Automated Verification Techniques for Probabilistic Systems

Vojtěch Forejt
Marta Kwiatkowska
Gethin Norman
Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011
Part 3

Markov decision processes
Overview

• Lectures 1 and 2:
 – 1 – Introduction
 – 2 – Discrete-time Markov chains
 – 3 – Markov decision processes
 – 4 – Compositional probabilistic verification

• Course materials available here:
 – lecture slides, reference list, tutorial chapter, lab session
Probabilistic models

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs) (probabilistic automata)</td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTMDPs/IMCs</td>
</tr>
</tbody>
</table>
Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention
Recap: Discrete–time Markov chains

- **Discrete–time Markov chains (DTMCs)**
 - state–transition systems augmented with probabilities

- **Formally**: DTMC $D = (S, s_{\text{init}}, P, L)$ where:
 - S is a set of states and $s_{\text{init}} \in S$ is the initial state
 - $P : S \times S \rightarrow [0,1]$ is the transition probability matrix
 - $L : S \rightarrow 2^{AP}$ labels states with atomic propositions
 - define a probability space \Pr_s over paths Path_s

- **Properties of DTMCs**
 - can be captured by the logic PCTL
 - e.g. $\text{send} \rightarrow P_{\geq 0.95} [F \text{ deliver}]$
 - key question: what is the probability of reaching states $T \subseteq S$ from state s?
 - reduces to graph analysis + linear equation system
Nondeterminism

• Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:

• **Concurrency** – scheduling of parallel components
 – e.g. randomised distributed algorithms – multiple probabilistic processes operating asynchronously

• **Underspecification** – unknown model parameters
 – e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

• **Unknown environments**
 – e.g. probabilistic security protocols – unknown adversary
Markov decision processes (MDPs)
- extension of DTMCs which allow nondeterministic choice

Like DTMCs:
- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps

Probabilities and nondeterminism
- in each state, a nondeterministic choice between several discrete probability distributions over successor states
Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{\text{init}}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $s_{\text{init}} \in S$ is the initial state
 - α is an alphabet of action labels
 - $\delta \subseteq S \times \alpha \times \text{Dist}(S)$ is the transition probability relation, where $\text{Dist}(S)$ is the set of all discrete probability distributions over S
 - $L : S \rightarrow 2^{\text{AP}}$ is a labelling with atomic propositions

- Notes:
 - we also abuse notation and use δ as a function
 - i.e. $\delta : S \rightarrow 2^{\alpha \times \text{Dist}(S)}$ where $\delta(s) = \{ (a, \mu) \mid (s, a, \mu) \in \delta \}$
 - we assume $\delta(s)$ is always non-empty, i.e. no deadlocks
 - MDPs, here, are identical to probabilistic automata [Segala]
Simple MDP example

- A simple communication protocol
 - after one step, process \textit{starts} trying to send a message
 - then, a nondeterministic choice between: (a) \textit{waiting} a step because the channel is unready; (b) \textit{sending} the message
 - if the latter, with probability 0.99 send successfully and \textit{stop}
 - and with probability 0.01, message sending fails, \textit{restart}
Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here
Paths and probabilities

- A (finite or infinite) path through an MDP M
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i,\mu_i) \in \delta(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \geq 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
 - note that a path resolves both types of choices: nondeterministic and probabilistic
 - $\text{Path}_{M,s}$ (or just Path_s) is the set of all infinite paths starting from state s in MDP M; the set of finite paths is PathFin_s

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths
Overview (Part 3)

- Markov decision processes (MDPs)
- **Adversaries & probability spaces**
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention
Adversaries

• **An adversary** resolves nondeterministic choice in an MDP
 – also known as “schedulers”, “strategies” or “policies”

• **Formally**:
 – an adversary σ of an MDP is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1...s_n$ to an element of $\delta(s_n)$

• **Adversary σ restricts the MDP to certain paths**
 – $\text{Path}_s^\sigma \subseteq \text{Path}_s^\sigma$ and $\text{PathFin}_s^\sigma \subseteq \text{PathFin}_s^\sigma$

• **Adversary σ induces a probability measure \Pr_s^σ over paths**
 – constructed through an infinite state DTMC $(\text{PathFin}_s^\sigma, s, P_s^\sigma)$
 – states of the DTMC are the finite paths of σ starting in state s
 – initial state is s (the path starting in s of length 0)
 – $P_s^\sigma(\omega, \omega') = \mu(s)$ if $\omega' = \omega(a, \mu)s$ and $\sigma(\omega) = (a, \mu)$
 – $P_s^\sigma(\omega, \omega') = 0$ otherwise
Adversaries – Examples

- Consider the simple MDP below
 - note that s_1 is the only state for which $|\delta(s)| > 1$
 - i.e. s_1 is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1

- Adversary σ_1
 - picks action c the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$

- Adversary σ_2
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1) = (b, \mu_b)$, $\sigma_2(s_0s_1s_1) = (c, \mu_c)$, $\sigma_2(s_0s_1s_0s_1) = (c, \mu_c)$
Adversaries – Examples

- Fragment of DTMC for adversary σ_1
 - σ_1 picks action c the first time
Adversaries – Examples

- Fragment of DTMC for adversary σ_2
 - σ_2 picks action b, then c

$$
\begin{align*}
\text{init} & \quad \overset{a}{\longrightarrow} \quad s_1 \quad \overset{0.5}{\longrightarrow} \quad s_2 \quad \overset{a}{\longrightarrow} \\
& \quad \overset{c}{\longrightarrow} \quad s_1 \quad \overset{0.5}{\longrightarrow} \quad s_2 \quad \overset{a}{\longrightarrow} \\
& \quad \overset{b}{\longrightarrow} \quad s_1 \quad \overset{0.7}{\longrightarrow} \quad s_0 \quad \overset{0.3}{\longrightarrow} \quad s_1
\end{align*}
$$
Memoryless adversaries

- **Memoryless adversaries** always pick same choice in a state
 - also known as: positional, simple, Markov
 - formally, for adversary σ:
 - $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - resulting DTMC can be mapped to a $|S|$-state DTMC

- **From previous example:**
 - adversary σ_1 (picks c in s_1) is memoryless, σ_2 is not
Overview (Part 3)

• Markov decision processes (MDPs)
• Adversaries & probability spaces

 • Properties of MDPs: The temporal logic PCTL

 • PCTL model checking for MDPs

 • Case study: Firewire root contention
• **Temporal logic for properties of MDPs (and DTMCs)**
 – extension of (non–probabilistic) temporal logic CTL
 – key addition is probabilistic operator \(P \)
 – quantitative extension of CTL’s A and E operators

• **PCTL syntax:**

 \[
 \phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\psi] \quad \text{(state formulas)}
 \]

 \[
 \psi ::= X \phi \mid \phi \mathsf{U}^{\leq k} \phi \mid \phi \mathsf{U} \phi \quad \text{(path formulas)}
 \]

 – where \(a \) is an atomic proposition, used to identify states of interest, \(p \in [0,1] \) is a probability, \(\sim \in \{<,>,\leq,\geq\} \), \(k \in \mathbb{N} \)

• **Example:** \(\text{send} \rightarrow P_{\geq 0.95} [\text{true} \mathsf{U}^{\leq 10} \text{deliver}] \)
PCTL semantics for MDPs

- **PCTL formulas interpreted over states of an MDP**
 - $s \models \phi$ denotes ϕ is “true in state s” or “satisfied in state s”

- **Semantics of (non–probabilistic) state formulas:**
 - for a state s of the MDP $(S,s_{\text{init}},\alpha,\delta,L)$:
 - $s \models a$ \iff $a \in L(s)$
 - $s \models \phi_1 \land \phi_2$ \iff $s \models \phi_1$ and $s \models \phi_2$
 - $s \models \neg \phi$ \iff $s \models \phi$ is false

- **Semantics of path formulas:**
 - for a path $\omega = s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$ in the MDP:
 - $\omega \models X \phi$ \iff $s_1 \models \phi$
 - $\omega \models \phi_1 U^{\leq k} \phi_2$ \iff $\exists i \leq k$ such that $s_i \models \phi_2$ and $\forall j < i$, $s_j \models \phi_1$
 - $\omega \models \phi_1 U \phi_2$ \iff $\exists k \geq 0$ such that $\omega \models \phi_1 U^{\leq k} \phi_2$
PCTL semantics for MDPs

- **Semantics of the probabilistic operator P**
 - can only define probabilities for a specific adversary σ
 - $s \models P_{\sim p} \psi$ means “the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries σ”
 - formally $s \models P_{\sim p} \psi \iff Pr_s^\sigma(\psi) \sim p$ for all adversaries σ
 - where we use $Pr_s^\sigma(\psi)$ to denote $Pr_s^\sigma \{ \omega \in \text{Path}_s^\sigma \mid \omega \models \psi \}$

- **Some equivalences:**
 - $F \phi \equiv \Diamond \phi \equiv \text{true} U \phi$ (eventually, “future”)
 - $G \phi \equiv \Box \phi \equiv \neg (F \neg \phi)$ (always, “globally”)
Minimum and maximum probabilities

- Letting:
 - $\Pr_s^{\max}(\psi) = \sup_{\sigma} \Pr_s^{\sigma}(\psi)$
 - $\Pr_s^{\min}(\psi) = \inf_{\sigma} \Pr_s^{\sigma}(\psi)$

- We have:
 - if $\sim \in \{\geq, >\}$, then $s \models P_{\sim p}[\psi] \iff \Pr_s^{\min}(\psi) \sim p$
 - if $\sim \in \{\leq, <\}$, then $s \models P_{\sim p}[\psi] \iff \Pr_s^{\max}(\psi) \sim p$

- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding

- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries σ_{\min} and σ_{\max} for which:
 - $\Pr_s^{\sigma_{\min}}(\psi) = \Pr_s^{\min}(\psi)$ and $\Pr_s^{\sigma_{\max}}(\psi) = \Pr_s^{\min}(\psi)$
Quantitative properties

• For PCTL properties with P as the outermost operator
 – quantitative form (two types): $P_{\min}=? [\psi]$ and $P_{\max}=? [\psi]$
 – i.e. “what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?”
 – corresponds to an analysis of best-case or worst-case behaviour of the system
 – model checking is no harder since compute the values of $Pr_s^{\min}(\psi)$ or $Pr_s^{\max}(\psi)$ anyway
 – useful to spot patterns/trends

• Example: CSMA/CD protocol
 – “min/max probability that a message is sent within the deadline”
Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv

- Only change is:
 - \[s \models_{Adv} P_{\sim p} [\psi] \iff Pr_s^\sigma (\psi) \sim p \text{ for all adversaries } \sigma \in Adv \]

- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP

- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]
Some real PCTL examples

- **Byzantine agreement protocol**
 - $P_{\text{min}} = \text{?} [F (\text{agreement} \land \text{rounds} \leq 2)]$
 - “what is the minimum probability that agreement is reached within two rounds?”

- **CSMA/CD communication protocol**
 - $P_{\text{max}} = \text{?} [F \text{collisions} = k]$
 - “what is the maximum probability of k collisions?”

- **Self–stabilisation protocols**
 - $P_{\text{min}} = \text{?} [F^{\leq t} \text{stable}]$
 - “what is the minimum probability of reaching a stable state within k steps?”
Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention
PCTL model checking for MDPs

- **Algorithm for PCTL model checking** [BdA95]
 - inputs: MDP $M = (S, s_{\text{init}}, \alpha, \delta, L)$, PCTL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \} =$ set of states satisfying ϕ

- **Basic algorithm same as PCTL model checking for DTMCs**
 - proceeds by induction on parse tree of ϕ
 - non-probabilistic operators (true, a, \neg, \land) straightforward

- **Only need to consider $P_\sim [\psi]$ formulas**
 - reduces to computation of $Pr_s^{\min}(\psi)$ or $Pr_s^{\max}(\psi)$ for all $s \in S$
 - dependent on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$
 - these slides cover the case $Pr_s^{\min}(\phi_1 U \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next ($X \phi$) and bounded until ($\phi_1 U^{\leq k} \phi_2$) are straightforward extensions of the DTMC case
PCTL until for MDPs

- Computation of probabilities $\Pr_s^{\min}(\phi_1 U \phi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - “precomputation” algorithms, yielding sets S^{yes}, S^{no}
- Then compute (min) probabilities for remaining states ($S^?$)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration

Example:

$P_{\geq p} [F a]$

\equiv

$P_{\geq p} [true U a]$
PCTL until – Precomputation

- Identify all states where $\Pr_s^{\text{min}}(\phi_1 U \phi_2)$ is 1 or 0
 - $S^{\text{yes}} = \text{Sat}(P_{\geq 1}[\phi_1 U \phi_2])$, $S^{\text{no}} = \text{Sat}(\neg P_{>0}[\phi_1 U \phi_2])$

- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes S^{yes}
 - for all adversaries the probability of satisfying $\phi_1 U \phi_2$ is 1
 - algorithm Prob0E computes S^{no}
 - there exists an adversary for which the probability is 0

Example:
$P_{\geq p}[F a]$

\[
\begin{align*}
S^{\text{yes}} &= \text{Sat}(P_{\geq 1}[F a]) \\
S^{\text{no}} &= \text{Sat}(\neg P_{>0}[F a])
\end{align*}
\]
Method 1 – Linear programming

- Probabilities $\Pr_{s}^{\min}(\phi_1 \cup \phi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

$$\text{maximize } \sum_{s \in S^?} x_s \text{ subject to the constraints:}$$

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$$

for all $s \in S^?$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]

- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch–and–cut
Example – PCTL until (LP)

Let \(x_i = \text{Pr}_{s_i}^\text{min}(F a) \)

\(S^\text{yes}: x_2 = 1, S^\text{no}: x_3 = 0 \)

For \(S' = \{x_0, x_1\} \):

Maximise \(x_0 + x_1 \) subject to constraints:

1. \(x_0 \leq x_1 \)
2. \(x_0 \leq 0.25 \cdot x_0 + 0.5 \)
3. \(x_1 \leq 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4 \)
Example – PCTL until (LP)

Let $x_i = \Pr_{s_i}^{\min}(F a)$

$S^{yes}: x_2 = 1$, $S^{no}: x_3 = 0$

For $S' = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq \frac{2}{3}$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$
Example – PCTL until (LP)

Let $x_i = \text{Pr}_{s_i}^{\min}(F a)$

$S^{\text{yes}}: x_2 = 1$, $S^{\text{no}}: x_3 = 0$

For $S' = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \leq 2/3$
- $x_1 \leq 0.2 \cdot x_0 + 0.8$

Solution:

$(x_0, x_1) = (2/3, 14/15)$
Example – PCTL until (LP)

Let \(x_i = \Pr_{s_i}^{\text{min}}(F a) \)

\(S^{\text{yes}}: x_2 = 1 \), \(S^{\text{no}}: x_3 = 0 \)

For \(S' = \{x_0, x_1\} \):

Maximise \(x_0 + x_1 \) subject to constraints:

- \(x_0 \leq x_1 \)
- \(x_0 \leq 2/3 \)
- \(x_1 \leq 0.2 \cdot x_0 + 0.8 \)

Two memoryless adversaries

\[x_1 \leq 0.2 \cdot x_0 + 0.8 \]
\[x_0 \leq x_1 \]
\[x_0 \leq 2/3 \]
Method 2 – Value iteration

• For probabilities $\Pr_s \min (\phi_1 \cup \phi_2)$ it can be shown that:

$$- \Pr_s \min (\phi_1 \cup \phi_2) = \lim_{n \to \infty} x_s^{(n)}$$

where:

$$x_s^{(n)} = \begin{cases}
1 & \text{if } s \in S^{yes} \\
0 & \text{if } s \in S^{no} \\
0 & \text{if } s \in S^? \text{ and } n = 0 \\
\min_{(a, \mu) \in \text{Steps}(s)} \left(\sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \right) & \text{if } s \in S^? \text{ and } n > 0
\end{cases}$$

• This forms the basis for an (approximate) iterative solution
 – iterations terminated when solution converges sufficiently
Example – PCTL until (value iteration)

Compute: $\Pr_{s_i}^{\text{min}}(F \, a)$

$S_{\text{yes}} = \{x_2\}$, $S_{\text{no}} = \{x_3\}$, $S? = \{x_0, x_1\}$

\[
\begin{bmatrix}
 x_0^{(n)}, & x_1^{(n)}, & x_2^{(n)}, & x_3^{(n)} \\
\end{bmatrix}
\]

$n=0$: $[0, 0, 1, 0]$

$n=1$: $[\min(0, 0.25 \cdot 0 + 0.5), 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0]$

$= [0, 0.4, 1, 0]$

$n=2$: $[\min(0.4, 0.25 \cdot 0 + 0.5), 0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0]$

$= [0.4, 0.6, 1, 0]$

$n=3$: ...
Example – PCTL until (value iteration)

\[
\begin{align*}
\text{n=0:} & \quad [0.000000, 0.000000, 1, 0] \\
\text{n=1:} & \quad [0.000000, 0.400000, 1, 0] \\
\text{n=2:} & \quad [0.400000, 0.600000, 1, 0] \\
\text{n=3:} & \quad [0.600000, 0.740000, 1, 0] \\
\text{n=4:} & \quad [0.650000, 0.830000, 1, 0] \\
\text{n=5:} & \quad [0.662500, 0.880000, 1, 0] \\
\text{n=6:} & \quad [0.665625, 0.906250, 1, 0] \\
\text{n=7:} & \quad [0.666406, 0.919688, 1, 0] \\
\text{n=8:} & \quad [0.666602, 0.926484, 1, 0] \\
\text{n=9:} & \quad [0.666650, 0.929902, 1, 0] \\
\text{n=10:} & \quad \cdots \\
\text{n=20:} & \quad [0.666667, 0.933332, 1, 0] \\
\text{n=21:} & \quad [0.666667, 0.933332, 1, 0] \\
\end{align*}
\]

\[\approx [2/3, 14/15, 1, 0] \]
Example – Value iteration + LP

\[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)} \]

\[
\begin{align*}
 n=0: & \quad [0.000000, 0.000000, 1, 0] \\
 n=1: & \quad [0.000000, 0.400000, 1, 0] \\
 n=2: & \quad [0.400000, 0.600000, 1, 0] \\
 n=3: & \quad [0.600000, 0.740000, 1, 0] \\
 n=4: & \quad [0.650000, 0.830000, 1, 0] \\
 n=5: & \quad [0.662500, 0.880000, 1, 0] \\
 n=6: & \quad [0.665625, 0.906250, 1, 0] \\
 n=7: & \quad [0.666406, 0.919688, 1, 0] \\
 n=8: & \quad [0.666602, 0.926484, 1, 0] \\
 n=9: & \quad [0.666650, 0.929902, 1, 0] \\
 \cdots \\
 n=20: & \quad [0.666667, 0.933332, 1, 0] \\
 n=21: & \quad [0.666667, 0.933332, 1, 0] \\
 & \approx [2/3, 14/15, 1, 0]
\end{align*}
\]
Method 3 – Policy iteration

• **Value iteration:**
 – iterates over (vectors of) probabilities

• **Policy iteration:**
 – iterates over adversaries (“policies”)

1. Start with an arbitrary (memoryless) adversary \(\sigma\)
2. Compute the reachability probabilities \(\Pr^\sigma(\text{F } a)\) for \(\sigma\)
3. Improve the adversary in each state
4. Repeat 2/3 until no change in adversary

• **Termination:**
 – finite number of memoryless adversaries
 – improvement in (minimum) probabilities each time
Method 3 – Policy iteration

- 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of $\delta(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $Pr^{\sigma}(Fa)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$
\sigma'(s) = \text{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot Pr^{\sigma}_s(Fa) \mid (a, \mu) \in \delta(s) \right\}
$$

- 4. Repeat 2/3 until no change in adversary
Arbitrary adversary σ:

Compute: $\Pr^\sigma(F \text{ a})$

Let $x_i = \Pr_{s_i}^\sigma(F \text{ a})$

$x_2 = 1$, $x_3 = 0$ and:

- $x_0 = x_1$
- $x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

Solution:

$\Pr^\sigma(F \text{ a}) = [1, 1, 1, 0]$

Refine σ in state s_0:

$\min\{1(1), 0.5(1)+0.25(0)+0.25(1)\} = \min\{1, 0.75\} = 0.75$
Refined adversary σ':

Compute: $\Pr^{\sigma'}(F\ a)$

Let $x_i = Pr_{s_i}^{\sigma'}(F\ a)$

$x_2 = 1$, $x_3 = 0$ and:

- $x_0 = 0.25 \cdot x_0 + 0.5$
- $x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

Solution:

$Pr^{\sigma'}(F\ a) = [\ 2/3, 14/15, 1, 0 \]$

This is optimal
Example – Policy iteration

\[x_1 = 0.2 \cdot x_0 + 0.8 \]

\[x_0 = x_1 \]

\[x_0 = \frac{2}{3} \]
PCTL model checking – Summary

- **Computation of set Sat(Φ) for MDP M and PCTL formula Φ**
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation

- **Probabilistic operator P:**
 - $Χ Φ$: one matrix–vector multiplication, $O(|S|^2)$
 - $Φ_1 U^{≤k} Φ_2$: k matrix–vector multiplications, $O(k|S|^2)$
 - $Φ_1 U Φ_2$: linear programming problem, polynomial in $|S|$ (assuming use of linear programming)

- **Complexity:**
 - linear in $|Φ|$ and polynomial in $|S|$
 - S is states in MDP, assume $|δ(s)|$ is constant
Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for “expected reward”
 - as for PCTL, either $R_{\sim r} \[\ldots \], R_{\min=?} \[\ldots \] \text{or } R_{\max=?} \[\ldots \]$
- Some examples:
 - $R_{\min=?} \[I=90 \], \ R_{\max=?} \[C\leq60 \], \ R_{\max=?} \[F \text{ “end” } \]$
 - “the minimum expected queue size after exactly 90 seconds”
 - “the maximum expected power consumption over one hour”
 - the maximum expected time for the algorithm to terminate
Overview (Part 3)

• Markov decision processes (MDPs)
• Adversaries & probability spaces
• Properties of MDPs: The temporal logic PCTL
• PCTL model checking for MDPs
• Case study: Firewire root contention
Case study: FireWire protocol

- **FireWire (IEEE 1394)**
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" – add/remove devices at any time
 - no requirement for a single PC (need acyclic topology)

- **Root contention protocol**
 - leader election algorithm, when nodes join/leave
 - symmetric, distributed protocol
 - uses electronic coin tossing and timing delays
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry
FireWire example
FireWire leader election
FireWire root contention
FireWire root contention
FireWire analysis

- **Probabilistic model checking**
 - model constructed and analysed using PRISM
 - timing delays taken from standard
 - model includes:
 - concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
 - max. model size: 170 million states

- **Analysis:**
 - verified that root contention always resolved with probability 1
 - investigated time taken for leader election
 - and the effect of using biased coin
 - based on a conjecture by Stoelinga
FireWire: Analysis results

“minimum probability of electing a leader by time T”
FireWire: Analysis results

“minimum probability of electing leader by time T”

(short wire length)

Using a biased coin
FireWire: Analysis results

“maximum expected time to elect a leader”

(Short wire length)

Using a biased coin
FireWire: Analysis results

"maximum expected time to elect a leader"

(short wire length)

Using a biased coin is beneficial!
Summary (Part 3)

- **Markov decision processes (MDPs)**
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...

- **Adversaries resolve nondeterminism in an MDP**
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries

- **Property specifications**
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all adversaries

- **Model checking algorithms**
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration

- **Next: Compositional probabilistic verification**