta \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p}[\psi] \mid R_{\sim q}^r[\rho]
 - $\psi ::= \phi U^{\leq k} \phi \mid \phi U \phi$
 - $\rho ::= l=^k \mid C^{\leq k} \mid F \phi$

- Expected reward (costs/prices)
 - at time k ($l=^k$)
 - cumulated up to time k ($C^{\leq k}$)
 - cumulated until a ϕ–state is reached ($F \phi$)

- Reward structures
 - location rewards (rate accumulated) + transition rewards

- Also: numerical variants: $P_{\max=?}$, $R^r_{\min=?}$, etc.
Examples

- $P_{\geq 0.8} [F^{\leq k} \text{ack}_n]$ – “the probability that the sender has received n acknowledgements within time k is at least 0.8”

- $\text{trigger } \rightarrow P_{<0.0001} [G^{\leq 20} \neg \text{deploy}]$ – “the probability of the airbag failing to deploy within 20 milliseconds of being triggered is strictly less than 0.0001”

- $P_{\text{max}}=? \neg \text{sent U fail}$ – “what is the maximum probability of a failure occurring before message transmission is complete?”

- $R_{\text{time max}}=? [F \text{ end}]$ – “what is the maximum expected time for the protocol to terminate?”

- $R_{\text{pwr}}^{\leq 60} [C] < q$ – “the expected energy consumption during the first 60 seconds is $< q$”

- **Property reductions [NPS13]**
 - verification reduces to probabilistic reachability ($P [F \phi]$) and expected reachability ($R [F \phi]$), e.g. by adding extra clocks
Time divergence

- We restrict our attention to time divergent behaviour
 - a common restriction imposed in real–time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
 - also called non–zeno behaviour

- For a path $\omega=s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2(a_2,\mu_2)\ldots$ in the MDP M_P
 - $D_\omega(n)$ denotes the duration up to state s_n
 - i.e. $D_\omega(n) = \sum \{|a_i| \mid 0 \leq i < n \land a_i \in \mathbb{R}\}$

- A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$:
 - there exists $j \in \mathbb{N}$ such that $D_\omega(j) > t$

- Example of non–divergent path:
 - $s_0(1,\mu_0)s_0(0.5,\mu_0)s_0(0.25,\mu_0)s_0(0.125,\mu_0)s_0\ldots$
Time divergence

- An adversary of M_p is **divergent** if, for each state $s \in S_p$:
 - the probability of divergent paths under A is 1
 - i.e $Pr^A_s\{\omega \in \text{Path}^A(s) \mid \omega \text{ is divergent} \} = 1$

- Motivation for probabilistic definition of divergence:

 - in this PTA, **any** adversary has one non-divergent path:
 - takes the loop in l_0 infinitely often, without 1 time unit passing
 - but the probability of such behaviour is 0
 - a stronger notion of divergence would mean no divergent adversaries exist for this PTA
Overview

• Probabilistic model checking
 – example: FireWire protocol

• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification

• Verification techniques for PTAs
 – region graphs + digital clocks + zone-based methods
 – abstraction-refinement

• Tool support: PRISM

• Verification vs. controller synthesis
 – example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
PTA model checking – Summary

• Several different approaches developed
 – basic idea: reduce to the analysis of a finite-state model
 – in most cases, this is a Markov decision process (MDP)

• Region graph construction [KNSS02]
 – shows decidability, but gives exponential complexity

• Digital clocks approach [KNPS06]
 – (slightly) restricted classes of PTAs
 – works well in practice, still some scalability limitations

• Zone-based approaches:
 – (preferred approach for non-probabilistic timed automata)
 – forwards reachability [KNSS02]
 – backwards reachability [KNSW07]
 – game-based abstraction refinement [KNP09c]
The region graph

- **Region graph construction for PTAs [KNSS02]**
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a **finite** set of **regions**
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula

- **For a PTA P and PTCTL formula \(\phi \)**
 - construct a **time-abstract, finite-state MDP** \(R(\phi) \)
 - translate PTCTL formula \(\phi \) to PCTL formula \(\phi' \)
 - \(\phi \) is preserved by region equivalence
 - i.e. \(\phi \) holds in a state of \(M_P \) if and only if \(\phi' \) holds in the corresponding state of \(R(\phi) \)
 - model check \(R(\phi) \) using standard methods for MDPs
The region graph – Clock equivalence

• **Regions** are sets of clock equivalent clock valuations

• **Some notation:**
 – let c be largest constant appearing in PTA or PTCTL formula
 – let $\lfloor t \rfloor$ denotes the integral part of t
 – t and t' agree on their integral parts if and only if
 (1) $\lfloor t \rfloor = \lfloor t' \rfloor$
 (2) t and t' are both integers or neither is an integer

• **Clock valuations** v and v' are clock equivalent ($v \equiv v'$) if:
 – for all clocks $x \in X$, either:
 • $v(x)$ and $v'(x)$ agree on their integral parts
 • $v(x) > c$ and $v'(x) > c$
 – for all clock pairs $x, y \in X$, either:
 • $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 • $v(x) - v(x') > c$ and $v'(x) - v'(x') > c$
Region graph – Clock equivalence

• Example regions (for 2 clocks \(x \) and \(y \))
• Example regions (for 2 clocks \(x \) and \(y \))

\[
\begin{align*}
&x=0 \land y=1 \\
&x=y \land 0<x<1 \\
&x<y \land 1<x<2 \land 1<y<2 \\
&y=0 \land 1<x<2
\end{align*}
\]
• Fundamental result: if $v \equiv v'$, then $v \triangleright \zeta \iff v' \triangleright \zeta$
 – it follows that $r \triangleright \zeta$ is well defined for a region r

• All regions (for 2 clocks x and y), max constant $c=2$:
Region graph – Clock equivalence

• r' is the (time) successor region of r, written $\text{succ}(r) = r$, if
 – for each $v \in r$, there exists $t > 0$ such that:
 – $v + t \in r'$ and $v + t' \in r \cup r'$ for all $t' < t$

• Examples (region and successor):

• Region graph: MDP over states (l, r) for location l, region r
The region graph

- The region graph MDP is \((S_R, s_{\text{init}}, \text{Steps}_R, L_R)\) where...

 - the set of states \(S_R\) comprises pairs \((l, r)\) such that \(l\) is a location and \(r\) is a region over \(X \cup Z\)
 - the initial state is \((l_{\text{init}}, 0)\)
 - the set of actions is \(\{\text{succ}\} \cup \text{Act}\)
 - \(\text{succ}\) is a unique action denoting passage of time
 - the probabilistic transition function \(\text{Steps}_R\) is defined as:
 - \(S_R \times 2^{\{\text{succ}\} \cup \text{Act} \times \text{Dist}(S_R)}\)
 - \((\text{succ}, \mu) \in \text{Steps}_R(l, r)\) iff \(\mu(l, \text{succ}(r)) = 1\)
 - \((a, \mu) \in \text{Steps}_R(l, r)\) if and only if \(\exists (l, g, a, p) \in \text{prob}\) such that
 \[
 \sum_{Y \subseteq X \wedge r[Y:=0]=r'} p(l', Y) = \mu(l', r')
 \]
 - the labelling is given by: \(L_R(l, r) = L(l)\)
Region graph – Example

PTA:

```
PTCTL formula: z.P_{\leq 0.1} [ F (done \land z<2) ]
```

Region graph (fragment):

```
(init,x=z=0) \xrightarrow{\text{succ}} (init,0<x=z<1) \xrightarrow{\text{succ}} (init,x=z=1) \xrightarrow{\text{succ}} (init,1<x=z<2)
```

```
0.9 \xrightarrow{\text{send}} (done,x=0 \land z=1)
```

```
0.1 \xrightarrow{\text{send}} (lost,x=0 \land z=1)
```
Region graph construction

- Region graph
 - useful for establishing **decidability** of model checking
 - or proving **complexity** results for model checking algorithms

- **But…**
 - the number of regions is **exponential** in the number of clocks and the size of largest constant
 - so model checking based on this is extremely expensive
 - and so not implemented (even for timed automata)

- Improved approaches based on:
 - digital clocks
 - zones (unions of regions)
Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/
- slides, tutorial papers, reference list, ...
Digital clocks

• Simple idea: Clocks can only take integer (digital) values
 – i.e. time domain is \mathbb{N} as opposed to \mathbb{R}
 – based on notion of ε-digitisation [HMP92]

• Only applies to a restricted class of PTAs; zones must be:
 – closed – no strict inequalities (e.g. $x > 5$)
 – diagonal-free: no comparisons between clocks (e.g. $x \leq y$)

• Digital clocks semantics yields a finite–state MDP
 – state space is a subset of $\text{Loc} \times \mathbb{N}^X$, rather than $\text{Loc} \times \mathbb{R}^X$
 – clocks bounded by c_{max} (max constant in PTA and formula)
 – then use standard techniques for finite–state MDPs
Example – Digital clocks

MDP: (digital clocks)

\[\begin{align*}
\text{(init, } x = z = 0) & \quad \xrightarrow{0.9} \quad (\text{init, } x = z = 1) & \quad \xrightarrow{0.1} \quad (\text{init, } x = z = 2) \\
\text{(done, } x = 0 \land z = 1) & \quad \xrightarrow{} \quad (\text{lost, } x = 0 \land z = 1) & \quad \xrightarrow{} \quad (\text{done, } x = 0 \land z = 2) \\
\text{(lost, } x = 1 \land z = 2) & \quad \xrightarrow{} \quad (\text{lost, } x = 2 \land z = 3) & \quad \xrightarrow{0.95} \quad (\text{done, } x = 0 \land z = 3) & \quad \xrightarrow{0.05} \quad (\text{lost, } x = 0 \land z = 3)
\end{align*}\]

PTA:

\[\begin{align*}
\text{init} & \quad x \leq 2 \\
\text{send} & \quad x \geq 1 \\
\text{true} & \quad x : = 0 & \quad 0.9 \\
\text{retry} & \quad x \geq 2 & \quad 0.95 \\
\text{lost} & \quad x \leq 3 & \quad x : = 0 & \quad 0.1 \\
\end{align*}\]
Digital clocks

- **Digital clocks approach preserves:**
 - minimum/maximum reachability probabilities
 - a *subset of PTCTL* properties
 - (no nesting, only closed zones in formulae)
 - only works for the initial state of the PTA
 - (but can be extended to any state with integer clock values)
 - also: *expected rewards* (priced PTAs)

- **In practice:**
 - translation from PTA to MDP can often be done manually
 - (by encoding the PTA directly into the PRISM language)
 - automated translations exist: mcptap and PRISM
 - many case studies, despite “closed” restriction
 - potential problem: can lead to very large MDPs
 - alleviated partially by efficient symbolic model checking
Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.\text{P}_{<1} [F (a \land z \leq 1)]$
 - a is an atomic proposition only true in location l_1
- Digital semantics:
 - no state satisfies ϕ since for any state we have
 $\text{Prob}^A(s, \epsilon[z:=0], \text{true U (a}\land z \leq 1)) = 1$ for some adversary A
 - hence $\text{P}_{<1} [\text{true U } \phi]$ is trivially true in all states
Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.P_{<1} [\ F (a \land z \leq 1)\]$
 - a is an atomic proposition only true in location l_1
- Dense time semantics:
 - any state (l_0, v) where $v(x) \in (1,2)$ satisfies ϕ
 - more than one time unit must pass before we can reach l_1
 - hence $P_{<1} [\ true \ U \phi]$ is not true in the initial state
Overview

• Probabilistic model checking
 – example: FireWire protocol
• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification
• Verification techniques for PTAs
 – region graphs + digital clocks + zone-based methods
 – abstraction-refinement
• Tool support: PRISM
• Verification vs. controller synthesis
 – example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
Zone-based approaches

• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing
 – $\text{post}(S')$ the states that can be reached from a state in S' in a single step
 – $\text{pre}(S')$ the states that can reach S' in a single step

• Extend these operators to include time passage
 – $d\text{post}[e](S')$ the states that can be reached from a state in S' by traversing the edge e
 – $t\text{post}(S')$ the states that can be reached from a state in S' by letting time elapse
 – $d\text{pre}[e](S')$ the states that can reach S' by traversing the edge e
 – $t\text{pre}(S')$ the states that can reach S' by letting time elapse
Zone-based approaches

- **Symbolic states** \((l, \zeta)\) where
 - \(l \in \text{Loc} \) (location)
 - \(\zeta\) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

- \(\text{tpost}(l, \zeta) = (l, \zeta \wedge \text{inv}(l))\)
 - \(\zeta\) can be reached from \(\zeta\) by letting time pass
 - \(\zeta \wedge \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)

- \(\text{tpre}(l, \zeta) = (l, \zeta \wedge \text{inv}(l))\)
 - \(\zeta\) can reach \(\zeta\) by letting time pass
 - \(\zeta \wedge \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)
Zone-based approaches

• For an edge $e = (l, g, a, p, l', Y)$ where
 – l is the source
 – g is the guard
 – a is the action
 – l' is the target
 – Y is the clock reset

• $\text{dpost}[e](l, \zeta) = (l', (\zeta \land g)[Y:=0])$
 – $(\zeta \land g)$ satisfy the guard of the edge
 – $(\zeta \land g)[Y:=0]$ reset the clocks Y

• $\text{dpre}[e](l', \zeta') = (l, [Y:=0]\zeta' \land (g \land \text{inv}(l)))$
 – $[Y:=0]\zeta'$ the clocks Y were reset
 – $[Y:=0]\zeta' \land (g \land \text{inv}(l))$ satisfied guard and invariant of l
Forwards reachability

- Based on the operation \(\text{post}[e](l, \zeta) = tpost(dpost[e](l, \zeta)) \)

 \((l', v') \in \text{post}[e](l, \zeta) \) if there exists \((l, v) \in (l, \zeta) \) such that after traversing edge \(e \) and letting time pass one can reach \((l', v') \)

- Forwards algorithm (part 1)

 - start with initial state \(S_F = \{ tpost((l_{init}, 0)) \} \) then iterate
 - for each symbolic state \((l, \zeta) \in S_F \) and edge \(e \)
 - add \(\text{post}[e](l, \zeta) \) to \(S_F \)

 - until set of symbolic states \(S_F \) does not change

- To ensure termination need to take \(c \)-closure of each zone encountered (\(c \) is the largest constant in the PTA)
Forwards reachability

- **Forwards algorithm (part 2)**
 - construct finite state MDP \((S_F, (l_{init}, 0), \text{Steps}_F, L_F)\)
 - states \(S_F\) (returned from first part of the algorithm)
 - \(L_F(l, \zeta) = L(l)\) for all \((l, \zeta) \in S_F\)
 - \(\mu \in \text{Steps}_F(l, \zeta)\) if and only if there exists a probabilistic edge \((l, g, a, p)\) of PTA such that for any \((l', \zeta') \in Z:\)
 \[
 \mu(l', \zeta') = \sum \{ \mathcal{P}(l', X) \mid (l, g, \sigma, p, l', X) \in \text{edges}(p) \land \text{post}[e](l, \zeta) = (l', \zeta') \}
 \]
 summation over all the edges of \((l, g, a, p)\) such that applying \textbf{post} to \((l, \zeta)\) leads to the symbolic state \((l', \zeta')\)
Forwards reachability – Example

PTA:

\[x = 0 \land y = 1 \]

\[x = 0 \land y = 0 \]

\[y := 0 \]

\[x := 0 \]

MDP:

\[(l_1, x \leq y) \]

\[(l_2, x = y) \]

\[(l_3, x = y) \]

\(0.5 \)

\(0.5 \)

\(0.5 \)

\(0.5 \)
Forwards reachability – Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities
 – caused by when edges are combined

• Suppose \(\text{post}[e_1](l,\zeta) = (l_1,\zeta_1) \) and \(\text{post}[e_2](l,\zeta) = (l_2, \zeta_2) \)
 – where \(e_1 \) and \(e_2 \) from the same probabilistic edge

• By definition of \(\text{post} \)
 – there exists \((l,v_i) \in (l,\zeta) \) such that a state in \((l_i, \zeta_i) \) can be reached by traversing the edge \(e_i \) and letting time pass

• Problem
 – we combine these transitions but are \((l,v_1) \) and \((l,v_2) \) the same?
 – may not exist states in \((l,\zeta) \) for which both edges are enabled
Forwards reachability – Example

- Maximum probability of reaching l_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when $x=1$
 - for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
 - can reach l_3 via either branch from $(l_0, x=y)$
Backwards reachability

- **An alternative zone-based method:** backwards reachability
 - state-space exploration in opposite direction, from target to initial states; uses **pre** rather than **post** operator

- **Basic ideas:** (see [KNSW07] for details)
 - construct a finite-state MDP comprising symbolic states
 - need to keep track of branching structure and take conjunctions of symbolic states if necessary
 - MDP yields maximum reachability probabilities for PTA
 - for min. probs, do graph-based analysis and convert to max.

- **Advantages:**
 - gives (exact) minimum/maximum reachability probabilities
 - extends to full PTCTL model checking

- **Disadvantage:**
 - operations to implement are expensive, limits applicability
 - (requires manipulation of non-convex zones)
Overview

• Probabilistic model checking
 – example: FireWire protocol
• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification
• Verification techniques for PTAs
 – region graphs + digital clocks + zone-based methods
 – abstraction-refinement
• Tool support: PRISM
• Verification vs. controller synthesis
 – example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
Abstraction

• **Very successful in (non–probabilistic) formal methods**
 – essential for verification of large/infinite–state systems
 – hide details irrelevant to the property of interest
 – yields smaller/finite model which is easier/feasible to verify
 – loss of precision: verification can return “don’t know”

• **Construct abstract model of a concrete system**
 – e.g. based on a partition of the concrete state space
 – an abstract state represents a set of concrete states

• **Automatic generation of abstractions using refinement**
 – start with a simple coarse abstraction; iteratively refine
Abstraction of MDPs

- Abstraction increases degree of nondeterminism [DDJL01]
 - i.e. minimum probabilities are lower and maximums higher

\[
\begin{array}{c|c|c}
0 & p_s^{\text{min}} & p_s^{\text{max}} \\
\hline
0 & 0.1 & 0.8 \\
1 & 1 & 1
\end{array}
\]

- We build abstractions of MDPs as stochastic games [KNP06b]

\[
\begin{array}{c|c|c}
0 & p_s^{\text{min}} & p_s^{\text{max}} \\
\hline
0 & 0.1 & 0.8 \\
1 & 1 & 1
\end{array}
\]

- yields lower/upper bounds for min/max probabilities
• **Consider (max) difference between lower/upper bounds**
 – gives a **quantitative measure** of the abstraction’s **precision**

![Diagram showing the difference between lower and upper bounds](image)

0 \(p_s^{\text{min}(F)} \) \(p_s^{\text{max}(F)} \) 1

• **If the difference (“error”) is too great, refine the abstraction**
 – a finer partition yields a more precise abstraction
 – lower/upper bounds can tell us **where** to refine (which states)
 – (memoryless) strategies can tell us **how** to refine
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

- Refinements yield strictly finer partition

- Guaranteed to converge for finite models

- Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement: Applications

• Examples (MDPs):

 IJ90 self stabilisation alg.
 (1,048,575 states abstracted to 627)

 Zeroconf protocol
 (838,905 states abstracted to 881)

• Applications

 – probabilistic software (C + probabilities) [qprover] [KKNP10]
 – concurrent probabilistic programs [PASS] [HHWZ10b]
 – probabilistic timed automata (exact) [PRISM] [KNP09c]
Abstraction refinement for PTAs

- Model checking for PTAs using abstraction refinement

Initial abstraction from forwards reachability

Initial partition

abstract

Abstraction

Bounds and strategies

New partition

[error $\geq \varepsilon$

refine

Return bounds

Splitting of zones (DBMs)

Abstraction computed and stored using zones (DBMs)

[error $< \varepsilon$

Guaranteed convergence for any $\varepsilon \geq 0$
Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
 - minimum or maximum, exact values (“error” $\epsilon=0$)
 - also time-bounded reachability, with extra clock

- In practice, performs very well
 - implemented in PRISM (using DBMs)
 - faster than digital clocks or backwards on large example set
 - (sometimes by several orders of magnitude)
 - handles larger PTAs than the digital clocks approach
Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- **Tool support: PRISM**
- Verification vs. controller synthesis
 - example: task-graph scheduling

- See: www.prismmodelchecker.org/lectures/movep14/
 - slides, tutorial papers, reference list, ...
The PRISM tool

• **PRISM: Probabilistic symbolic model checker**
 – developed at Birmingham/Oxford University, since 1999
 – free, open source (GPL), runs on all major OSs

• **Support for:**
 – models: DTMCs, CTMCs, MDPs, PAs, PTAs
 – (see also PRISM-games: stochastic multi-player games)
 – properties: PCTL, CSL, LTL, PCTL*, costs/rewards, numerical extensions, multi-objective, ...

• **Features:**
 – simple but flexible high-level modelling language
 – user interface: editors, simulator, experiments, graph plotting
 – multiple efficient model checking engines (e.g. symbolic)
 – (mostly symbolic – BDDs; up to 10^{10} states, 10^7–10^8 on avg.)

• **See:** http://www.prismmodelchecker.org/
The PRISM tool
Modelling PTAs in PRISM

- **PTA example**: message transmission over faulty channel

States
- **locations** + **data variables**

Transitions
- **guards** and **action labels**

Real-valued clocks
- **state invariants**, **guards**, **resets**

Probability
- **discrete probabilistic choice**
Modelling PTAs in PRISM

• PRISM modelling language
 – textual language, based on guarded commands

```plaintext
pta
cost int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
    [send] s=0 & tries≤N & x≥1
      → 0.9 : (s’=3)
      + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
    [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
    [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```
Modelling PTAs in PRISM

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N;
module transmitter
  s : [0..3] init 0;
tries : [0..N+1] init 0;
x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
[send] s=0 & tries≤N & x≥1
  → 0.9 : (s'=3)
  + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
do
tries : [0..N+1] init 0;
  x : clock;
invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
[send] s=0 & tries≤N & x≥1 → 0.9 : (s’=3) + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x≥3 → (s’=0) & (x’=0);
[quit] s=0 & tries>N → (s’=2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

For PTAs:
- clocks
- invariants
- guards/resets
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x ≤ 2) & (s=1 ⇒ x ≤ 5) endinvariant
[endsend] s=0 & tries ≤ N & x ≥ 1 → 0.9 : (s’=3)
  + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
[endretry] s=1 & x ≥ 3 → (s’ =0) & (x’ =0);
[endquit] s=0 & tries > N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

For PTAs:
- clocks
- invariants
- guards/resets

Also:
- rewards (i.e. costs, prices)
- parallel composition
PRISM – Case studies

- Randomised communication protocols
 - Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
- Randomised distributed algorithms
 - consensus, leader election, self-stabilisation, ...
- Security protocols/systems
 - pin cracking, anonymity, quantum crypto, non-repudiation, ...
- Planning & controller synthesis
 - robotics, dynamic power management, task-graph scheduling
- Performance & reliability
 - nanotechnology, cloud computing, manufacturing systems, ...
- Biological systems
 - cell signalling pathways, DNA computation, pacemakers, ...

See: www.prismmodelchecker.org/casestudies
Overview

• Probabilistic model checking
 – example: FireWire protocol
• Probabilistic timed automata (PTAs)
 – clocks, zones, syntax, semantics
 – property specification
• Verification techniques for PTAs
 – region graphs + digital clocks + zone–based methods
 – abstraction–refinement
• Tool support: PRISM
• Verification vs. controller synthesis
 – example: task–graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, ...
Verification vs. Controller synthesis

• Verification vs. synthesis
 – verification = check that a (model of) system satisfies a specification of correctness
 – synthesis = build a "correct-by-construction" system directly from a specification of correctness

• Controller synthesis (for MDPs)
 – generate a controller/scheduler (an adversary) that chooses actions such that a correctness specification is satisfied
 – dual problem to verification on MDPs

• For example: $P_{<0.01}[\text{F err}]$
 – verification: “the probability of an error is always < 0.01”
 – controller synthesis: “does there exist a controller (adversary) for which the probability of an error occurring is < 0.01?”
 – or, optimise: “what is the minimum probability of an error?”
Controller synthesis

- Controller synthesis (for MDPs)
 - nondeterminism: actions available to controller
 - probability: uncertainty about environment's behaviour

- For example: robot controller
Controller synthesis: Extensions

• **Multi-objective probabilistic model checking**
 – investigate trade-offs between conflicting objectives
 – e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”
 – e.g. “maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?”
 – e.g. "Pareto curve for maximising probability of transmission and expected battery life-time”

• **Controller synthesis with stochastic games**
 – player 1 = controller (as for MDPs)
 – player 2 = environment ("uncontrollable" actions)

• **Multi-strategies**
 – strategies (adversaries) which can choose between multiple actions at each time step
Controller synthesis – Applications

• Examples of PRISM–based controller synthesis

Synthesis of dynamic power management controllers [FKN+11]

Motion planning for a service robot using LTL [LPH14b]

Synthesis of team formation strategies [CKPS11, FKP12]

Minimise energy consumption, subject to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs

Pareto curve:
x="probability of completing task 1";
y="probability of completing task 2";
z="expected size of successful team"
Example: Task–graph scheduling

- Use probabilistic model checking of PTAs to solve scheduling problems, e.g. for a task–graph
 - task–graph = tasks to complete + dependencies/ordering
 - for ex.: real–time scheduling, embedded systems controllers

- Simple example: [adapted from BFLM11]
 - evaluate expression: \(D \times (C \times (A+B)) + ((A+B) + (C \times D)) \)
 - with subterms evaluated on one of two processors, \(P_1 \) or \(P_2 \)

![Task graph](image)

<table>
<thead>
<tr>
<th></th>
<th>(P_1)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>2 picoseconds</td>
<td>5 picoseconds</td>
</tr>
<tr>
<td>(\times)</td>
<td>3 picoseconds</td>
<td>7 picoseconds</td>
</tr>
<tr>
<td>(idle)</td>
<td>10 Watts</td>
<td>20 Watts</td>
</tr>
<tr>
<td>(active)</td>
<td>90 Watts</td>
<td>30 Watts</td>
</tr>
</tbody>
</table>
Example: Task–graph scheduling

- Task–graph scheduling
 - aim to find optimal (time, energy usage, etc.) schedulers
 - successful application of (non–probabilistic) timed automata
 - PTAs allow us to reason about uncertain delays + failures
 - optimal scheduler derived from optimal adversary

- PTA model
 - parallel composition of 3 PTAs: one scheduler, two processors
 - for example, processor P₁, with local clock x:

Locations also labelled with costs/rewards for time/energy usage
• **Property specification:**
 - $R_{\text{time}}^{\text{min}}$ [F complete] – minimise (expected) time
 - $R_{\text{energy}}^{\text{min}}$ [F complete] – minimise (expected) energy usage

• **Model check with PRISM (digital clocks)**
 - and extract optimal adversary/scheduler

• **Time optimal (12 picoseconds)**

<table>
<thead>
<tr>
<th>time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>task1</td>
<td>task3</td>
<td>task5</td>
<td>task4</td>
<td>task6</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td>task2</td>
<td></td>
</tr>
</tbody>
</table>

• **Energy optimal (1.32 nanojoules)**

<table>
<thead>
<tr>
<th>time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>task1</td>
<td>task3</td>
<td>task4</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>task2</td>
<td>task5</td>
<td>task6</td>
<td></td>
</tr>
</tbody>
</table>

• **No probabilities yet…**
Adding probabilities

• Faulty processors
 – add third processor \(P_3 \): faster, but may fail to execute task

• Probabilistic task execution times
 – simple example: (deterministic) delay of 3 in processor \(P_1 \) replaced by distribution: \(\frac{1}{3}:2, \frac{1}{3}:3, \frac{1}{3}:4 \)
• **Compute optimal (time/energy) schedulers**
 – (using same properties as before)

• **Results (for varying failure rates p of processor P_3):**
 – dotted red line shows original results (no failures)
 – conclusion: better performance for low values of failure probability p; no benefit for higher values

Expected time

Expected energy usage

Results (with faulty processor)
Schedulers (with faulty processor)

- **Example (for p=0.5)**
 - optimal scheduler to minimise energy consumption

- **Optimal scheduler again obtained from adversary**
 - now, behaviour depends on outcome of task execution

| time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|
| P_1 | | | | | task3 | | | | | | | | | | task6 | | | | |
| P_2 | | task2 | task5 | | | | | | | | | | | | | | | | |
| P_3 | task1 | | | | | task4 | | | | | | | | | | | | | |

| time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|
| P_1 | | task1 | task3 | task5 | | | task6 | | | | | | | | | | | | |
| P_2 | | task2 | | task4 | | | | | | | | | | | | | | | |
| P_3 | task1 | | | | | | | | | | | | | | | | | | |

| time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|
| P_1 | task3 | | task4 | task6 | | | | | | | | | | | | | | | |
| P_2 | task2 | | task5 | | | | | | | | | | | | | | | | |
| P_3 | task1 | | task4 | | | | | | | | | | | | | | | | |
Multi-objective properties

- **Multi-objective controller synthesis**
 - (on MDP generated via digital clocks approach)
 - explore trade-off between time/energy usage

- **Properties**
 - e.g. minimise expected time, subject to bound on energy
 - or: Pareto curve for two objectives: time/energy
 - NB: both may generate randomised schedulers

![Graph showing expected time versus expected energy usage](image)
Overview

• **Probabilistic model checking**
 – probabilistic real-time systems

• **Probabilistic timed automata (PTAs)**
 – probability + nondeterminism + (dense) time
 – property specification; PTCTL, PCTL, ...

• **Model checking techniques for PTAs**
 – region graphs + digital clocks
 – zone-based methods + abstraction-refinement
 – tool support: PRISM
 – verification vs. controller synthesis
Thanks for your attention

More info here:
www.prismmodelchecker.org/lectures/movep14/