Verification of probabilistic software

Dave Parker

Oxford University Computing Laboratory

Joint work with:

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman

Queen Mary University, April 2009
Motivation

• Why probability?
 – many systems we want to verify are inherently probabilistic

• Randomisation, e.g. in distributed coordination algorithms
 – random delays/back-off in CSMA/CD, IEEE 802.11, Bluetooth
 – random IP address selection in Zeroconf/Bonjour
 – randomised algorithms for anonymity, contract signing, ...

• Uncertainty, e.g. communication failures/delays
 – prevalence of wireless communication, low-power devices

• Need formal techniques for quantitative guarantees of:
 – safety, reliability, performance, dependability, resource usage,
 security, privacy, trust, anonymity, fairness, ...
Overview

- **Probabilistic model checking**
 - Markov decision processes (MDPs)
 - probabilistic reachability, temporal logics
 - tool support: PRISM

- **Abstraction for MDPs**
 - two-player stochastic games
 - abstraction-refinement loop

- **Verification of probabilistic software**
 - probabilistic verification at the level of source code (e.g. C)
 - game-based abstraction, predicate abstraction, SAT
 - tool chain: (extensions of) goto-cc, SATABS, PRISM
Probabilistic model checking

- **Model checking**
 - Inputs:
 - finite-state transition system
 - temporal logic specification, e.g. CTL
 - Outputs:
 - “yes”/“no” + counterexample (e.g. trace to error state)

- **Probabilistic model checking**
 - Inputs:
 - finite-state probabilistic model, e.g. Markov decision process
 - probabilistic temporal logic specification, e.g. PCTL
 - Outputs:
 - “yes”/”no” + quantitative results/plots
Discrete–time Markov chains (DTMCs)

• Model fully probabilistic behaviour
 – state–transition systems augmented with probabilistic choice

• Formally, a DTMC is a tuple
 – \((S, s_{\text{init}}, P, L)\)

• where:
 – \(S\) is a set of states
 – \(s_{\text{init}} \in S\) is the initial state
 – \(P : S \times S \rightarrow [0, 1]\) is the transition probability matrix
 – \(L : S \rightarrow 2^{\text{AP}}\) is a labelling function

 – \(\text{AP}\) is a set of atomic propositions
Paths and probabilities

- **Paths through a DTMC:**
 - infinite sequences of states $s_0 s_1 s_2 s_3 \ldots$ such that $P(s_i, s_{i+1}) > 0$
 - represent executions of the system being modelled
 - for quantitative reasoning, need probability space over paths

- **Probability space (Path(s), $\Sigma_{\text{Path}(s)}$, Pr_s) [KSK66]**
 - sample space: $\text{Path}(s) = \text{all infinite paths starting in state } s$
 - event set: $\Sigma_{\text{Path}(s)} = \text{least } \sigma$–algebra on $\text{Path}(s)$ containing cylinder set $\text{Cyl}(\omega)$ for all finite paths ω starting in s
 - $\text{Cyl}(\omega) = \{\omega' \in \text{Path}(s) | \omega$ is prefix of $\omega'\}$
 - probability measure: $Pr_s : \Sigma_{\text{Path}(s)} \rightarrow [0, 1]$
 - $Pr_s(\text{Cyl}(s, s_1, \ldots, s_n)) = P(s, s_1) \cdot \ldots \cdot P(s_{n-1}, s_n)$
 - extends uniquely to all sets of paths in the σ–algebra

- **All omega regular properties are measurable**
Markov decision processes (MDPs)

- **Model nondeterministic as well as probabilistic behaviour**
 - e.g. for concurrency, under-specification, abstraction...
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions

- **Formally, an MDP is a tuple**
 - \((S, s_{\text{init}}, \text{Steps}, L) \)

- **where:**
 - \(S \) is a set of states
 - \(s_{\text{init}} \in S \) is the initial state
 - \(\text{Steps} : S \rightarrow 2^{\text{Act} \times \text{Dist}(S)} \) is the transition probability function
 - \(L : S \rightarrow 2^{\text{AP}} \) is a labelling function

- \(\text{Act} \) is a set of actions, \(\text{AP} \) is a set of atomic propositions
- \(\text{Dist}(S) \) is the set of discrete probability distributions over \(S \)
Paths and adversaries

- **A (finite or infinite) path** through an MDP
 - is a sequence of (connected) states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices

- **An adversary** (aka. “scheduler” or “policy”) of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions
 - results in a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

- **Adversary A is simple iff**: $A(s_1\ldots s_n) = A(s_n)$ for all $s_1\ldots s_n$
 - in this case, resulting model reduces to finite Markov chain
Example adversary

- Fragment of DTMC for adversary which picks \(b \) then \(c \) in \(s_1 \)
Probabilistic reachability for MDPs

- An adversary A induces, for each state s in the MDP:
 - a set of infinite paths $\text{Path}^A(s)$
 - a probability space Pr^A_s over $\text{Path}^A(s)$

- Probabilistic reachability (for a set of goal states $F \subseteq S$)
 - probability of reaching F from state s under adversary A
 - $p_s^A(F) = \text{Pr}^A_s \{ s_0s_1s_2s_3\ldots \in \text{Path}^A(s) \mid s_i \in F \text{ for some } i \}$

- Minimum/maximum probabilities over all adversaries
 - $p_s^{\text{min}}(F) = \inf_A p_s^A(F)$
 - $p_s^{\text{max}}(F) = \sup_A p_s^A(F)$
 - simple adversaries suffice

- Used to reason about best/worst-case behaviour
 - e.g. maximum probability of an error occurring
Probabilistic model checking for MDPs

• Also: Bounded reachability properties
 – e.g. “min. probability of algorithm termination within T steps”

• Also: Cost– and reward–based properties
 – augment states/transitions of MDP with real–valued costs
 – define properties as random variables over \(\text{Path}^A(s) \)
 – e.g. “max. expected power consumption for the duration of the protocol”

• Probabilistic temporal logics
 – e.g. PCTL extends CTL
 – existential quantification over paths (E,A operators) replaced with probabilistic P operator
 – e.g. \(P_{<0.01} [\Diamond \text{error}] \)
 – \(s \models P_{\neg p} [\psi] \iff \Pr^A_s \{ \omega \in \text{Path}^A(s) \mid \omega \models \psi \} \sim p \) for all \(A \)
Probabilistic model checking for MDPs

• **Efficient model checking algorithms exist:**
 – main component: computation of reachability probabilities
 • linear optimisation problem (polynomial complexity)
 • or value iteration (dynamic programming) – simple iterative numerical method; more efficient in practice
 • also: graph-based model analysis for qualitative verification
 – **best/worst** case simple adversary can also be generated

• **Focus on quantitative results and analysis**
 – for PCTL properties with P as the outermost operator, we allow these forms:
 – $P_{\text{min}=?}[\psi]$ and $P_{\text{max}=?}[\psi]$
 – i.e. “what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?”
 – useful to spot patterns/trends
Firewire protocol:
Optimum probability of leader election by time T for various coin biases

CSMA/CD protocol:
Min/max/average probability that a message is sent successfully by time T

Self-stabilisation:
Worst-case expected number of steps to stabilise for initial configurations with K tokens amongst N processes
• PRISM: Probabilistic model checker
 – developed at Birmingham, Oxford since approx. 2001
• Support for MDPs, DTMCs, CTMCs
 – models specified in probabilistic guarded command language
• Model checking of PCTL, LTL, rewards, …
 – efficient symbolic (BDD–based) implementations
• Applied to case studies across many application domains
 – communication protocols, security, biology, …
 – anomalous behaviour/useful insight obtained in many cases
• See: www.prismmodelchecker.org

• But major challenges remain, e.g.
 – state–space explosion
 – automating model extraction
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic reachability, temporal logics
 – tool support: PRISM

• Abstraction for MDPs
 – two-player stochastic games
 – abstraction–refinement loop

• Verification of probabilistic software
 – probabilistic verification at the level of source code (e.g. C)
 – game–based abstraction, predicate abstraction, SAT
 – tool chain: (extensions of) goto–cc, SATABS, PRISM
Abstraction

- Very successful in (non-probabilistic) model checking
 - essential for verification of large/infinite-state systems
- Construct abstract model A of concrete model M
 - details not relevant to some property of interest removed
 - e.g. partition of state space based on a set of predicates
- Non-probabilistic case: existential abstraction
 - conservative: existence of path in M implies existence in A
 - hence can model check A to verify safety properties of M
- Abstraction-refinement
 - automate process of constructing abstraction
 - information from model checking process can be used to refine the abstraction (or validate the property)
 - e.g. CEGAR (counterexample-guided abstraction refinement) – check if counterexample is spurious and use to refine
Abstraction of MDPs

- **Abstraction increases degree of nondeterminism**
 - i.e. minimum probabilities are lower and maximums higher

- **Our approach:** two-player stochastic games [QEST'06]

- **Key idea:** separate two forms of nondeterminism
 - (a) from abstraction and (b) from original MDP
 - then generate separate lower/upper bounds for min/max

- gives quantitative measure of utility of abstraction
- basis of quantitative abstraction-refinement framework
Stochastic two-player games

- **Simple stochastic games** [Shapley, Condon]

 - Game $G = ((V, E), v_{\text{init}}, (V_1, V_2, V_P), \delta)$
 - (V, E) is a finite directed graph
 - v_{init} is the initial vertex
 - (V_1, V_2, V_P) is a partition of V: ‘player 1’, ‘player 2’ and ‘probabilistic’
 - $\delta : V_P \rightarrow \text{Dist}(V)$ is a probabilistic transition function

- **Execution of G: successor vertex chosen:**
 - by player 1/2 for V_1/V_2 vertices
 - at random (δ) for V_P vertices

- **MDPs can be thought of as stochastic two-player games with no V_1 vertices and strict alternation between V_2/V_P**
Properties of stochastic games

• **Resolution of nondeterminism in a stochastic game**
 – is done by a pair of strategies for players 1 and 2: \((\sigma_1,\sigma_2)\)
 – under which the behaviour of the game is fully probabilistic
 – which induces a probability space over infinite paths

• **Probabilistic reachability of vertex goal set** \(F \subseteq V\)
 – \(p^{\sigma_1,\sigma_2}_v(F)\) probability of reaching \(F\) from vertex \(v\) under \((\sigma_1,\sigma_2)\)

• **Optimal probabilities for player 1 and player 2**
 – \(\sup_{\sigma_1} \inf_{\sigma_2} p^{\sigma_1,\sigma_2}_v(F)\) and \(\sup_{\sigma_2} \inf_{\sigma_1} p^{\sigma_1,\sigma_2}_v(F)\)
 – computable via simple iterative methods, similar to MDPs
Games as abstractions of MDPs

- **Abstraction of an MDP is a two-player stochastic game**
 - based on a partition P_S of MDP state space S
 - V_1 vertices are elements of P_S (subsets of S)
 - V_2 vertices are sets of prob. distributions (“states of MDP”)
 - V_P vertices are single probability distributions (over V_1)
 - strict alternation between V_1, V_2, V_P vertices

- **Player 1 controls nondeterminism from abstraction**
 - selects a state of the original MDP from a subset of S (in P_S)

- **Player 2 controls nondeterminism from original MDP**
 - selects a single probability distribution from a set
MDP → Game

- Player 1 vertices are partition elements (abstract states)
MDP → Game

- (Sets of) distributions are lifted to the abstract state space
States with same (sets of) choices form player vertices
MDP → Game

- Complete transformation:
Analysis of the abstraction

• For a stochastic game built from an MDP and partition P_S
• Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P_S$ a set of goal states
• Analysis of game yields lower/upper bounds for MDP:

$$\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$

$$\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)$$
Analysis of the abstraction

• For a stochastic game built from an MDP and partition \(P_S \)
• Let \(s \in S \) be an MDP state, \(v \in V \) the corresponding game vertex (i.e. \(s \in v \)) and \(F \in P_S \) a set of goal states
• Analysis of game yields lower/upper bounds for MDP:

\[
\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F) \\
\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)
\]

min/max reachability probabilities for original MDP
Analysis of the abstraction

- For a stochastic game built from an MDP and partition P_S
- Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P_S$ a set of goal states
- Analysis of game yields lower/upper bounds for MDP:

\[
\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F)
\]

\[
\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)
\]

Optimal probabilities for player 1, player 2 in game
Analysis of the abstraction

- For a stochastic game built from an MDP and partition P_s
- Let $s \in S$ be an MDP state, $v \in V$ the corresponding game vertex (i.e. $s \in v$) and $F \in P_s$ a set of goal states
- Analysis of game yields lower/upper bounds for MDP:

\[
\inf_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_v^{\sigma_1, \sigma_2}(F) \\
\sup_{\sigma_2} \inf_{\sigma_1} p_v^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_v^{\sigma_1, \sigma_2}(F)
\]

min/max reachability probabilities, treating game as MDP (i.e. assuming that players 1 and 2 cooperate)
Abstraction: Results

- Israeli & Jalfon’s Self Stabilisation [IJ90]
 - protocol for obtaining a stable state in a token ring
 - minimum probability of reaching a stable state by time T
Abstraction: Results

- **IPv4 Zeroconf** [CAG02]
 - protocol for obtaining an IP address for a new host
 - maximum probability the new host not configured by T
Abstraction: Results

- **Sliding Window Protocol**
 - protocol for sending data over an insecure medium
 - maximum probability of K timeouts
Abstraction–refinement

• Consider (max) difference between lower/upper bounds
 – gives a quantitative measure of the abstraction’s precision
 – if the difference (“error”) is too great, refine the abstraction
• Here, abstraction induced by a partition of the state space
 – a finer partition yields a more precise abstraction
 – bounds and strategies from game guides refinement

[Diagram of MDP, Game, and Refined game]
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

- Does the loop terminate?

![Diagram showing the Abstraction-refinement loop process involving MDP, partition, bounds and strategies, model checking, and refinement with error conditions.](image-url)
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic reachability, temporal logics
 – tool support: PRISM

• Abstraction for MDPs
 – two-player stochastic games
 – abstraction-refinement loop

• Verification of probabilistic software
 – probabilistic verification at the level of source code (e.g. C)
 – game-based abstraction, predicate abstraction, SAT
 – tool chain: (extensions of) goto-cc, SATABS, PRISM
Probabilistic software

- Consider sequential ANSI C programs
 - support functions, pointers, arrays, but not dynamic memory allocation, unbounded recursion, floating point op.s

- Add function `bool coin(double p)` for probabilistic choice
 - for modelling e.g. failures, randomisation

- Add function `int ndet(int n)` for nondeterministic choice
 - for modelling e.g. user input, unspecified function calls

- Focus on software where failure is unavoidable
 - e.g. network protocols/utilities, esp. wireless

- Quantitative properties based on probabilistic reachability
 - e.g. maximum probabilistic of unsuccessful data transmission
 - e.g. minimum expected number of packets sent
Example – sample target program

bool fail = false;
int c = 0;
int main (){
 // nondeterministic
 c = num_to_send ();
 while (! fail && c > 0) {
 // probabilistic
 fail = send_msg ();
 c --;
 }
}

Φ: “what is the minimum/maximum probability of the program terminating with fail being true?”
Example – simplified

bool fail = false;
int c = 0;
int main ()
{
 // nondeterministic
 c = ndet (3);
 while (! fail && c > 0)
 {
 // probabilistic
 fail = coin (0.1);
 c --;
 }
}

Φ: “what is the minimum/maximum probability of the program terminating with fail being true?”
Abstraction-refinement loop

Probabilistic program → Boolean probabilistic program → Abstraction (game)

ANSI-C program → SAT-based abstraction → Predicates → Bounds and strategies

model extraction

SAT-based abstraction

model construction

model checking

[error ≥ ε]

refinement

[error < ε]

Return bounds

Software verification abstractions-refinement loop [VMCAI’09]
Abstraction–refinement loop

- **Model extraction**: extension of goto–cc
 - function inlining, constant/invariant propagation, side-effect free expressions, points-to analysis, etc.

- **Probabilistic program**
 - probabilistic control flow graph
 - Markov decision process (MDP) semantics
bool fail = false;
int c = 0;
int main ()
{
 // nondeterministic
 c = ndet (3);
 while (!fail && c > 0)
 {
 // probabilistic
 fail = coin (0.1);
 c --;
 }
}
Probabilistic program as MDP

Probabilistic program:

```
4 \rightarrow 1 \rightarrow 2
\quad c=c-1
\quad [ \text{!fail} \&\& c>0 ]
\quad \text{fail=coin(0.1)}
\quad \rightarrow 3 \rightarrow 5
```

MDP semantics:

```
1 \rightarrow 2
\quad c=\text{ndet(3)}
\quad [ \text{fail} || !(c>0) ]
\quad \rightarrow 3 \rightarrow 5
```

Minimum/maximum probability of the program terminating with \text{fail} being true is 0 and 0.19, respectively.
Abstraction-refinement loop

- Abstraction induced by a set of predicates
 - SAT-based language-level abstraction
 - ALLSAT for each edge of control-flow graph
 - implemented in extension of SATABS

- Boolean probabilistic program
 - (predicate) abstraction of probabilistic program
 - stochastic two player game semantics
Probabilistic program

Boolean probabilistic program
Concrete program (MDP) Abstraction (game)

Graphs showing states and transitions in a Markov Decision Process (MDP) and its abstraction as a game. States are labeled with values and transitions are marked with probabilities.
Abstraction-refinement loop

- **PRISM (extension of)**
 - adapted for verification of stochastic games
 - uses symbolic data structures (MTBDDs)
- **Bounds and strategy**
 - returned for a given probabilistic or expected reachability property
Abstraction-refinement loop

- Predicates obtained using
 - weakest preconditions (WP)
 - through strategy based-refinement
 - includes predicate localisation, reachability analysis, symbolic simulation,...
Experimental results

• Successfully applied to several Linux network utilities:
 – PING (tool for establishing network connectivity)
 – TFTP (file-transfer protocol client)

• Code characteristics
 – 1 KLOC of non-trivial ANSI-C code
 – Loss of packets modelled by probabilistic choice
 – Linux kernel calls modelled by nondeterministic choice

• Example properties
 – “maximum probability of establishing a write request”
 – “maximum expected amount of data that is sent before timeout”
 – “maximum expected number of echo requests required to establish connectivity”
Conclusions

• **Probabilistic model checking using MDPs**
 – automated formal verification of systems exhibiting both probabilistic and nondeterministic behaviour

• **Abstraction approach for MDPs using two player games**
 – separation of nondeterminism from MDP/abstraction
 – both lower/upper bounds for min/max probabilities/rewards
 – quantitative measure of the utility of abstraction

• **Quantitative software verification**
 – tool chain using state-of-the-art techniques and tools

• **Current & future work**
 – improved refinement heuristics, better handling of loops
 – extend to allow imprecise abstractions