Probabilistic Model Checking and Strategy Synthesis

Dave Parker
University of Birmingham

University of Southampton, November 2015
Probabilistic Model Checking and Strategy Synthesis

Dave Parker
University of Birmingham

Joint work with: Marta Kwiatkowska, Vojtěch Forejt, Gethin Norman, Hongyang Qu, Aistis Simaitis, Taolue Chen, Bruno Lacerda, Nick Hawes
Overview

• **Probabilistic model checking**
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• **Multi-objective probabilistic model checking**
 – examples: power management/team-formation

• **Stochastic (multi-player) games**
 – example: energy management
Motivation

• Verifying probabilistic systems…
 – unreliable or unpredictable behaviour
 • failures of physical components
 • message loss in wireless communication
 • unreliable sensors/actuators
 – randomisation in algorithms/protocols
 • random back-off in communication protocols
 • random routing to reduce flooding or provide anonymity

• We need to verify quantitative system properties
 – “the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001”
 – not just correctness: reliability, timeliness, performance, …
 – not just verification: correctness by construction
Probabilistic model checking

• Construction and analysis of probabilistic models
 – state-transition systems labelled with probabilities
 (e.g. Markov chains, Markov decision processes)
 – from a description in a high-level modelling language

• Properties expressed in temporal logic, e.g. PCTL:
 – trigger \(\rightarrow P_{\geq 0.999} \ [F \leq 20 \text{ deploy}] \)
 – “the probability of the airbag deploying within 20ms of being triggered is at least 0.999”
 – properties checked against models using exhaustive search and numerical computation
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, …)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies

- $P_{\leq 0.1}[F\text{ fail}]$ – “the probability of a failure occurring is at most 0.1”

- $P=?[F\text{ fail}]$ – “what is the probability of a failure occurring?”
Probabilistic model checking

• Many types of probabilistic models supported

• Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)

• Often focus on numerical results (probabilities etc.)
 – analyse trends, look for system flaws, anomalies

• Provides "exact" numerical results/guarantees
 – compared to, for example, simulation

• Combines numerical & exhaustive analysis
 – especially useful for nondeterministic models

• Fully automated, tools available, widely applicable
 – network/communication protocols, security, biology, robotics & planning, power management, ...
Markov decision processes (MDPs)

- widely used also in: AI, planning, optimal control, ...
- model **nondeterministic** as well as **probabilistic** behaviour

![Diagram of MDP]

- **Nondeterminism for:**
 - **control**: decisions made by a controller or scheduler
 - **adversarial** behaviour of the environment
 - **concurrency/scheduling**: interleavings of parallel components
 - **abstraction**, or under-specification, of unknown behaviour
• **A strategy** (or “policy” or “adversary”)
 – is a resolution of nondeterminism, based on history
 – i.e. a mapping from finite paths to (distributions over) actions
 – induces (infinite-state) Markov chain (and probability space)

• **Classes of strategies:**
 – **memory**: memoryless, finite-memory, or infinite-memory
 – **randomisation**: deterministic or randomised
Verification vs. Strategy synthesis

1. Verification
 - quantify over all possible strategies (i.e. best/worst-case)
 - $P_{\leq 0.1} \left[F_{\text{err}} \right]$: “the probability of an error occurring is ≤ 0.1 for all strategies”
 - applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis
 - generation of "correct-by-construction" controllers
 - $P_{\leq 0.1} \left[F_{\text{err}} \right]$: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
 - applications: robotics, power management, security, ...

Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values
Running example

- **Example MDP**
 - robot moving through terrain divided into a 3 x 2 grid

![Diagram of an MDP example](image)
Example – Reachability

Verify: $P_{\leq 0.6} \ [F \ \text{goal}_1 \]$

or

Synthesise for: $P_{\geq 0.4} \ [F \ \text{goal}_1 \]$

⇓

Compute: $P_{\text{max}}=? \ [F \ \text{goal}_1 \]$

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)
Example – Reachability

Verify: $P_{\leq 0.6} [F \text{ goal}_1]$

or

Synthesise for: $P_{\geq 0.4} [F \text{ goal}_1]$

⇓

Compute: $P_{\text{max}} = [F \text{ goal}_1] = 0.5$

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value iteration, policy iteration)
MDPs – Other properties

- **Costs and rewards** (expected, accumulated values)
 - e.g. $R_{\text{min}} = \mathbb{E}_{\text{goal}_2}$ – "what is the minimum expected number of moves needed to reach goal$_2$?"
 - optimal strategies: memoryless and deterministic
 - similar computation to probabilistic reachability

- **Probabilistic LTL** (multiple temporal operators)
 - e.g. $P_{\text{max}} = \mathbb{P}_{(\neg \text{hazard}) \land (GF \text{goal}_1)}$ – "maximum probability of avoiding hazard and visiting goal$_1$ infinitely often?"
 - optimal strategies: finite-memory and deterministic
 - build product MDP, graph analysis, probabilistic reachability

- **Expected cost/reward** to satisfy (co-safe) LTL formula
 - e.g. $R_{\text{min}} = \mathbb{E}_{\neg \text{zone}_3 \lor (\text{zone}_1 \land (F \text{zone}_4))}$ – "minimise exp. time to patrol zones 1 then 4, without passing through 3".
Application: Robot navigation

- **Navigation planning:** [IROS'14]
 - MDP models navigation through an uncertain environment
 - LTL used to formally specify tasks to be executed
 - synthesise finite-memory strategies to construct plans/controllers
 - links to continuous-space planner
Application: Robot navigation

- **Navigation planning MDPs**
 - expected timed on edges + probabilities
 - learnt using data from previous explorations

- **LTL-based task specification**
 - expected time to satisfy (one or more) co-safe LTL formulas
 - c.f. ad-hoc reward structures, e.g. with discounting
 - also: efficient re-planning [IROS'14]; progress metric [IJCAI'15]

- **Implementation**
 - MetraLabs Scitos A5 robot + ROS module based on PRISM
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management
Multi-objective model checking

• **Multi-objective probabilistic model checking**
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

• **Achievability queries:** multi($P_{>0.95} [F \ send]$, $R_{time >10} [C]$)
 - e.g. “is there a strategy such that the probability of message transmission is >0.95 and expected battery life >10 hrs?”

• **Numerical queries:** multi($P_{max=?} [F \ send]$, $R_{time >10} [C]$)
 - e.g. “maximum probability of message transmission, assuming expected battery life-time is >10 hrs?”

• **Pareto queries:**
 - multi($P_{max=?} [F \ send]$, $R_{time max=?} [C]$)
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life–time"
Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: multi($P_{>0.95} [F \text{ send}], R_{\text{time}>10} [C]$)
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”

- Numerical queries: multi$(P_{\text{max}=?} [F \text{ send}], R_{\text{time}>10} [C])$
 - e.g. “maximum probability of message transmission, assuming expected battery lifetime is > 10 hrs?”

- Pareto queries:
 - multi$(P_{\text{max}=?} [F \text{ Send}], R_{\text{time, max}=?} [C])$
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
Multi-objective model checking

- **Optimal strategies:**
 - usually **finite-memory** (e.g. when using LTL formulae)
 - may also need to be **randomised**

- **Computation:**
 - construct a product MDP (with several automata), then reduces to linear programming \([\text{TACAS'07,TACAS'11}]\)
 - can be approximated using iterative numerical methods, via approximation of the Pareto curve \([\text{ATVA'12}]\)

- **Extensions** \([\text{ATVA'12}]\)
 - arbitrary Boolean combinations of objectives
 - e.g. \(\psi_1 \Rightarrow \psi_2\) (all strategies satisfying \(\psi_1\) also satisfy \(\psi_2\))
 - (e.g. for assume-guarantee reasoning)
 - time-bounded (finite-horizon) properties
Example – Multi-objective

• Achievability query
 – $P_{\geq 0.7} [G \neg haz] \land P_{\geq 0.2} [GF \text{ goal}_1] ?$ True (achievable)

• Numerical query
 – $P_{\text{max}=?} [GF \text{ goal}_1]$ such that $P_{\geq 0.7} [G \neg haz] ? \sim 0.2278$

• Pareto query
 – for $P_{\text{max}=?} [G \neg haz] \land P_{\text{max}=?} [GF \text{ goal}_1]$?
Example – Multi-objective

Strategy 1 (deterministic)

\(s_0 : \text{east}\)
\(s_1 : \text{south}\)
\(s_2 : -\)
\(s_3 : -\)
\(s_4 : \text{east}\)
\(s_5 : \text{west}\)

\(\psi_1 = G \neg \text{hazard}\)
\(\psi_2 = GF \text{goal}_1\)
Example – Multi-objective

Strategy 2 (deterministic)

- $s_0 : south$
- $s_1 : south$
- $s_2 : -$
- $s_3 : -$
- $s_4 : east$
- $s_5 : west$

$\psi_1 = G \neg \text{hazard}$
$\psi_2 = GF \text{goal}_1$
Example – Multi-objective

Optimal strategy: (randomised)

\[s_0 : 0.3226 : \text{east} \]
\[0.6774 : \text{south} \]

\[s_1 : 1.0 : \text{south} \]
\[s_2 : - \]
\[s_3 : - \]
\[s_4 : 1.0 : \text{east} \]
\[s_5 : 1.0 : \text{west} \]
Multi-objective: Applications

Synthesis of controllers for dynamic power management [TACAS'11]

IBM TravelStar VP disk drive
- switches between power modes:
 - active/idle/idlelp/stby/sleep

MDP model in PRISM:
- power manager
- disk requests
- request queue
- power usage

Multi-objective:
"minimise energy consumption, subject to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs"

Synthesis of team formation strategies [CLIMA'11, ATVA'12]

Pareto curve:
x="probability of completing task 1";
y="probability of completing task 2";
z="expected size of successful team"
Overview

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes (MDPs)
 – example: robot navigation

• Multi-objective probabilistic model checking
 – examples: power management/team-formation

• Stochastic (multi-player) games
 – example: energy management
Stochastic multi-player games (SMGs)

- **Stochastic multi-player games**
 - players control states; choose actions
 - models competitive/collaborative behaviour
 - applications: security (system vs. attacker), controller synthesis (controller vs. environment), distributed algorithms/protocols, ...

- **Property specifications: rPATL**
 - \(\langle\{1,2\}\rangle P_{\geq 0.95} [F_{\leq 45} \text{ done}]\) : "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
 - formally: \(\langle\langle C\rangle\rangle \psi : \text{do there exist} \) strategies for players in \(C\) such that, for all strategies of other players, property \(\psi\) holds?

- **Model checking [TACAS'12,FMSD'13]**
 - zero sum properties: analysis reduces to 2-player games
 - PRISM-games: www.prismmodelchecker.org/games
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of \(s_1 \rightarrow \text{south} \rightarrow s_4 \) is in \([p,q] = [0.5 - \Delta, 0.5 + \Delta]\)
Example – Stochastic games

- **Two players:** 1 (robot controller), 2 (environment)
 - probability of s_1 south $\rightarrow s_4$ is in $[p,q] = [0.5-\Delta, 0.5+\Delta]$

![Stochastic game diagram]

rPATL: $\langle\langle 1 \rangle\rangle \text{ P}_{\text{max}=?} [F \text{ goal}_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - Probability of s_1–south→s_4 is in $[p, q] = [0.5-\Delta, 0.5+\Delta]$
Application: Energy management

- Energy management protocol for Microgrid
 - randomised demand management protocol
 - random back-off when demand is high

- Original analysis [Hildmann/Saffre'11]
 - protocol increases "value" for clients
 - simulation-based, clients are honest

- Our analysis
 - stochastic multi-player game model
 - clients can cheat (and cooperate)
 - model checking: PRISM-games
 - exposes protocol weakness (incentive for clients to act selfishly
 - propose/verify simple fix using penalties
Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle\langle C\rangle\rangle R_{C_{\text{max}}}^{r} \left[F^0 \text{ time} = \text{max time}\right] / |C|$
 - where r_{C} is combined rewards for coalition C
Results: Competitive behaviour

- **Algorithm fix: simple punishment mechanism**
 - distribution manager can cancel some loads exceeding c_{lim}

![Graph showing reward per household vs. number of households. The graph indicates that better results are achieved when all follow the algorithm, with deviations of varying size.](image-url)
Conclusion

• Probabilistic model checking
 – verification vs. strategy synthesis
 – Markov decision processes, temporal logic, PRISM

• Recent directions and extensions
 – multi-objective probabilistic model checking
 – model checking for stochastic games

– Challenges
 – stochastic games: multi-objective, equilibria, richer logics
 – partial information/observability
 – probabilistic models with continuous time (or space)
 – scalability, e.g. symbolic methods, abstraction

www.prismmodelchecker.org