Contextual Isomorphisms

Paul Blain Levy
University of Birmingham, UK
P.B.Levy@cs.bham.ac.uk

Abstract
What is the right notion of "isomorphism" between types, in a simple type theory? The traditional answer is: a pair of terms that are inverse, up to a specified congruence. We firstly argue that, in the presence of effects, this answer is too liberal and needs to be restricted, using Führmann’s notion of thunkability in the case of value types (as in call-by-value), or using Munch-Maccagnoni’s notion of linearity in the case of computation types (as in call-by-name). Yet that leaves us with different notions of isomorphism for different kinds of type.

This situation is resolved by means of a new notion of “contextual” isomorphism (or morphism), analogous at the level of types to contextual equivalence, of terms. A contextual isomorphism is a way of replacing one type with the other wherever it may occur in a judgement, in a way that is preserved by the action of any term with holes. For types of pure λ-calculus, we show that a contextual morphism corresponds to a thunkable isomorphism, and for computation types, to a linear isomorphism.

The traditional answer is too liberal and needs to be restricted. For types of pure λ-calculus, we show that a contextual morphism corresponds to a thunkable isomorphism, and for computation types, to a linear isomorphism.

categories and Subject Descriptors F.3.2 [Semantics of Programming Languages]

Keywords isomorphism, contextual equivalence, computational effects, call-by-push-value

1. Introduction
1.1 Question
Suppose we have a typed programming language, equipped with a suitable congruence ≡. When can we treat two types A and B as essentially the same?

In Sections 1.2 and 1.3 we consider two answers to this question that on the face of it are entirely different. Yet as we explain in Section 1.4, they amount to the same thing.

1.2 Map-Based Isomorphisms
Let us begin with the traditional answer to this question (Di Cosmo 1995; Fiore et al. 2002; Soloviev and Di Cosmo 2005): A and B are essentially the same when there is a pair of maps \(f : A \rightarrow B \) and \(g : B \rightarrow A \) such that \(f;g \equiv \text{id}_A \) and \(g;f \equiv \text{id}_B \). We call this a “map-based” isomorphism.

\[
\begin{align*}
x : \mathsf{bool} \vdash \quad & \quad x : \mathsf{unit} \vdash \\
\text{case } x \text{ of } \{ \text{true.} & \quad \text{read } l \text{ as } v. \\
& \quad \text{read } l \text{ as } v. \\
& \quad \text{false.} & \quad \text{read } l \text{ as } v. \\
& \quad \text{false.}
\} & \quad : \mathsf{unit} \\
& \quad \text{true.} & \quad \text{true.} \\
& \quad \text{false.} & \quad \text{false.} \\
& \quad 2 \ast w. & \quad 2 \ast w + 1. \\
& \quad 1 : \mathsf{w}. & \quad 1 : \mathsf{w}. \\
\} & \quad : \mathsf{bool}
\end{align*}
\]

Although this answer works well for a purely functional programming language, it is too liberal for a language that includes computational effects, such as mutable state or exceptions. We look at two examples.

1. Consider a call-by-value language with a memory location \(\mathsf{l} \) storing a natural number. Then the types \(\mathsf{bool} \) and \(\mathsf{unit} \)—ground types with two values and one value respectively—are isomorphic (Fig. 1). This situation is resolved by means of a new notion of “contex-
tual” isomorphism (or morphism), analogous at the level of types to contextual equivalence, of terms. A contextual isomorphism is a way of replacing one type with the other wherever it may occur in a judgement, in a way that is preserved by the action of any term with holes. For types of pure λ-calculus, we show that a contextual morphism corresponds to a thunkable isomorphism, and for computation types, to a linear isomorphism.

\[
\begin{align*}
\mathsf{N} \times \{ \mathsf{true} \} & \cong \mathsf{N} \times \{ \mathsf{false} \} \\
(k, \text{true}) & \mapsto (2k, \text{sole}) \\
(k, \text{false}) & \mapsto (2k + 1, \text{sole})
\end{align*}
\]

2. Consider a call-by-name language where an exception \(e \), carrying a natural number value, can be raised and handled. Then the types \(\mathsf{unit} \) and \(\mathsf{empty} \)—ground types with one value and no values respectively—are isomorphic (Fig. 2). For convenience we combine case-analysis and exception handling in a single try–case construct, cf. (Benton and Kennedy 2001). Again, this isomorphism may seem surprising but can be understood using denotational semantics. Each type denotes a \(\mathbb{N} \)-pointed set, i.e. set \(X \) with a sequence of distinguished elements \((c_n)_{n \in \mathbb{N}} \) representing the exceptional behaviours. A ground type with \(I \) values denotes \((I + \mathbb{N}, (\text{inr } n)_{n \in \mathbb{N}}) \). A map \(A \rightarrow B \) denotes...
be formulated in call-by-push-value, and also in call-by-value languages provided they include nullary function types. A composite of thunkable maps is thunkable, as is the inverse of a thunkable map if it exists.

- For computation types (or call-by-name types), we want to say that a good isomorphism preserves algebra structure, and for this we use Munch-Maccagnoni’s notion of *linearity* (Munch-Maccagnoni 2014). This can be formulated in call-by-push-value, and also in call-by-name languages provided they include unary sort types. The composite of linear maps is linear, as is the inverse of a linear map if it exists.

We conclude: *value types should be considered essentially the same when they are related by a thunkable isomorphism, and computation types when they are related by a linear isomorphism.* But this means that, unhappily, we have three different notions of map-based isomorphism (unrestricted, thunkable, linear) appropriate in different settings (pure language, value types, computation types). We would prefer a single notion that is appropriate in all settings.

1.3 Contextual Morphisms and Isomorphisms

Leaving the previous section aside, we shall give in this section an entirely different answer to our question, one that makes no mention of a map \(A \rightarrow B \) or a map \(B \rightarrow A \).

Consider the corresponding problem for terms. When should two terms (of the same type) be regarded as essentially the same? A well-known answer (Morris, Jr. 1968) is the notion of *contextual equivalence*, also called *observational equivalence*. It is based on the premise that we can recognize the “observable behaviour” of a *program*, a closed term of ground type. A pair of terms \(M \) and \(M' \) are contextually equivalent when, for any *program with a hole* \(N[\cdot] \), the programs \(N[M] \) and \(N[M'] \) have the same observable behaviour.

We tackle our question in a similar spirit. Instead of a notion of “observable behaviour”, we have a congruence \(\equiv \). This congruence might itself be contextual equivalence, but that is irrelevant.) If types \(A \) and \(B \) are “essentially the same”, then surely any \(\equiv \)-class of terms

\[
x : \text{bool} + (\text{nat} \rightarrow A), y : A \rightarrow A \vdash M : A \rightarrow \text{nat}
\]

should correspond to an \(\equiv \)-class of terms

\[
x : \text{bool} + (\text{nat} \rightarrow B), y : B \rightarrow B \vdash N : B \rightarrow \text{nat}
\]

So, considering the judgement with a type-hole\(^1\)

\[
x : \text{bool} + (\text{nat} \rightarrow [\cdot]), y : [\cdot] \rightarrow [\cdot] \vdash [\cdot] \rightarrow \text{nat}
\]

it does not matter whether \([\cdot]\) is filled with \(A \) or \(B \). In general, each \(\equiv \)-class of terms \(\Gamma[A] \vdash M : C[A] \) should correspond to an \(\equiv \)-class of terms \(\Gamma[B] \vdash \theta(M) : C[B] \).

So we want a bijection \(\theta \) on \(\equiv \)-classes of terms, for each judgement with a type-hole. But that is not enough; we also want each term constructor of the language, such as application or \(\lambda \)-abstraction, to *preserve* \(\equiv \). Saying that application preserves \(\equiv \) that for any terms

\[
\Gamma[A]
\vdash M : C[A] \rightarrow D[A]
\Gamma[A]
\vdash N : C[A]
\]

we have

\[
(\theta(M))((\theta(N)) \equiv \theta(MN)
\]

Similarly, saying that \(\lambda \)-abstraction preserves \(\equiv \) that for any term

\[
\Gamma[A], x : C[A] \vdash M : D[A]
\]

we have

\[
\lambda x. \theta(M) \equiv \theta(\lambda x. M)
\]

\(^1\) Because our type syntax does not include any binding, the distinction between type-holes and type identifiers is immaterial.
More generally, a term with holes $N_\{h \in H\}$ preserves θ when

$$N_\{\theta(M_h)\}_\{h \in H\} = \theta(N_\{M_h\}_\{h \in H\})$$

(The precise typing assumptions will be given in Section 2.) Clearly
if every term constructor preserves θ, then, by induction, so does
every term with holes. This requirement can be understood as saying
that θ is “invisible” to the syntax.

To summarize: a contextual isomorphism $A \cong B$ provides,
each judgement with a hole, a bijection on \equiv-classes of terms,
preserved by every term constructor or, equivalently, by every
term with holes. If, rather than a bijection, we have merely a function
sending each \equiv-class of terms $\Gamma[A] \vdash M : C[A]$ to an \equiv-class of
terms $\Gamma[B] \vdash \theta(M) : C[B]$, we call that a contextual morphism.

As we shall see in Section 8–9, there is no contextual isomorphism
$\text{bool} \cong \text{unit}$ in call-by-value with state, nor $\text{unit} \cong \text{empty}$
in call-by-name with exceptions.

1.4 Map-based vs Contextual Isomorphisms

Map-based and contextual isomorphism appear to be very different
notions, but it turns out that in many settings they correspond.

1. In pure λ-calculus, under reasonable assumptions on \equiv, contextual
morphisms correspond to unrestricted map-based isomorphisms.

2. In call-by-push-value calculi, under reasonable assumptions on \equiv,
contextual morphisms between value types correspond to
thunkable isomorphisms, and those between computation types
correspond to linear isomorphisms.

3. In effectful λ-calculi that include nullary function types, under
assumptions on \equiv that are reasonable for call-by-value semantics,
contextual morphisms correspond to thunkable isomorphisms.

4. In effectful λ-calculi that include unary sum types, under
assumptions on \equiv that are reasonable for call-by-name semantics,
contextual morphisms correspond to linear isomorphisms.

Each of these statements implies that every contextual morphism is
an isomorphism, a surprising fact in itself which does not hold in all languages\(^2\).

The importance of the above correspondences is that each notion
of isomorphism—contextual and map-based—has an advantage
over the other. On the one hand, contextual isomorphism provides a single, a priori notion of essential sameness that is appropriate for
any typed calculus equipped with a congruence, unlike map-based
isomorphism, which as mentioned above has a different variant
(unrestricted, thunkable or linear) for different settings. On the other hand, it is too complicated to present a isomorphism
$A \cong B$ in contextual form, for the same reason that it is difficult to prove
a contextual equivalence, viz. the quantification over all contexts.
Instead we may present the corresponding map-based isomorphism,
for which we need only exhibit two terms and check that they are
mutually inverse and, in the effectful setting, thunkable or linear.

1.5 Structure of Paper

Whereas the above introduction discussed map-based isomorphism
before contextual morphism, the paper will treat contextual morphism first since it is the main contribution. Although this work is applicable to all kinds of effects, we highlight state and exceptions
since they illustrate well the distinction between good and bad
isomorphisms.

For λ-calculus, whether pure or effectful, we define

- contextual morphism in Section 2;
- map-based isomorphism in Section 3.

We then study

- pure λ-calculus (Section 4)
- call-by-push-value (Section 5–8)
- call-by-value and call-by-name (Section 9).

In each case we present the correspondence between contextual morphisms and map-based isomorphisms. We give examples and non-examples in Sections 8–9.

1.6 Related work

Type isomorphisms for general references have been studied in
(Clairambault 2011), for classical logic in (Laurent 2005; Lau-
rent et al. 2005) and for polarized systems in (Munch-Maccagnoni
2013) (Section IV.5.3). Type isomorphisms have been studied in
the setting of game semantics in (Clairambault 2011; de Lataillade
2008; Laurent 2005). Functoriality in thunkable maps has appeared in
(Führmann 1999; Selinger 2001). A connection between parametricity
in isomorphisms and a result that every morphism is an isomorphism is explored in (Freyd et al. 1992; Robinson 1994).

1.7 Conventions

In a category C, an isomorphism is a morphism with a (necessarily
unique) inverse. The isomorphisms of C form a groupoid, written
$\text{Isos} \hspace{1pt} (C)$, e.g. $\text{Isos} \hspace{1pt} (\text{Set})$ is the groupoid of sets and bijections.

On a typed calculus, a congruence is an equivalence on typed
terms in context, preserved by every term constructor and by
weakening, i.e. if $\Gamma \subseteq \Gamma'$ then $\Gamma \vdash M : C$ implies
$\Gamma' \vdash M : C$. We write $Q^= (\Gamma \vdash C)$ for the set of \equiv-classes
of terms $\Gamma \vdash M : C$. A particular \equiv-class is written $(\Gamma \vdash M : C)^=\hspace{1pt}$.

2. Contextual Equivalence and Morphisms

We first reprise the notion of contextual equivalence, taking care
to spell out the typing assumptions involved, and then proceed by
analogy to define contextual morphism and isomorphism.

These are general definitions that make sense in any typed
calculus with term judgement $\Gamma \vdash M : C$.

2.1 Contextual Equivalence

Contextual equivalence involves the notion of a term with a hole
(also known as a context), given by the typing judgement

$$N_\hspace{1pt} : \hspace{1pt} (\Gamma \vdash C) \longrightarrow (\Delta \vdash D)$$

which says that N is a term in context Δ of type D that may contain
occurrences of a hole $[\cdot]$ to be replaced by a term $\Gamma \vdash M : C$. More
generally, we can consider terms with several holes: the typing judgement

$$N_\hspace{1pt} : \hspace{1pt} (\Gamma_h \vdash C_h)_\{h \in H\} \longrightarrow (\Delta \vdash D) \hspace{1pt} (\text{1})$$

saying that N is a term in context Δ of type D that may contain
occurrences of a hole $[\cdot]$, to be replaced by a term $\Gamma_h \vdash M_h : C_h$,
for each $h \in H$. The typing rules for terms with holes are the same
as those for \vdash e.g.

$$N_\hspace{1pt} : \hspace{1pt} (\Gamma_h \vdash C_h)_\{h \in H\} \longrightarrow (\Delta \vdash D) \hspace{1pt} (\text{2})$$

$$\lambda x. N_\hspace{1pt} : \hspace{1pt} (\Gamma_h \vdash C_h)_\{h \in H\} \longrightarrow (\Delta \vdash B \rightarrow D)$$

$$x \hspace{1pt} : \hspace{1pt} (\Gamma_h \vdash C_h)_\{h \in H\} \longrightarrow (\Delta \vdash B) \hspace{1pt} (x : B) \in \Delta \hspace{1pt} (\text{3})$$

with the additional axiom

$$[\cdot]_\hspace{1pt} : \hspace{1pt} (\Gamma_h \vdash C_h)_\{h \in H\} \longrightarrow (\Gamma' \vdash C_h) \hspace{1pt} (\text{4})$$

For example, in a pure language of arithmetic with no identifiers and only
ground types, there would be a unique contextual morphism $\text{empty} \rightarrow \text{unit}$
but none in the opposite direction.

\(^2\) For example, in a pure language of arithmetic with no identifiers and only
ground types, there would be a unique contextual morphism empty \rightarrow unit
but none in the opposite direction.
As explained in (Pitts 1997), we do not identify terms with holes that are α-equivalent, e.g. \(\lambda x.[\] \) and \(\lambda y.[\] \) cannot be identified.

For a term with holes

\[
N' : (\Gamma_h \vdash C_h)_{h \in H} \quad (\Delta \vdash D)
\]

we obtain from any family of terms \(M = (\Gamma_h \vdash M_h : C_h)_{h \in H} \) a term \(\Delta \vdash N[M] : D \), by induction on \(N \) in the evident way. It is \(M_h \), using weakening, in the case \(N = [_] \). Likewise, for any congruence \(\equiv \), we obtain a function \(\equiv^= \)

\[
\prod_{h \in H} Q^= (\Gamma_h \vdash C_h)[A] \xrightarrow{\Delta[\]=} Q^= ((\Delta \vdash D)[A])
\]

\[
\prod_{h \in H} Q^= (\Gamma_h \vdash C_h)[B] \xrightarrow{\Delta[\]=} Q^= ((\Delta \vdash D)[B])
\]

Figure 3. \(\theta \) must be preserved by \(N' \)

Whereas contextual equivalence is defined wrt an observation system, contextual isomorphism (or morphism) is defined wrt a congruence.

Definition 2. Let \(A \) and \(B \) be types. A contextual morphism \(\theta : A \rightarrow B \), with respect to a congruence \(\equiv \), consists of a function

\[
\theta_{\Gamma\cdot-C} : Q^= ((\Gamma \vdash C)[A]) \rightarrow Q^= ((\Gamma \vdash C)[B])
\]

for each judgement with a type-hole \(\Gamma \vdash C \), where \(\theta \) is preserved by every term with type-hole and holes

\[
N' : (\Gamma_h \vdash C_h)_{h \in H} \quad (\Delta \vdash D)
\]

i.e. Figure 3 commutes, \(\theta \) is a contextual isomorphism when each function \(\theta_{\Gamma\cdot-C} \) is a bijection.

Remark 1. As stated in Section 1.3, it suffices for \(\theta \) to be preserved by every term constructor. Figure 3 then follows by induction on \(N' \).

The category of types and contextual morphisms will be written \(\text{Con}_1 \), with the type explained in the next section. We take \(\equiv \) to be fixed. The groupoid of types and contextual isomorphisms is precisely \(\text{Isos} \) (Con1).

2.3 Families of Terms, Families of Types

So far we have considered contextual equivalence between terms and contextual morphisms between types. These notions can be generalized to \(\text{families of terms or of types} \).

Let \((\Gamma_h \vdash C_h)_{h \in H} \) be a family of judgements. Then two families of terms

\[
M = (\Gamma_h \vdash M_h : C_h)_{h \in H} \\
M' = (\Gamma_h \vdash M'_h : C_h)_{h \in H}
\]

are said to be contextually equivalent wrt a specified observation system when for any ground type \(D \) and program with a hole \(N : (\Gamma \vdash C) \rightarrow (\Delta \vdash D) \) we have \(\langle N[M] \rangle = \langle N[M'] \rangle \).

We proceed likewise for families of types. Let \(K \) be a set. We form a category \(\text{Con}_K \), in which an object is an \(K \)-indexed family of types \(A = (A_k)_{k \in K} \). A morphism \(\theta : A \rightarrow B \) is a contextual morphism wrt \(\equiv \), i.e. a function

\[
\theta_{\Gamma\cdot-C} : Q^= ((\Gamma \vdash C)[A]) \rightarrow Q^= ((\Gamma \vdash C)[B])
\]

for each judgement with \(K \)-indexed family \(\Gamma \vdash C \), where \(\theta \) is preserved by every term with type-holes and holes

\[
N' : (\Gamma_h \vdash C_h)_{h \in H} \quad (\Delta \vdash D)
\]

i.e. Figure 3, with \(A \) and \(B \) replaced by \(A \) and \(B \), commutes.

3. Map-based Isomorphisms

We begin by recalling the traditional notion of isomorphism of types. Consider any typed calculus that includes the following typing rules:

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Gamma, x : A \vdash N : B \\
\Gamma \vdash \text{let } M \text{ be } x : N : B
\end{align*}
\]
Here let M be x. N can be taken either as primitive or to abbreviate $(\lambda x. N)M$.

Let \equiv be a congruence that includes the laws of Fig. 4, and hence is preserved by renaming. These laws are reasonable regardless of whether the language is pure, call-by-value effectful or call-by-name effectful. We form the category Map in which

- an object is a type
- a morphism $A \to B$ is a map, i.e. an \equiv-class of terms $x : A \vdash M : B$
- the identity on A is $(x : A \vdash x : A)^\equiv$
- the composite of $(x : A \vdash M : B)^\equiv$ and $(x : B \vdash N : C)^\equiv$ is $(x : A \vdash \text{let } M \text{ be } x. N : C)^\equiv$.

A map-based isomorphism is an isomorphism in Map.

4. Pure λ-Calculus

We come to our first main result. For simply typed λ-calculus, with a congruence \equiv that includes the β- and η-laws, the category Con_\equiv is isomorphic to $\text{Isos}(\text{Map})$. This justifies a posteriori the traditional notion of isomorphism. More generally, we shall see that Con_K is isomorphic to $\text{Isos}(\text{Map})^K$.

4.1 Syntax and Laws

Suppose a set of base types is given. Then our types are inductively defined:

\[
A \ ::= \ b \text{ (base type)} \mid 0 \mid A + A \mid 1 \mid A \times A \mid A \to A
\]

Suppose a set of typed constants3 is also given. Then our terms are inductively defined:

\[
M \ ::= \ c \text{ (constant)} \mid x \mid \text{let } M \text{ be } x. N \mid \text{case } M \text{ of } \{ \} \mid \text{inl } M \mid \text{inr } M \mid \text{inl } x \text{ inr } M \mid \langle \rangle \mid \langle M, M \rangle \mid \pi M \mid \pi' M \mid \lambda x M \mid M M
\]

We omit the evident typing rules. Let \equiv be a congruence that includes all the laws in Fig. 5, and hence is preserved by substitution. All these laws are reasonable for pure λ-calculus, though in the presence of effects they would not be.

4.2 Functoriality and Naturality in Isomorphisms

It is well known (Lambek and Scott 1986) that the category Map is bicartesian closed. For any such category \mathcal{C}, both \times and $+$ are functors $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$. By contrast, \to is contravariant on the left: it forms a functor $\mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$. Figure 6 displays these functors for Map. The mixed variance does not trouble us, since we use only isomorphisms. Every type C with \mathcal{K} type-holes gives a (covariant) functor $\text{Isos}(\text{Map})^K \to \text{Isos}(\text{Map})$, by induction.

3 More generally, we could consider binding operations rather than constants, but that extra generality is redundant since we have included product and function types.
(x : A ⊢ M : B)\(\equiv\) + (x : C ⊢ N : D)\(\equiv\) (x : A + C ⊢ \text{case } x \text{ of } \{ \text{inl } x . \text{inl } M, \text{inr } x . \text{inr } N \} : B + D)\(\equiv\)
(x : A ⊢ M : B)\(\times\) (x : C ⊢ N : D)\(\equiv\) (x : A × C ⊢ (M[π/x], N[π'/x]) : B × D)\(\equiv\)
(x : B ⊢ M : A)\(→\) (x : C ⊢ N : D)\(→\) (x : A → C ⊢ \text{λ}y. N[(x(M[y/x])/x)] : B → D)\(\equiv\)

Figure 6. The functors +, × and → applied to morphisms of Map

Hence, for each judgement with \(K\) type-holes \(Γ \vdash C\), we obtain a functor
\[
Q^\equiv((Γ \vdash C)[\cdot]) : \text{Isos (Map)}^K \rightarrow \text{Set}
\]

It sends an object \(A \in \text{Map}^K\) to \(Q^\equiv((Γ \vdash C)[A])\), and an isomorphism \(σ : A \cong B\) to
\[
Q^\equiv((y : D[σ]^{-1})_{(y, D) ∈ Γ \vdash C[σ]})
\]

Finally, every term with type-holes and holes is natural in isomorphisms.

Proposition 1. Let \(N : ((Γ_1 ⊢ C_1) h_{n \in H} K \rightarrow (Γ \vdash D)).\) For every isomorphism \(σ : A \cong B\) in \(\text{Map}^K\) the following square in \(\text{Set}\) commutes.
\[
\begin{array}{c}
\prod_{h \in H} Q^\equiv((Γ_1 \vdash C_1)[A]) \xrightarrow{\text{N}[A]\equiv} Q^\equiv((Γ \vdash D)[A])

\mid \prod_{h \in H} Q^\equiv((Γ_1 \vdash C_1)[σ]) \xrightarrow{Q^\equiv((Γ \vdash D)[σ])}

\prod_{h \in H} Q^\equiv((Γ_1 \vdash C_1)[B]) \xrightarrow{\text{N}[B]\equiv} Q^\equiv((Γ \vdash D)[B])
\end{array}
\]

Proof. Induction on \(N\). \(\square\)

4.3 Characterizing Contextual Morphisms

Let \(K\) be a set.

Definition 4. Let \(σ : A \cong B\) in \(\text{Map}^K\). We write \(Gσ\) for the following contextual isomorphism \(A \rightarrow B\). For each judgement \(Γ \vdash C\) with \(K\) type-holes,
\[
(Gσ)_{Γ \vdash C} : Q^\equiv((Γ \vdash C)[A]) \rightarrow Q^\equiv((Γ \vdash C)[B])
\]
is \(Q^\equiv((Γ \vdash C)[σ])\).

The required commutativity of Fig. 3 follows from Prop. 1. We therefore obtain an identity-on-objects functor \(G : \text{Isos (Map)}^K \rightarrow \text{Con}_K\). It preserves identities and composition because (3) does. Our goal is to show that it is an isomorphism of categories. The proof resembles that of the Yoneda Lemma.

First, a trivial observation.

Lemma 2. For any type \(C\),
\[
C[\cdot] : \text{Isos (Map)}^K \rightarrow \text{Isos (Map)}
\]
is the constant functor to \(C\).

Proof. Induction on \(C\). \(\square\)

Next we describe how to recover \(σ\) and \(σ^{-1}\) from \(Gσ\).

Lemma 3. Let \(σ : A \cong B\) in \(\text{Map}^K\).

For each \(k \in K\)
\[
σ_k = (Gσ)_{x:A \vdash x[k]} \text{id}_A
\]
\[
σ_k^{-1} = (Gσ)_{x:[k] \vdash A_k} \text{id}_A
\]

Proof. \(σ_k\) must be of the form \((x : A_k \vdash M : B_k)\). For (4),
\[
\text{RHS} = Q^\equiv((x : A_k \vdash [k])[σ]) \text{id}_A
\]
\[
= Q^\equiv((x : A_k[σ]^{-1} \vdash [k])[σ]) \text{id}_A
\]
\[
= Q^\equiv((x : \text{id}_{A_k} \vdash σ_k)) \text{id}_A
\]
by Lemma 2
\[
= (x : A_k \vdash M[x[k]/x] : B_k)\equiv
\]
\[
σ_k
\]
(5) is proved similarly. \(\square\)

Theorem 4. \(G\) is an isomorphism of categories \(\text{Isos (Map)}^K \cong \text{Con}_K\).

Proof. Given a contextual morphism \(θ : A \rightarrow B\), we must show \(θ = Gσ\) for a unique \(σ : A \cong B\) in \(\text{Map}\).

For each \(k \in K\), set \(σ_k \equiv θ_{x:A_k \vdash [k]} \text{id}_A\)
\[
σ_k^{-1} \equiv θ_{x:[k] \vdash A_k} \text{id}_A
\]

By Lemma 3 this is the only possibility. Preservation of \(θ\) by
\[
\text{let } [y_0] \text{ be } x. [1]
\]
\[
(x : A_k \vdash [k]), ([k] \vdash [k]) \xrightarrow{K} (x : A_k \vdash A_k)
\]
applied to \(\text{id}_{A_k}, \text{id}_{A_k}\) gives
\[
σ ; σ^{-1} = θ_{x:A_k \vdash A_k} (x : A \vdash \text{let } x \text{ be } x. x : A)\equiv
\]
\[
θ_{x:A_k \vdash A_k} \text{id}_A
\]
Preservation of \(θ\) by
\[
x : \xrightarrow{K} (x : A_k \vdash A_k)
\]
applied to nothing gives
\[
\text{id}_A = θ_{x:A_k \vdash A_k} \text{id}_A
\]
so \(σ_k ; σ_k^{-1} = \text{id}_{A_k}\). By a similar argument \(σ^{-1}_k ; σ_k = \text{id}_{B_k}\). So \(σ\) and \(σ^{-1}\) are inverse.

Next we show that for every type \(C\) with \(K\) type-holes,
\[
C[σ] = θ_{x:C \vdash [C]} \text{id}_{C[A]}\equiv
\]
\[
C[σ]^{-1} = θ_{x:C \vdash [C]} C[A]\text{id}_{C[A]}
\]
by induction on \(C\). The case where \(C = [\cdot]_k\) is trivial, and each type constructor case involves one appeal to \(θ\)-preservation.

Finally, given a judgement \(Γ \vdash D\) with \(K\) type-holes and \(ω \in Q^\equiv((Γ \vdash D)[A])\), we wish to show
\[
θ_{Γ \vdash D} \omega = Q^\equiv((Γ \vdash D)[σ]) \omega
\]
(6)

Pick \(M ∈ ω\) and an enumeration \(Γ = y_0 : C_0, \ldots, y_{n-1} : C_{n-1}\). Then preservation of \(θ\) by
\[
\text{let } (\text{let } y_0 \text{ be } x. [0]) \text{ be } y_0.
\]
\[
\ldots
\]
\[
\text{let } (\text{let } y_{n-1} \text{ be } x. [n-1]) \text{ be } y_{n-1}.
\]
\[
\text{let } M \text{ be } x. [n]
\]
\[
(x : C_i \vdash C_i[A])_{i<n}, (x : D[A] \vdash D) \xrightarrow{K} (Γ \vdash D)
\]

Contextual Isomorphisms

6

2016/11/28
applied to \(id_{C_0}, \ldots, id_{C_{n-1}}, id_D\) gives (6).

Corollary 5. Every contextual morphism, i.e. every morphism in \(\text{Con}_{K}^\text{K}\), is an isomorphism.

5. Call-by-Push-Value

5.1 The Calculus

We now turn from pure to effectful \(\lambda\)-calculus, specifically call-by-push-value. In this section, we give the definition of contextual morphism, but referring only to computations, not values.

We briefly recall call-by-push-value; for details, see (Leyvy 2004). Suppose a set of value base types \((b)\) and a set of computation base types \((B)\) are given. Then their types are inductively defined:

- **Value types** \(A ::= b | UB | 0 | A + A | 1 | A \times A | \text{nat}\)
- **Computation types** \(B ::= b | FA | 1_{\Pi} | B \times B | A \rightarrow B\)

Computation types are often underlined. \(UB\) is the type of thunks of computations in \(B\), whilst \(FA\) is the type of computations whose goal is to return a value of type \(A\). Functions are computations (in call-by-push-value) so function types are computation types. A **typing context** \(\Gamma\) is a finite set of identifiers, each assigned a value type, written \(x : A\). There are two typing judgements: \(\Gamma \vdash^v V : A\) for values and \(\Gamma \vdash^v M : B\) for computations.

Suppose a set of typed constant values and a set of typed computation constants are given. The typing rules are shown in Fig. 7. Sequencing is represented as \(M \to x\; N\). For typing contexts \(\Gamma, \Delta\), a substitution \(k : \Gamma \rightarrow \Delta\) associates to each \((x : A) \in \Gamma\) a value \(\Delta \vdash^v k(x) : A\). This induces a substitution function \(k^*\) from terms in context \(\Gamma\) to terms in context \(\Delta\). A congruence is an equivalence relation on computations in context \(\Gamma\vdash^v M \equiv^N B\) and on values in context \(\Gamma \vdash^v V \equiv^W A\) that is preserved by each term constructor and by weakening.

Note that we disallow pattern-matching into values. This is to avoid the operational complication of values needing to be evaluated, so-called *complex values*. However, somewhat inconsistently and purely to keep the examples easy, we have included some complex values: \(V + 1, 2 * V\) and \(V = W\).

A strong monad \(T\) on a suitable category \(V\) gives a denotational semantics of call-by-push-value, where a value type denotes a \(V\)-object and a computation type denotes an (Eilenberg-Moore) \(T\)-algebra. In particular \([UB]\) is the carrier of \([B]\), and \([FA]\) the free \(T\)-algebra on \([A]\). A typing context \(\Gamma\) denotes \(\prod_{(x : A) \in \Gamma\;} [A]\). A value \(\Gamma \vdash^v V : B\) denotes a \(V\)-morphism \(\Gamma\rightarrow [B]\), and a computation \(\Gamma \vdash^v M : B\) denotes a \(V\)-morphism \(\Gamma\rightarrow [B]\).

To translate to call-by-push-value, a call-by-value type \(A\) is mapped to a value type \(A^v\), and a call-by-value term \(\Gamma \vdash^v M : B\) to a computation \(\langle x : A^v\rangle_{(x : A) \in \Gamma\;} \Gamma \vdash^v M^v : FB^vB\). In particular:

- \(x^v = \text{return } x\)
- \((\text{let } M \text{ be } N)^v = M^v \text{ to } x, N^v\)

A call-by-name type \(A\) is mapped to a computation type \(A^n\), and a call-by-name term \(\Gamma \vdash^v M : B\) to a computation \(\langle x : A^n\rangle_{(x : A) \in \Gamma\;} \Gamma \vdash^v M^n : B^n\). In particular:

- \(x^n = \text{force } x\)
- \((\text{let } M \text{ be } N)^n = \text{let thunk } M^n \text{ be } N^n\)

5.2 Contextual Morphisms

In call-by-push-value, when we define contextual morphism \(A \rightarrow B\), we do not want \(A\) to be replaceable by \(B\) in all judgements, only in computation judgements. For example, we want an isomorphism \(0 \times 0 \equiv 0\), yet there is no value \(x : 0 \times 0 \vdash^v V : 0\) because of our disallowance of pattern-matching into values.

Remark 2. Readers who prefer to include pattern-matching into values would have a value \(x : 0 \times 0 \vdash^v \text{ case } x \text{ of } \{\} : 0\), so they should instead consider the following example. In call-by-push-value with type recursion, we want an isomorphism \(x : \text{rec } X.1 \times X \equiv 0\), yet there is no value \(x : \text{rec } X.1 \times X \vdash^v V : 0\).

We write \(Q^v(\Gamma \vdash^v C)\) for the set of \(\equiv\)-classes of computations \(\Gamma \vdash^v M : C\). A particular \(\equiv\)-class is written \((\Gamma \vdash^v M : C)^v\). Any computation with computation holes

\[N^v : (\Gamma_h \vdash^v C_h)_{h \in H} \Rightarrow (\Delta \vdash^v D)\]

gives rise to a function \(N^v\)

\[\prod_{h \in H} Q^v(\Gamma_h \vdash^v C_h) \rightarrow Q^v(\Delta \vdash^v D)\]

\[(\Gamma_h \vdash^v M_h : C_h)_{h \in H} \rightarrow (\Delta \vdash^v N(M_h)_{h \in H} : D)^v\]

Definition 5. Let \(K\) and \(L\) be sets. Types with \(K\) value and \(L\) computation type-holes are defined by the syntax:

\[A ::= b | UB | 0 | A + A | 1 | A \times A | \text{nat} | \langle k \rangle (k \in K) \]

\[B ::= b | FA | 1_{\Pi} | B \times B | A \rightarrow B | \langle l \rangle (l \in L)\]

We then define in the evident way:

- **typing context with \(K\) value and \(L\) computation type-holes**
- **value judgement (or computation judgement) with \(K\) value and \(L\) computation type-holes**
- **value with type-holes and holes, written**
- **computation with type-holes and holes, written**

\[V : (\Gamma_h \vdash^v C_h)_{h \in H} {\xrightarrow{K,L}} (\Delta \vdash^v D)\]

\[N^v : (\Gamma_h \vdash^v C_h)_{h \in H} {\xrightarrow{K,L}} (\Delta \vdash^v D)\]

Let \(A\) and \(B\) be value types. A contextual morphism \(\theta : A \rightarrow B\), with respect to a congruence \(\equiv\), consists of a function

\[\theta_{A \rightarrow C} : Q^v(\Gamma \vdash^v C)[A] \rightarrow Q^v(\Gamma \vdash^v C)[B]\]

for each computation judgement with a value-type hole \(\Gamma \vdash^v C\), such that \(\theta\) is preserved by every computation with a value-type hole and computation holes

\[N^v : (\Gamma_h \vdash^v C_h)_{h \in H} {\xrightarrow{I,1_0}} (\Delta \vdash^v D)\]

i.e. Fig. 8 commutes. \(\theta\) is a contextual isomorphism when every function \(\theta_{A \rightarrow B}\) is a bijection.

Remark 3. By contrast with Remark 1, we cannot meaningfully say that every \(\theta\) is preserved by every term constructor, because it is given only on computation judgements.

The category of value types and contextual morphisms is written \(\text{Con}_{K,0}\). We likewise define the category \(\text{Con}_{K,1}\) of computation types and contextual morphisms. We can generalize both these categories by working with families of types, as in Section 2.3. Let \(K\) and \(L\) be sets; then we define a category \(\text{Con}_{K,L}\), in which an object

\[A = (A_k)_{k \in K}, (A_l)_{l \in L})\]

consists of an \(K\)-indexed family of value types and a \(L\)-indexed family of computation types. A morphism \(\theta : A \rightarrow B\) is a contextual morphism, which consists of a function

\[\theta_{A \rightarrow C} : Q^v(\Gamma \vdash^v C[A]) \rightarrow Q^v(\Gamma \vdash^v C[B])\]
\[\begin{array}{ll}
\Gamma \vdash c : A & (c : A \text{ value constant}) \\
\Gamma \vdash c : B & (c : B \text{ computation constant}) \\
\Gamma \vdash V : A & \Gamma \vdash M : FA, \Gamma, x : A \vdash N : B & \Gamma, x : A \vdash M : B \\
\Gamma \vdash \text{return } V : FA & \Gamma \vdash M \text{ to } N : B & \Gamma \vdash \lambda x. M : A \to B \\
\Gamma \vdash x : A & \Gamma \vdash M : B & \Gamma \vdash V : A & \Gamma \vdash M \to V : B \\
(\Gamma \vdash x : A) \in \Gamma & \Gamma \vdash M : B & \Gamma \vdash \text{thunk } M : UB & \Gamma \vdash \text{force } V : B \\
\Gamma \vdash \text{inl } V : A + A' & \Gamma \vdash \text{inr } V : A + A' \\
\Gamma \vdash V : A + A' & \Gamma, x : A \vdash M : B & \Gamma, y : A' \vdash M' : B \\
\Gamma \vdash \text{case } V \text{ of } \{ \} : B & \Gamma \vdash \text{split } V \text{ as } \langle \cdot \rangle : B \\
\Gamma \vdash V : 0 & \Gamma \vdash M : B & \Gamma \vdash M' : B' & \Gamma \vdash M : B \cup B' & \Gamma \vdash \pi M : B \\
\Gamma \vdash \text{case } V \text{ of } \{ \} : B & \Gamma \vdash \text{split } V \text{ as } (\langle x, y \rangle) : M : B \\
\end{array} \]

Natural numbers
\[\begin{array}{ll}
\Gamma \vdash \text{const}_n : \text{nat} & \Gamma \vdash V + 1 : \text{nat} & \Gamma \vdash \text{case } V \text{ as } \{ 0, M, x + 1 \} : B \\
\Gamma \vdash V : \text{nat} & \Gamma \vdash V' : \text{nat} & \Gamma \vdash \text{case } V \text{ as } \{ 2, x, 2 + x + 1 \} : B \\
\Gamma \vdash V = V' : 1 + 1 & \Gamma \vdash \text{case } V \text{ as } \{ \text{true}, M, \text{false} \} : B \\
\Gamma, x : A \vdash M : B & \Gamma, x : A \vdash N : B & \Gamma, y : \text{nat} \vdash M' : B \\
\end{array} \]

State
\[\begin{array}{ll}
\Gamma \vdash \text{read } 1 \text{ as } x : M : B & \Gamma \vdash \text{case } V \text{ of } \{ \} : B \\
\end{array} \]

Exceptions
\[\begin{array}{ll}
\Gamma \vdash \text{raise } (e, V) : B & \Gamma \vdash \text{try } M \text{ to } x. N, \text{ catch } (e, y). N' : B \\
\end{array} \]

\[\begin{array}{c}
\Pi_{h \in H} Q^\equiv((\Gamma_h \vdash c_h)_{c \in H}[A]) \\
\underbrace{N[A]}_{\equiv} \\
\Pi_{h \in H} Q^\equiv((\Gamma_h \vdash c_h)_{c \in H}[B]) \\
\underbrace{N[B]}_{\equiv} \\
\end{array} \xrightarrow{\theta_{\Delta \vdash c \equiv}} Q^\equiv((\Delta \vdash D)[A]) \\
\xrightarrow{\theta_{\Delta \vdash c \equiv}} Q^\equiv((\Delta \vdash D)[B]) \\
\]

Figure 7. Terms of call-by-push-value

Figure 8. \(\theta \) must be preserved by \(N \)

for each computation judgement with \(K \) value and \(L \) computation type-holes \(\Gamma \vdash c \in C \), such that \(\theta \) is preserved by every computation with type-holes and computation holes
\[N : (\Gamma_h \vdash c_h)_{c \in H} \xrightarrow{\theta_{K,L}} (\Delta \vdash D) \]

The isomorphisms in \(\text{Con}_{K,L} \) are precisely the contextual isomorphisms.

6. Thunkability and Linearity

Our aim is to characterize contextual morphisms by analogy with Section 4.3: a contextual morphism between value types corresponds to a thunkable isomorphism, and a contextual morphism between computation types to a linear isomorphism. Before doing this we need to explain thunkability and linearity and their properties. Let \(\equiv \) be a congruence that includes all the laws of Fig. 9–10; hence it is preserved by substitution of values into computations.

Definition 6.

1. A computation \(\Gamma \vdash c : M : FA \) is thunkable up to \(\equiv \) when
\[\Gamma \vdash \text{return thunk } M \equiv M \text{ to } x. \text{ return thunk return } x \quad \text{FUFA} \quad (7) \]

2. A computation \(\Gamma, u : U B \vdash c : M : C \) is linear in \(u \) up to \(\equiv \) when
\[\Gamma, z : U F U B \vdash \text{force } z \text{ to } u. M \equiv \text{let thunk (force } z \text{ to } u. \text{ force } u) \text{ be } u. M : C \quad (8) \]

Equation (7) is intended to express the idea that \(M \) is effect-free, and equation (8) is intended to say that \(M \) is effect-preserving. We explain these in terms of the semantics given by a strong monad. **Thunkability** A monad \(T \) is of coextension type when the fork
\[1_T \xrightarrow{\eta} T \xrightarrow{\eta T} T^2 \]
is an equalizer (Bucalo et al. 2003). This is equivalent to \(\eta_X \) being a regular monomorphism for all \(X \) (Barr and Wells 1985).
let V be x. M ≡ M[V/x]
(return V) to x. M ≡ M[V/x]
force thunk V ≡ M

case (inl V) of {inl x. M, inr y. M'} ≡ M[V/x]
case (inr V) of {inl x. M, inr y. M'} ≡ M'[V/y]
split () as (). M ≡ M

split (V, V') as (x, y). M ≡ M[V/x, V'/y]
π ≪ M, M' ≫ ≡ M
π' ≪ M, M' ≫ ≡ M'
(λx.M)V ≡ M[V/x]
M ≡ M to x. return x
V ≡ thunk force V
M[V/z] ≡ case V of { }
M[V/z] ≡ case V of { inl x. M[inl x/z], inr y. M[inr y/z]}
M[V/z] ≡ split V as (). M[()/z]
M[V/z] ≡ split V as (x, y). M[(x, y)/z]
M ≡ ≪
M ≡ ≪πM, π'M ≫
M ≡ λx.(M x)

(P to x. M) to y. N ≡ P to x. (M to y. N)
≪ ≪ ≡ P to x. ≪ ≪
≪P to x. M, P to x. M' ≫ ≡ P to x. ≪M, M' ≫
λy.(P to x. M) ≡ P to x. λy.M

Figure 9. Laws of call-by-push-value (typing and freshness assumptions omitted)

6, p. 110]. Every monad on Set satisfies it, except for those isomorphic to the monad \(X \mapsto 1 \) or to the monad \(X \mapsto \begin{cases} \emptyset & (\Delta = \emptyset) \\ 1 & \text{otherwise} \end{cases} \). Thunkability of \(\Gamma \vdash \Delta : M : FA \) says that the diagram

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{[\Gamma]} & T[\Delta] \\
\downarrow \leftarrow & & \downarrow \leftarrow \\
[\Delta] & \xrightarrow{[\Delta]} & T[\Gamma]
\end{array}
\]

commutes. So if \(T \) is of code\

scent type, there is a unique \(\nabla \)-morphism \(f : [\Gamma] \to [\Delta] \) such that \(f \) is a \(\nabla \)-morphism \(f : \Delta \to \Gamma \) satisfying

\[
\begin{array}{ccc}
X & \xrightarrow{f} & \Delta \\
\downarrow & & \downarrow \\
\nabla & \xrightarrow{\nabla} & \nabla
\end{array}
\]

\[
\begin{array}{ccc}
\nabla & \xrightarrow{\nabla} & \nabla \\
\downarrow & & \downarrow \\
\Gamma & \xrightarrow{[\Gamma]} & T[\Delta]
\end{array}
\]

without performing effects.

Linearity Let \(T \) be a monad with strength \(t \). For a \(\nabla \)-object \(X \) and \(\nabla \)-algebras \((Y, \theta) \) and \((Z, \phi) \), a \(\nabla \)-algebra homomorphism \((Y, \theta) \to (Z, \phi) \) is a \(\nabla \)-morphism \(f : X \times Y \to Z \) satisfying

\[
\begin{array}{ccc}
X \times TY & \xrightarrow{f \times \nabla} & T(X \times Y) \\
\downarrow & & \downarrow \\
X \times Y & \xrightarrow{f} & Z
\end{array}
\]

Linearity of \(\Gamma, u : UB \vdash \Delta : C \) in \(u \) says that \([\Delta]\) is a \(\nabla \)-algebra homomorphism \(\begin{array}{c} B \xrightarrow{[\Gamma]} C \end{array} \).

Remark The above account is intended to give a basic grasp of thunkability and linearity, but there are more general models of call-by-push-value given not by a monad but by an adjunction \(F \dashv U : D \to C \). In such models, thunkable maps correspond to \(C \)-morphisms only if the adjunction is of codescent type: linear maps correspond to \(D \)-morphisms only if it is of descent type. Many models of interest enjoy these properties, and any model can be completed to one that enjoys them (Munch-Maccagnoni 2014).

An elegant and useful characterization of thunkability and linearity in terms of associativity between call-by-value composition (to) and call-by-name composition (let thunk) was presented in (Munch-Maccagnoni 2014).

Proposition 6.

1. A computation \(\Gamma \vdash \Delta : M : FA \) is thunkable iff for every substitution \(k : \Gamma \to \Delta \) and two computations \(\Delta, x : A \vdash \Delta, u : UB \vdash \Delta, u : UB \vdash P : C \) we have

\[
\begin{array}{c}
\Delta \vdash \kappa^* M \to x. (\text{let thunk } N \text{ be } u. P) \\
\equiv \quad \begin{array}{c}
\text{let thunk } (\kappa^* M \to x. N) \text{ be } u. P : C
\end{array}
\end{array}
\]

2. A computation \(\Gamma, u : UB \vdash \Delta : C \) is linear in \(y \) iff for every substitution \(k : \Gamma \to \Delta \) and two computations \(\Delta \vdash \Delta : M : FA \) and \(\Delta, x : A \vdash \Delta, u : UB \vdash \Delta, u : UB \vdash B \) we have

\[
\begin{array}{c}
\Delta \vdash \kappa^* M \to x. (\text{let thunk } N \text{ be } u. k^* P) \\
\equiv \quad \begin{array}{c}
\text{let thunk } (\kappa^* M \to x. N) \text{ be } u. k^* P : C
\end{array}
\end{array}
\]
Natural numbers

\[
\begin{align*}
\text{const}_n + 1 & \equiv \text{const}_{n+1} \\
2 \times \text{const}_n & \equiv \text{const}_{2n} \\
(\text{const}_n = \text{const}_n) & \equiv \text{inl} \langle \rangle \\
(\text{const}_n = \text{const}_n) & \equiv \text{inr} \langle \rangle \\
\text{case } 0 \text{ as } \{0, M, y+1, M'\} & \equiv M \\
\text{case } V+1 \text{ as } \{0, M, y+1, M'\} & \equiv M'[V/y] \\
M[V/z] & \equiv \text{case } V \text{ as } \{0, M[0/z], y+1. M[y+1/z]\} \\
\text{case } 2 \times V \text{ as } \{2 \times x. M, 2 \times y + 1. M'\} & \equiv M[V/x] \\
\text{case } 2 \times V+1 \text{ as } \{2 \times x. M, 2 \times y + 1. M'\} & \equiv M'[V/y] \\
M[V/z] & \equiv \text{case } V \text{ as } \{2 \times x. M[2 \times x/z], 2 \times y + 1. M'[2 \times y + 1/z]\}
\end{align*}
\]

State (Plotkin and Power 2002)

\[
\begin{align*}
\text{(read } l \text{ as } x. M) \text{ to } y. N & \equiv \text{(read } l \text{ as } x. (M \text{ to } y. N) \\
(1 := V. M) \text{ to } y. N & \equiv 1 := V. (M \text{ to } y. N) \\
\text{read } l \text{ as } x. M & \equiv \text{read } l \text{ as } x. 1 := x. M \\
1 := V. \text{read } l \text{ as } x. M & \equiv 1 := V. M[V/x] \\
1 := V. 1 := W. M & \equiv 1 := W. M
\end{align*}
\]

Exceptions (Levy 2006a)

\[
\begin{align*}
\text{try } (\text{return } V)\{ \text{to } x. M, \text{catch } (e, y). N\} & \equiv M[V/x] \\
\text{try } (\text{raise } (e, W))\{ \text{to } x. M, \text{catch } (e, y). N\} & \equiv N[W/y] \\
M \text{ to } x. N & \equiv \text{try } M\{ \text{to } x. N, \text{catch } (e, y). \text{raise } (e, y)\}
\end{align*}
\]

\[
\begin{align*}
\{ \begin{align*}
M \quad \text{to } x. N \\
catch y \in N' \quad \text{catch } w. P'
\end{align*} \} & \equiv \begin{align*}
M \quad \text{to } z. P \\
catch y. N' \quad \text{catch } w. P'
\end{align*} \\
\{ \begin{align*}
\langle \rangle \quad \text{to } x. M \\
catch y \in N' \quad \text{catch } y. \langle \rangle
\end{align*} \} & \equiv \begin{align*}
\langle \rangle \quad \text{to } x. \langle \rangle \\
catch y. \langle N', N'\rangle
\end{align*} \\
\lambda z. \{ \begin{align*}
P \quad \text{to } x. M \\
catch y. N
\end{align*} \} & \equiv \begin{align*}
P \quad \text{to } x. \lambda z. M \\
catch y. \lambda z. N
\end{align*}
\end{align*}
\]

Figure 10. Laws of natural numbers, state and exceptions (typing and freshness assumptions omitted)

The following property of thunkable computations is called “centrality” in (Power and Robinson 1997).

Proposition 7. If \(\Gamma \vdash^c M : FA \) is thunkable then for all \(\Gamma \vdash^c N : FB \) and \(\Gamma, x : A, y : B \vdash^c P : C \) we have

\[
M \text{ to } x. N \text{ to } y. P \equiv N \text{ to } y. M \text{ to } x. P
\]

Proposition 8. 1. The following computations are thunkable. Typing assumptions are omitted.

\[
\begin{align*}
\text{return } V & \quad \text{case } V \text{ of } \{2 \times x. M, 2 \times y + 1. M'\} \\
k^* M & \quad \text{force } u \\
M \text{ to } x. N & \quad \text{let thunk } M \text{ be } v. N \\
\text{case } V \text{ of } \{\} & \quad \text{case } V \text{ of } \{\text{inl } x' M, \text{inr } y. M'\} \\
\text{case } V \text{ of } \{\text{inl } x. M, \text{inr } y. M'\} & \quad \text{case } V \text{ of } \{\text{inl } x' M, \text{inr } y. M'\} \\
\text{case } V \text{ of } \{\text{split } A. M\} & \quad \text{split } V \text{ as } \langle \rangle. M \\
\text{split } V \text{ as } \langle x, y \rangle. M & \quad \text{split } V \text{ as } \langle x, y \rangle. M
\end{align*}
\]

2. The following computations are linear in \(u \). Typing assumptions are omitted, but \(u \) must be fresh for \(V, N \) and \(k \).

\[
\begin{align*}
\text{force } u & \quad \text{case } V \text{ of } \{2 \times x. M, 2 \times y + 1. M'\} \\
k^* M & \quad \text{if } M \text{ is linear in } u \\
M \text{ to } x. N & \quad \text{if } M \text{ is linear in } u \text{ and } N \text{ in } v \\
\text{case } V \text{ of } \{\} & \quad \text{case } V \text{ of } \{\text{split } A. M\} \\
\text{case } V \text{ of } \{\text{inl } x' M, \text{inr } y. M'\} & \quad \text{split } V \text{ as } \langle \rangle. M \\
\text{case } V \text{ of } \{\text{split } A. M\} & \quad \text{split } V \text{ as } \langle x, y \rangle. M \\
\text{case } V \text{ of } \{\text{split } A. M\} & \quad \text{split } V \text{ as } \langle x, y \rangle. M
\end{align*}
\]
Proposition 9. Let $\Gamma, x : A \vdash^e M : FB$ be thunkable. Let $\Gamma, y : B \vdash^e N : FA$ be an inverse of M, i.e.

\[
\begin{align*}
\Gamma, x : A & \vdash^e M \to y. N \equiv \text{return } x : FA \\
\Gamma, y : B & \vdash^e N \to x. M \equiv \text{return } y : FB
\end{align*}
\]

Then N is thunkable.

2. Let $\Gamma, u : UB \vdash^e M : C$ be linear in u. Let $\Gamma, v : UC \vdash^e N : B$ be an inverse of M i.e.

\[
\begin{align*}
\Gamma, u : UB & \vdash^e \text{let thunk } M \text{ by } y. N \equiv \text{force } u : B \\
\Gamma, v : UC & \vdash^e \text{let thunk } N \text{ by } x. M \equiv \text{force } v : C
\end{align*}
\]

Then N is linear in v.

Let us write $Q^\equiv(\Gamma \vdash^e C)$ for the set of all \equiv-classes of thunkable $\Gamma \vdash^e M : FC$. Then any value with computation holes

\[
V : (\Gamma_h \vdash^e C_h)_{h \in H} \to (\Delta \vdash^e D)
\]

gives rise to a function $(V)^\equiv$

\[
\prod_{h \in H} Q^\equiv(\Gamma_h \vdash^e C_h) \to Q^\equiv(\Delta \vdash^e D)
\]

\[
(\Delta \vdash^e \text{return } V[M_h]_{h \in H} : FD)^\equiv
\]

7. Characterizing Contextual Morphisms

We now adapt our account of contextual morphisms in λ-calculus to call-by-push-value, using thunkable and linear maps.

7.1 Functionality and Naturality inThunkable and Linear Isomorphisms

Definition 7. 1. A thunkable map $A \to B$ is an \equiv-class of thunkable computations $x : A \vdash^e M : FB$. These form a category Thk. The identity on A is $(x : A \vdash^e \text{return } x : FA)^\equiv$. The composite of $(x : A \vdash^e M : FB)^\equiv$ and $(y : B \vdash^e N : FC)^\equiv$ is $(x : A \vdash^e M \to y. N : (FC)^\equiv)$. 2. A linear map $A \to B$ is an \equiv-class of computations $x : UA \vdash^e N : B$ linear in x. These form a category Lin. The identity on A is $(x : UA \vdash^e \text{force } x : A)^\equiv$. The composite of $(x : UA \vdash^e M : BD)^\equiv$ and $(y : UB \vdash^e N : C)^\equiv$ is $(x : UA \vdash^e \text{let thunk } M \text{ be } x. N : C)^\equiv$.

As in Section 4.2, our type constructors are mixed variance functors.

\[
\begin{align*}
U & : \text{Lin} \to \text{Thk} \\
+ & : \text{Thk} \times \text{Thk} \to \text{Thk} \\
\times & : \text{Thk} \times \text{Thk} \to \text{Thk} \\
F & : \text{Thk} \to \text{Lin} \\
\Pi & : \text{Lin} \times \text{Lin} \to \text{Lin} \\
\rightarrow & : \text{Thk}^\times \times \text{Lin} \to \text{Lin}
\end{align*}
\]

They are defined in Figure 11.

Using these, every type is functorial in its type-holes. Let K and L be sets, and we write A, B etc. for a pair of an K-indexed family of value types and an L-indexed family of computation types. We define functors as follows.

- Every value type C with K value and L computation type-holes gives a functor $C[\vdash] : \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \to \text{Isos (Thk)}$

- Every computation type $\Gamma \vdash^e C$ with K value and L computation type-holes gives a functor $\Gamma[\vdash^e] : \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \to \text{Isos (Lin)}$

Next we need to make judgements into functors.

Definition 8. Let $\mathcal{U} = \{y_0, \ldots, y_n\}$ be a finite set of identifiers. We define a functor

\[
Q^\equiv(\vdash^e) : (\text{Thk}^\equiv)^\mathcal{U} \times \text{Lin} \to \text{Set}
\]

as follows.

- An object is a judgement $\Gamma \vdash^e C$ where the domain of Γ is \mathcal{U}. It is sent to the set $(\Gamma \vdash^e C)^\equiv$.

- A morphism $((y : A_y)_{y \in \mathcal{U}} \vdash^e C) \to ((y : B_y)_{y \in \mathcal{U}} \vdash^e D)$ consists of an equivalence class $(x : B_y \vdash^e N_y : FA_y)^\equiv$, with N_y thunkable, for each $y \in \mathcal{U}$, and an equivalence class $(x : UC \vdash^e P : D)^\equiv$, with P linear in x. It is sent to the function $Q^\equiv((y : A_y)_{y \in \mathcal{U}} \vdash^e C) \to Q^\equiv((y : B_y)_{y \in \mathcal{U}} \vdash^e D)$ sending $((y : A_y)_{y \in \mathcal{U}} \vdash^e M : C)^\equiv$ to $((y : B_y)_{y \in \mathcal{U}} \vdash^e N_{y_0} \to y_0)$. \[\cdots\] $N_{y_{n-1}} \to y_{n-1}$.\[P[\text{thunk } M/x : D)^\equiv\]

We also define a functor $Q^\equiv(\vdash^e) : (\text{Thk}^\equiv)^\mathcal{U} \times \text{Thk} \to \text{Set}$ as follows.

- An object is a judgement $\Gamma \vdash^e C$ where the domain of Γ is \mathcal{U}. It is sent to $(\Gamma \vdash^e C)^\equiv$.

- A morphism $((y : A_y)_{y \in \mathcal{U}} \vdash^e C) \to ((y : B_y)_{y \in \mathcal{U}} \vdash^e D)$ consists of an equivalence class $(x : B_y \vdash^e N_y : FA_y)^\equiv$, with N_y thunkable, for each $y \in \mathcal{U}$, and an equivalence class $(x : UC \vdash^e P : D)^\equiv$, with P thunkable. It is sent to the function $Q^\equiv((y : A_y)_{y \in \mathcal{U}} \vdash^e C) \to Q^\equiv((y : B_y)_{y \in \mathcal{U}} \vdash^e D)$ sending $((y : A_y)_{y \in \mathcal{U}} \vdash^e M : FC)^\equiv$, with M thunkable, to $((y : B_y)_{y \in \mathcal{U}} \vdash^e N_{y_0} \to y_0)$. \[\cdots\] $N_{y_{n-1}} \to y_{n-1}$.\[M \to x : P : FD)^\equiv\]

By Proposition 7, these definitions are independent of the particular ordering of \mathcal{U}.

Again letting K and L be sets, we define functors as follows.

- Every value judgement $\Gamma \vdash^e C$ with K value and L computation type-holes gives a functor $Q^\equiv((\Gamma \vdash^e C)[\vdash]) : \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \to \text{Set}$

- Every computation judgement $\Gamma \vdash^e C$ with K value and L computation type-holes gives a functor $Q^\equiv((\Gamma \vdash^e C)[\vdash]) : \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \to \text{Set}$
We write

\[\Gamma \vdash \text{type-holes}, \ \ \Gamma \vdash \text{holes} \]

and every computation with type-holes and holes

\[\mathcal{N} : (\Gamma_k \vdash C_{\kappa})_{\kappa \in K, L} \rightarrow (\Delta, V, D) \]

is natural as the type-hole argument ranges over \(\text{Isos (Thk)} \times \text{Isos (Lin)} \).

7.2 Characterizing Contextual Morphisms in Call-by-push-value

We now want to show that

\[\text{Con}_{1,0} \cong \text{Isos (Thk)} \]

and more generally

\[\text{Con}_{K,L} \cong \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \]

We proceed as in Section 4.3.

Definition 9. Let \(\sigma : A \cong B \) in \(\text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \). We write \(\mathcal{G} \sigma \) for the following contextual isomorphism \(A \cong B \). For each computation judgement \(\Gamma \vdash C \) with \(K \) value and \(L \) computation type-holes,

\[(\mathcal{G} \sigma)_{\Gamma \vdash C} : \mathcal{Q}^\equiv (\Gamma \vdash C)[A] \rightarrow \mathcal{Q}^\equiv (\Gamma \vdash C)[B] \]

is \(\mathcal{Q}^\equiv (\Gamma \vdash C)[\sigma] \).

Commutativity of Fig. 8 holds by naturality, and we obtain an identity-on-objects functor

\[\mathcal{G} : \text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \rightarrow \text{Con}_{K,L} \]

Our goal is to show that it is an isomorphism of categories.

First we describe how to recover \(\sigma \) and \(\sigma^{-1} \) from \(\mathcal{G} \sigma \).

Lemma 10. Let \(\sigma : A \cong B \) in \(\text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \). For any \(k \in K \) we have

\[\sigma_k = (\mathcal{G} \sigma)_{\kappa : A_k \vdash F[A_k]} \text{id}_{A_k} \]

\[\sigma_k^{-1} = (\mathcal{G} \sigma)_{\kappa : A_k \vdash F[B_k]} \text{id}_{A_k} \]

For any \(l \in L \) we have

\[\sigma_l = (\mathcal{G} \sigma)_{\kappa : A_k \vdash \text{Lin} [A_k]} \text{id}_{A_k} \]

\[\sigma_l^{-1} = (\mathcal{G} \sigma)_{\kappa : A_k \vdash \text{Lin} [B_k]} \text{id}_{A_k} \]

Theorem 11. \(\mathcal{G} \) is an isomorphism of categories.

Proof. For a contextual morphism \(\theta : A \rightarrow B \), we must show \(\theta \cong \mathcal{G} \sigma \) for unique \(\sigma : A \cong B \) in \(\text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \).

For each \(k \in K \) set

\[\sigma_k \cong \theta_k \vdash F[A_k] \text{id}_{A_k} \]

and for each \(l \in L \) set

\[\sigma_l \cong \theta_k \vdash \text{Lin} [A_k] \text{id}_{A_k} \]

By Lemma 10 this is the only possibility. For \(k \in K \), we show \(\sigma_k \) to be thunkable as follows. Preservation of \(\theta \) by

\[\text{return thunk} [_] : (x : A_k \vdash F[_]) \rightarrow (x : A_k \vdash FUF[_]) \]

applied to return \(x \) gives

\[\text{return thunk} \sigma_k = \theta_k \vdash FUF[_](\text{return thunk return } x) \]

Preservation of \(\theta \) by

\[\text{inl} x \rightarrow y. \text{return inr } y \]

\[\text{inr } x \rightarrow y. \text{return inl } y \]

applied to return \(x \) gives

\[\sigma_k \text{ to } y. \text{return thunk return } y = \theta_k \vdash FUF[_](\text{return } x \rightarrow y. \text{return thunk return } y) \]

We then show that every value with type-holes and holes

\[V : (\Gamma_k \vdash C_{\kappa})_{\kappa \in H} \rightarrow (\Delta, V, D) \]

and every computation with type-holes and holes

\[N : (\Gamma_k \vdash C_{\kappa})_{\kappa \in H} \rightarrow (\Delta, V, D) \]

is natural as the type-hole argument ranges over \(\text{Isos (Thk)}^K \times \text{Isos (Lin)}^L \).

Figure 11. The functors \(U, +, \times, F, \Pi \) and \(\rightarrow \) applied to morphisms of \(\text{Thk} \) and \(\text{Lin} \).
Theorem 4. Essentially this is a proof that the state monad is thunkable iso.

Corollary 12. Every contextual morphism is an isomorphism.

8. Examples and Non-examples

To directly give examples and non-examples of contextual isomorphisms would be complicated. Happily we do not need to: Theorem 11 lets us instead work with thunkable or linear isomorphisms.

For a ground type A, let $\text{Vals}(A)$ be the set of values $\vdash V : A$.

In call-by-push-value with mutable state, Figure 12 displays a linear isomorphism $F(1 + 1) \cong F1$. Both computations are equal, i.e. σ_l is thunkable. By a similar argument, σ_l is linear for all $l \in L$. The rest of the proof follows that of Theorem 4.

Figure 12. Linear isomorphism $F(1 + 1) \cong F1$ in call-by-push-value with mutable state

\begin{align*}
x : UF(1 + 1) & \vdash^c \\
\text{force } x \text{ to } y. & \\
\text{case } y \text{ of } \{ & \\
\text{inl } z. & \\
\text{read } l \text{ as } v. & l := 2 * v. \\
\text{return } () & \} : F1
\end{align*}

\begin{align*}
x : UF1 & \vdash^c \\
\text{force } x \text{ to } z. & \\
\text{read } l \text{ as } u. & \text{case } u \text{ of } \{ \\
2 * w. & l := w. \\
\text{return } \text{inl } () & \} \\
2 * w + 1. & l := w. \\
\text{return } \text{inr } () & \} : F(1 + 1)
\end{align*}

\begin{align*}
\text{inr } z. & \\
\text{read } l \text{ as } v. & l := 2 * v + 1. \\
\text{return } () & \}
\end{align*}

Then $n_m = m$ and $W_m = W_0$ because otherwise

\begin{align*}
(1 : 0, 0, 0) & \to (x) \\
(1 : \text{const}_{n_m}, 0, 0) & \to (y) \\
\text{return false} & \equiv \\
(1 : \text{const}_{n_m}. M) & \to (y) \\
\text{return } (x = y) & \text{and } (u = \text{const}_{n_m}) \\
\text{return } W_0 & \equiv \\
\text{return true} & \\
\end{align*}

Therefore $M \cong \text{return } W_0$ by (2).

Let VGround be the category of ground types and thunkable maps.

Let $\mathcal{H} : \text{VGround} \to \text{Set}$ be the following functor.

- A ground type A is sent to $\text{Vals}(A)$.
- A thunkable map $(x : A \vdash^c M : FB) : B$ is sent to the function $\text{Vals}(A) \to \text{Vals}(B)$ sending V to the unique W such that $M[V/x] \equiv \text{return } W$.

Since $\mathcal{H}(1 + 1) \not\equiv \mathcal{H}1$ in Set, we have $1 + 1 \not\equiv 1$ in VGround.

In call-by-push-value with exceptions, Figure 13 displays a thunkable isomorphism $UF1 \cong UF0$. Both computations are thunkable because of Proposition 8(1) (first item). We rule out a linear iso $F1 \cong F0$, provided \equiv has the following property.

\begin{itemize}
 \item A congruence \equiv is a congruence that includes $(\vdash \text{inl } V, \text{inr } V)$ and $\text{raise } e : \text{cons}_{n_m}$ if $p = \text{inr } n$.
 \item Let \equiv be a congruence on call-by-push-value with exceptions, containing Figures 9–10 (minus the state part). It is precise for exceptions when, for any ground type A and any computation $(x : A \vdash^c \hat{p} : FA)$, there is unique $p \in \text{Vals}(A) + \mathbb{N}$ such that $M \equiv \hat{p}$.
\end{itemize}

Let CGround be the category in which an object is a ground type and a morphism $A \to B$ is a linear map $FA \to FB$. Let \mathbb{N}/\mathbb{S} be the category of \mathbb{N}-pointed sets and homomorphisms. Let $\mathcal{K} : \text{CGround} \to \mathbb{N}/\mathbb{S}$ be the following functor.

- A ground type A is sent to $(\text{Vals}(A) + \mathbb{N}, (\text{inr } n, n)_{n \in \mathbb{N}})$.
- A linear map $(x : UF \vdash^c M : FB) : B$ is sent to the homomorphism $(\text{Vals}(A) + \mathbb{N}, (\text{inr } n, n)_{n \in \mathbb{N}}) \to (\text{Vals}(B) + \mathbb{N}, (\text{inr } n, n)_{n \in \mathbb{N}})$ sending p to the unique q such that $M[\text{thunk } \hat{p}/x] \equiv \hat{q}$.

Since $\mathcal{K}1 \not\cong \mathcal{K}0$ in \mathbb{N}/\mathbb{S}, we have $1 \not\cong 0$ in CGround, i.e. there is no linear isomorphism $F1 \cong F0$.

9. Call-by-Value and Call-by-Name

We sketch how to adapt our results to the call-by-value and call-by-name settings.

To define thunkability for a call-by-value language, suppose that $(_ : A)$ is a nullary function type, i.e. the type of functions that take no arguments and have return type A. Let $(_) \equiv$ be a congruence that includes the standard call-by-value laws (Moggi 1988). A term $\Gamma \vdash^c M : A$ is thunkable up to \equiv when

$\Gamma \vdash^c \lambda x. M \equiv \text{let } M \text{ be } x. \lambda x. x : (_ : A)$

To define linearity for a call-by-name language, suppose that $+(B)$ is a unary sum type, i.e. a datatype with a single constructor inl taking one argument of type B. Let $(_) \equiv$ be a congruence that includes

5 Call-by-name sum types do not satisfy the η-law, so they are not categorical coproducts.

Contextual Isomorphisms

13

2016/11/28
This allows us, as in Section 8, to work with thunkable and linear

the standard call-by-name laws (Levy 2004) [Figure A.8]. A term

\[\Gamma, \text{u} : B \vdash M : C \text{ is linear in u up to } \equiv \text{ when} \]

\[\Gamma, z : +(B) \vdash \]

\[\text{let } (\text{case } z \text{ of } \{ \text{just } w. \ w \}) \text{ be } u. \ M \]

\[\equiv \text{ case } z \text{ of } \{ \text{just } u. \ M \} : C \]

Both these notions, when translated into call-by-push-value, coincide with Definition 6. The requirements for nullary function types or unary sum types in the language are reasonable, as both are included in the “jumbo” version of λ-calculus (Levy 2006b).

The category of types and contextual morphisms, for a congruence \(\equiv \), is isomorphic

- to the groupoid of types and thunkable isomorphisms, if nullary function types are present and \(\equiv \) includes the call-by-name laws
- to the groupoid of types and linear isomorphisms, if unary sum types are present and \(\equiv \) includes the call-by-name laws.

This allows us, as in Section 8, to work with thunkable and linear isomorphisms instead of contextual ones. For example:

- In call-by-value with state, Figure 14 displays a thunkable isomorphism \(A \rightarrow \text{bool} \cong A \rightarrow \text{unit} \), for any type \(A \). This translates as \(U(A \rightarrow F(1 + 1)) \cong U(A \rightarrow F1) \). But there is no thunkable isomorphism \(\text{bool} \cong \text{unit} \), as in Section 8.

- In call-by-name with exceptions, Figure 15 displays a linear isomorphism \(A + \text{unit} \cong A + \text{empty} \), for any type \(A \). This translates as \(F(U A + UF1) \cong F(UA + UF0) \). But there is no linear isomorphism \(\text{unit} \cong \text{empty} \), as in Section 8.

10. Conclusions

Contextual isomorphisms provides a unified minimal standard for regarding two types as essentially the same. Map-based isomorphisms, provided they are thunkable or linear, give a sound, complete and convenient technique for generating contextual isomorphisms.

References

