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1 Transition Systems

Integer Ltd. makes integer I/O machines, which have a button and
a display. You press the button and it prints an integer. You press
the button again and it prints another integer.

A machine has a variety of internal states. When you press the
button, it’s the current state that determines what integer gets printed,
and what the new state will be (it could be a different state, or it
could be the same state).

A machine is described by

– a set X (the set of states)
– a function ζ : X −→ Z ×X (what happens when you press the

button)
– the current state x0 ∈ X

Exercise 1. Machine number 392 has Z × Z as set of states. The
behaviour function is ζ : 〈n, n′〉 7→ 〈n+ n′, 〈n′ + 1, n− 2〉〉. The cur-
rent state is 〈4, 6〉. What is printed when you press the button three
times?

A rival company Integer And Boolean Inc. makes machines with
three buttons and a display. If you press the red button or the green
button it prints an integer, but if you press the bright pink button
it prints a boolean. Such a machine is described by a pair (X, ζ),
where

– a set X (the set of states)
– a function ζred : X −→ Z×X (what happens when you press the

red button)
– a function ζgreen : X −→ Z × X (what happens when you press

the green button)
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– a function ζbright pink : X −→ B × X (what happens when you
press the bright pink button).

– the current state x0 ∈ X

Exercise 2. Machine number 25 has Z× Z as set of states. The be-
haviour functions are

ζred : 〈n, n′〉 7→ 〈n, 〈n′ + 1, n− 2〉〉
ζgreen : 〈n, n′〉 7→ 〈n′ + 1, 〈n+ n′, 2n′〉〉

ζbrightpink : 〈n, n′〉 7→ 〈n > n′, 〈n′, n′〉〉

The current state is 〈3, 7〉. What is printed when you press the red
button, then the green button, then the bright pink button, then the
red button again?

Another company Interactive Integer make machines with a key-
board and a display. If you enter an integer, it prints another integer.
Such a machine is described by

– a set X (the set of states)
– a function ζ : Z×X −→ Z×X
– the current state x0 ∈ X.

Exercise 3. Machine number 40 has Z× Z as set of states. The be-
haviour function is given by

ζ : 〈m, 〈n, n′〉〉 7→ 〈m+ n, 〈2m+ n′, n− 1〉〉

The current state is 〈4, 4〉. What is printed when you enter 5, then
3, then 5 again?

A somewhat unsuccessful company Unreliable Integer makes ma-
chines with a button and a display. If you press the button it might
print an integer or it might print one of three error messages:

CRASH
BANG
WALLOP
Then the button jams shut and remains so forever. Such a ma-

chine is described by

– a set X (the set of states)
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– a function X −→ Z×X+E, where E is the set of error messages,

– the current state x0 ∈ X.

Exercise 4. Machine number 6 has Z × Z as set of states. The be-
haviour function is described by

ζ : 〈n, n′〉 7→
{

inl 〈n+ 3, 〈n′, 7〉〉 if n′ 6 4
inr BANG otherwise

The current state is 〈3, 2〉. What is printed if you press the button
twice?

A more popular company is Probabilistic Integer. If you press
the button it consults some random data to decide what integer to
print. The machine is described by

– a set X (the set of states)

– a function ζ : X×(Z×X) −→ [0, 1], where
∑
〈n,y〉∈Z×Xζ(x, 〈n, y〉) =

1 for each x ∈ X.

– the current state x0 ∈ X.

A newcomer to the market is Nondeterministic Integer who make
machines with a button and a display. If you press the button it
prints an integer. But the behaviour doesn’t just depend on the in-
ternal state, it also depends on a monkey hidden inside the machine.
The machine is described by

– a set X (the set of states)

– a relation r : X p // X

– the current state x0 ∈ X.

Exercise 5. Machine number 24 has set of states Z × Z. The be-
haviour relation is described by

〈n, n′〉 r 〈m, 〈p, p′〉〉 def⇔ m > n and p = p′ + n

The current state 〈2, 5〉 is. Describe one possible output if you press
the button three times.
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2 Coalgebras

These descriptions have more in common than appears at first sight.
A machine consists of a set X together with a function

– X −→ Z×X (Integer Ltd.)
– X −→ (Z×X)× (Z×X)× (B×X) (Integer And Boolean Inc.)
– X −→ (Z×X)Z (Interactive Integer)
– X −→ Z×X + E (Unreliable Integer)
– X −→ D(Z×X) (Probabilistic Integer), where DY is the set of

discrete probability distributions on Y .
– X −→ P(Z×X) (Nondeterministic Integer)

and a current state x0 ∈ X.

Definition 1. Let C and D be categories. A functor F : C −→ D
associates

– to each C-object X, a D-object FX

– to each C-morphism X
f // Y , a D-morhpism FX

Ff // FY

in such a way that

– for every object X we have F idX = idFX

– for any morphisms X
f // Y

g // Z we have F (f ; g) = Ff ;Fg.

A endofunctor on a category C is a functor F : C −→ C.
For example, there’s an endofunctor on Set that maps

– a set X to the set Z×X
– a function X

f // Y is mapped to the function Z×X Z×f // Z× Y
that sends 〈n, x〉 to 〈n, f(x)〉.

Typically we write a functor by saying only what it does to objects,
but this is sloppy.

Definition 2. Let C be a category and let F be an endofunctor on
C. A C-coalgebra consists of

– a C-object X
– a C-morphism ζ : X −→ FX.
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We call X the carrier of the coalgebra and ζ the behaviour or struc-
ture of the coalgebra.

For example, a machine made by Integer Ltd. is a X 7→ Z × X
coalgebra. Only one thing is missing: a coalgebra does not have a
current state. If F is an endofunctor on Set, we say that a pointed
F -coalgebra is an F -coalgebra (X, ζ) together with a state x0 ∈ X.
In general a pointed set is a set X together with an element x0 ∈ X.

What about the other machines? Each of these is given as a
(pointed) coalgebra for a suitable endofunctor on Set.

– If F,G,H are endofunctors on Set then so is X 7→ FX ×GX ×
HX, with X

f // Y mapping to

FX ×GX ×HX Ff×Gf×Hf // FY ×GY ×HY

that sends (a, b, c) to ((Ff)a, (Gf)b, (Hf)c), and so isX 7→ FX+
GX +HX.

– X 7→ XZ is an endofunctor, with X
f // Y mapping to

XZ fZ
// Y Z

that sends (ai)i∈I to (f(ai))i∈Z.

– X 7→ X + E is an endofunctor, with X
f // Y mapping to

X + E
f+E // Y + E

that sends inl x to inl f(x) and inr e to inr e.
– The endofunctor D maps X to the set of discrete distributions

on X is an endofunctor. A discrete distribution is a function d :

X −→ [0, 1] such that
∑
x∈x d(x) = 1. The function X

f // Y is

mapped to DX
Df // DY that sends d to y 7→ ∑

x∈f−1(y)d(x).
– The endofunctor P maps X to the set of subsets of X. A func-

tion X
f // Y is mapped to PX

Pf // PY that sends U to
{f(x) | x ∈ U}.

Exercise 6. Accepting Integer makes machines that consist of
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– a set X of states
– a function ζ : X −→ Z×X
– a subset U ⊆ X of accepting states
– a current state x0 ∈ X

What endofunctor on Set is such a machine a pointed coalgebra for?

3 Subfunctors

Let F be an endofunctor on Set. A subfunctor G of F associates to
each set X a subset GX of FX, in such a way that for any function

X
f // Y and element a ∈ GX, we have (Ff)a ∈ GY . This enables

us to define GX
Gf // GY to be Ff , so G is also an endofunctor on

Set. If we have an F -coalgebra (X, ζ) we can ask: is it a G-coalgebra?
In other words, is ζ(x) ∈ GX for all x ∈ X?

For example, DfinX is the set of finite distributions on X, i.e.
those d ∈ DX such that the set {x ∈ X | d(x) > 0} is finite. A Dfin-
coalgebra is a special kind of probabilistic transition system.

Exercise 7. Which of these are subfunctors of P?

– X maps to the set of nonempty subsets of X (Hint: yes)
– X maps to the set of finite subsets of X (Hint: yes)
– X maps to the set of subsets of X of size at most 3
– X maps to the set of finite subsets of even size
– X maps to the set of countable subsets of X.

(If you know about cardinals:) Give all the subfunctors of P .

Thus we have lively transition systems and finitely branching tran-
sition systems.

4 Active and Passive States

In the examples above, the states of the system are passive, waiting
for input from outside. We could also consider a set of active states,
that are executing a program and will then output. For example, a
machine made by Interactive Input could be described as
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– a set Y of active states

– a function ξ : Y −→ Z× (Y Z)

– a current state y0 ∈ Y .

Or it could be described as

– a set X of passive states

– a set Y of active states

– a function ζ : X −→ Y Z

– a function ξ : Y −→ Z×X.

Each of these (leaving aside the current state) is a coalgebra. In
the last case we use an endofunctor on Set2 that maps (X, Y ) to
(Y Z,Z×X).

5 The Category of Coalgebras

Of course we want to make coalgebras into a category.

Definition 3. Let C be a category and let F be an endofunctor on
C. Let (X, ζ) and (Y, ξ) be F -coalgebras. A F -coalgebra morphism

From (X, ζ) to (Y, φ) is a morphism X
f // Y such that

X
f //

ζ

��

Y

ξ

��
FX

Ff
// FY

Now we get a category Coalg(F ) whose objects are F -coalgebras
and whose morphisms are F -coalgebra morphisms. Composition and
identities are the same as in C.

6 Final Coalgebras

Definition 4. Let C be a category. An object X is final (or termi-
nal) if for every object Y there is a unique morphism from X to
Y .
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A category can have more than one final object, but they are all
isomorphic. More precisely, final objects are unique up to unique
isomorphism.

A final F -coalgebra N is a final object in the category Coalg(F ).
Thus from any coalgebra M there is a unique coalgebra morphism
from M to N . It is called the anamorphism. In our case, the anamor-
phic image of a pointed Z×− coalgebra is its infinite trace. Exercise
Show that this is a coalgebra morphism, and that it’s unique.

Lemma 1. (Lambek’s Lemma) Let F be an endofunctor on a cat-

egory C. Let (X, ζ) be a final coalgebra. Then X
ζ // FX is an

isomorphism.

7 Infinite Lists

If you buy a machine from Integer Ltd., i.e. a pointed Z×− coalgebra
(X, ζ, x0), its full behaviour over time is described by an infinite
sequence of integers. This is called the infinite trace of (X, ζ, x). Two
machines with the same infinite trace are trace equivalent. They are
equivalent for all practical purposes. Admittedly they have different
states, but those states are internal so you cannot observe them.

So why bother with states at all? An employee at Integer Ltd.
called Lazy Liszt makes a machine in which the set of states is Zω,
the set of infinite sequences of integers. The behaviour function ζ
maps a sequence s to 〈s0, s

′〉, where s′ : n 7→ s(n + 1). Thus the
infinite trace of a state s is actually s.

This is a final coalgebra.

8 Infinite Trees

If you buy a machine from Integer and Boolean Inc., the full be-
haviour is defined by an infinite tree rather than an infinite list. To
be more precise, consider finite traces such as the following:

I pressed the red button.
The machine printed 17.
I pressed the bright pink button.
The machine printed TRUE.
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I pressed the red button.
The machine printed 42.

A finite trace is a sequence a0, b0, a1, b1, . . . , an−1, bn−1 where each ai
is a button and bi is an appropriate response (integer if ai is the red
button or green button, boolean if ai is the bright pink button).

Now an infinite tree is a set U of finite traces with the following
properties:

– the empty trace ε ∈ U
– if s and t are traces and s is a prefix of t and t ∈ U then s ∈ U .
– if s ∈ U and a is a button then there is a unique appropriate

response b to a such that s+ (a, b) ∈ U .

Now if U is an infinite tree, then for each button a

– let ba be the response such that (a, ba) ∈ U
– let Ua be the set of all traces t such that (a, ba) + t ∈ U .

The set of infinite trees, with the function ζ mapping U at a to
(ba, Ua), forms a coalgebra for

X 7→ (Z×X)× (Z×X)× (B×X)

This is a final coalgebra.

9 Bisimulation

I’ve bought two machines from Integer and Boolean Inc.
Machine I has state set X = {A,B}. Pressing the red button

– from state A, prints 3 and remains in state A
– from state B, prints 5 and moves to state A

Pressing the green button

– from state A, prints 8 and moves to state B
– from state B, prints 4 and remains in state B

Pressing the bright pink button

– from state A, prints TRUE and remains in state A
– from state B, prints FALSE and moves to state A.
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The current state is x0 = A.

Machine II has state set X ′ = N. Pressing the red button

– from state n < 6, prints 4 and moves to state n+ 7

– from even state n > 6, prints 3 and moves to state n+ 2

– from odd state n > 6, prints 5 and moves to state n+ 5

Pressing the green button

– from state n < 6, prints 9 and remains in state n

– from even state n > 6, prints 8 and moves to state n+ 25

– from odd state n > 6, prints 4 and remains in state n

Pressing the bright pink button

– from state n < 6, prints FALSE and moves to state n+ 1

– from even state n > 6, prints TRUE and moves to state n+ 8

– from odd state n > 6, prints FALSE and moves to state n+ 13

The current state is x′0 = 10.

I want to show these two machines have the same anamorphic
image—set of finite traces. But actually writing out the set of finite
traces is difficult. There is an alternative method.

Suppose that R is a relation from X to X ′, with the following
property. For any x R x′ and button a, we have ζax = 〈n, y〉 and
ζax
′ = 〈n, y′〉 with y R y′. Thus

related states
applied to the same input
give the same output
ending up in related states.

Such a relation is called a bisimulation between the two transition
systems.

Two pointed coalgebras (X, ζ, x0) and (X ′, ζ ′, x′0) are bisimilar
when there is some bisimulation R from (X, ζ) to (X ′, ζ ′) such that
x0 R x1.

For our example we could take R to be

{(A, n) | n > 6, n even } ∪ {(B, n) | n > 6, n odd }
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Theorem 1. Let (X, ζ, x0) and (X ′, ζ ′, x′0) be pointed coalgebras for
the endofunctor

X 7→ (Z×X)× (Z×X)× (B×X)

They are bisimilar iff they have the same anamorphic image (set of
finite traces).

Exercise 8. Machine III and Machine IV are produced by Interactive
Integer.

Machine III has set of states X = Z.

– A state n > 0, when it receives an input m, prints m + n and
moves to state −m− 2n.

– The state 0, when it receives an input m, prints 17 and moves to
state 2.

– A state n < 0, when it receives an input m, prints m − n and
moves to state m− 2n

The current state is x0 = 5
Machine IV has set of states Z × Z. State 〈n, n′〉, receiving in-

put m, prints m + n and moves to state 〈m+ 2n,m+ n+ n′〉. The
current state is x′0 = 〈5, 7〉.

Show the two machines are bisimilar.

10 Nondeterminism

A machine made by Nondeterministic Integer is a pointed coalgebra
for

X 7→ P(Z×X)

A machine made by Nondeterministic Integer And Boolean is a
pointed coalgebra for

X 7→ P(Z×X)× P(Z×X)× P(B×X)

A machine made by Nondeterministic Interactive Integer is a pointed
coalgebra for

X 7→ (P(Z×X))Z

Let (X, ζ) and (X ′, ζ ′) be coalgebras. Suppose thatR is a relation
from X to X ′ with the following property. For any x R x′ and input
m,
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– if 〈n, y〉 ∈ ζ(x)m then 〈n, y′〉 ∈ ζ ′(x′)m for some y′ such that
y R y′

– if 〈n, y′〉 ∈ ζ ′(x′)m then 〈n, y〉 ∈ ζ(x)m for some y such that
y R y′

ThenR is a bisimulation. If it has the first property, it’s a simulation.
The largest bisimulation (i.e. the union of all bisimulations) from

(X, ζ) to (X ′, ζ ′) is called bisimilarity. The largest simulation is called
similarity.

– Similarity is a preorder.
– Bisimilarity is an equivalence relation.
– Bisimilarity implies mutual similarity.
– Similarity implies finite and infinite trace inclusion. That means:

if x is similar to y, then every finite or infinite trace of x is a finite
or infinite trace of y.

Coalgebra morphisms are functional bisimulations

Due to Aczel, Mendler, Rutten, . . .
Let (X, ζ) and (Y, ξ) be coalgebras.

Let X
f // Y be a function.

Then f is a coalgebra morphism iff f , regarded as a relation, is
a bisimulation.

Corollary If (X, ζ)
f // (Y, ξ) is a coalgebra morphism, then

every x ∈ X is bisimilar to f(x).

Encompassment

(X, ζ) is encompassed by (Y, ξ) when for every state in X there is a
bisimilar state in Y .

You can think of this as saying that (Y, ξ) is at least as expressive
as (X, ζ).

This is a preorder on transition systems.

If (X, ζ)
f // (Y, ξ) is a coalgebra morphism, then (X, ζ) is en-

compassed by (Y, ξ).
If f is a surjective coalgebra morphism, then (X, ζ) and (Y, ξ)

are mutually encompassed.
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11 Extensional Coalgebras

A coalgebra M = (X, ζ) is extensional (often called strongly exten-
sional) when two states x, x′ ∈ X are bisimilar iff they are equal.
Such a coalgebra has various significant properties.

– Any coalgebra morphism from M is injective.
– Given another coalgebra N encompassed by M , there’s a unique

coalgebra morphism N
f // M . It’s the bisimilarity relation

from N to M . Moreover N is extensional iff f is injective.

Extensional Quotients

Let M = (X, ζ) be a coalgebra. Let Y be X quotiented by bisim-

ilarity. There’s a unique Y
ξ // FY such that the quotient map

X
p // Y is a coalgebra morphism from (X, ζ) to (Y, ξ). Moreover

(Y, ξ) is extensional.

Bisimilarity via Cospans

Two pointed coalgebras (X, ζ, x0) and (Y, ξ, y0) are bisimilar iff there
is a cospan of coalgebra morphisms

(X, ζ)
f

$$IIIIIIIII
(Y, ξ)

g

zzvvv
vv

vv
vv

(Z, φ)

such that f(x0) = g(y0).

Final Coalgebras

Suppose M = (X, ζ) is an F -coalgebra. Then it is final iff it is all-
encompassing and extensional.

Suppose M = (X, ζ) is a final F -coalgebra. Then two pointed
F -coalgebras are bisimilar iff they have the same anamorphic image.

SupposeM = (X, ζ) is an F -coalgebra. Then it is all-encompassing
iff its extensional quotient is final.
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12 Finding An All-Encompassing Coalgebra

In the case of P , there is no all-encompassing coalgebra.
But let’s consider finitely nondeterministic or countably nonde-

terministic systems (X, ζ). Any state x has a countable set of descen-
dants, and we can restrict ζ to this set to get a countable coalgebra.
This is isomorphic to a coalgebra carried by a subset of N.

Now take the sum of all coalgebras carried by a subset of N. This
is an all-encompassing system. So its extensional quotient is a final
coalgebra.

13 Relators

Let F be an endofunctor on Set. An F -relator maps each relation

X pR // Y to a relation FX pΓR // FY in such a way that the fol-
lowing hold.

– For any relations X pR,S // Y , if R ⊆ S then ΓR ⊆ ΓS.
– For any set X we have (=FX) ⊆ Γ(=X)

– For any relations X pR // Y pS // Z we have (ΓR); (ΓS) ⊆ Γ(R;S)

– For any functions Z
f // X and W

g // Y , and any relation

X pR // Y , we have Γ(f × g)−1R = (Ff × Fg)−1ΓR.

Γ is a conversive relator when Γ(Rc) = (ΓR)c for every relation

X pR // Y .
Let (X, ζ) and (X ′, ζ ′) be F -coalgebras. Let Γ be an F -relator.

A relation X pR // X ′ is a Γ-simulation when x R x′ implies
that ζ(x) ΓR ζ ′(x′).

By choosing different relators Γ, we get different notions of sim-
ulation and bisimulation.

Deterministic Examples

Z × R relates 〈n, x〉 to 〈n, x′〉 when x R x′. This gives an Z × −
relator, the in-house relator of Integer Ltd.
R× S × T relates 〈x, y, z〉 to 〈x′, y′, z′〉 when x R x′ and y S y′

and z T z′. We get the in-house relator of Integer and Boolean Inc.
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RZ relates p to p′ when pm R p′m for each input m. This gives
the in-house relator of Interactive Integer.
R+E relates inl x to inl x′ when x R x′ and also relates inr e to

inr e. This gives the in-house relator of Unreliable Integer.

Nondeterministic Examples

We have two P-relators.
Sim R relates U ∈ PX to V ∈ PY when

– for all x ∈ U there exists y ∈ V such that x R y

This gives simulation.
Bisim R relates U ∈ PX to V ∈ PY when

– for all x ∈ U there exists y ∈ V such that x R y
– for all y ∈ V there exists x ∈ U such that x R y.

This gives bisimulation.
If G is a subfunctor of F , then any F -relator is also a G-relator.

Systems with Divergence

A system diverges (or hangs) when it runs forever without producing
any output. For example, a machine made by Interactive Divergent
Integer is a pointed coalgebra for

X 7→ P(Z×X + {⇑})Z

This is similar to the Unreliable Integer machines we considered pre-

viously. Let (X, ζ) and (X ′, ζ ′) be such coalgebras. Let X pR // X ′

be a relation.
R is an inclusion simulation when for any x R x′ and input m,

– if x  m,n y then there exists y′ such that x′  m,n y′ and x′ R y′.
– if xm ⇑ then x′m ⇑.

If we just have the first condition, R is a lower simulation.
R is an smash simulation when for any xR x′ and input m, if

xm 6⇑ then

– x′m 6⇑
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– if x  m,n y then there exists y′ such that x′  m,n y′ and y R y′

– if x′  m,n y′ then there exists y such that x  m,n y and y R y′

If we just have the first and third conditions, R is an upper simula-
tion.

If R is an upper and lower simulation, it’s a convex simulation.
IfR and its converse are a lower (resp. upper, convex) simulation,

then R is a lower (resp. upper, convex) bisimulation
Altogether we obtain numerous (in fact nineteen) different rela-

tors on
X 7→ P(X + {⇑})

Three of them are conversive.

Probabilistic Systems

DX is the set of (discrete) distributions on X.
We need a D-relator for bisimulation.
Given a relation X pR // Y , we defines a relation DX pDR // DY .

This relates d ∈ DX to d′ ∈ DY when

dU 6 d′R(U)

for every U ⊆ X. Here

R(U)
def
= {y ∈ Y | ∃x ∈ U. xRy}

This is a conversive relator.

Endofunctor on Preord

Preord is the category of preordered sets and monotone functions.
Our endofunctor F on Set lifts to an endofunction FΓ on Preord.

– A preordered set (X,6) maps to (FX,Γ(6)).

– A monotone function A
f // B maps to Ff .

Saying it’s a lift means that we have

Preord
FΓ //

��

Preord

��
Set

F
// Set
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13.1 FΓ-coalgebras

What is an FΓ-coalgebra (X,6, ζ)? It is an F -coalgebra (X, ζ) to-
gether with an endosimulation (6) on (X, ζ).

We have a forgetful functor U : Coalg(FΓ) −→ Coalg(F ), which
maps (X,6, ζ) to (X, ζ).

U has a right adjoint E : Coalg(F ) −→ Coalg(FΓ) which maps
(X, ζ) to (X, similarity, ζ).

U has a left adjoint ∆ : Coalg(F ) −→ Coalg(FΓ) which maps
(X, ζ) to (X, (=X)ζ)

Since U and ∆ are right adjoints, they preserve final objects.
Therefore a final FΓ-coalgebra is an all-encompassing, extensional

F -coalgebra, preordered by similarity.
We can use a final FΓ-coalgebra to characterize both bisimilarity

and similarity.
Let (X, ζ) and (Y, ξ) be F -coalgebras (transition systems). Let f

and g be the anamorphisms from (X, (=X), ζ) and (Y, (=Y ), ξ).
Then for x ∈ X and y ∈ Y

– x is bisimilar to y iff f(x) = g(x)
– x is similar to y iff f(x) 6 g(x).

What if we take an all-encompassing system (e.g. a final F -
coalgebra) and quotient by similarity?

Is this a final coalgebra?
See my FoSSaCS’11 paper!


