Optimization of the Backpropagation Algorithm
for Training Multilayer Perceptrons *

W. Schiffmann, M. Joost, R. Werner
University of Koblenz
Ingtitute of Physics
Rheinau 1
56075 Koblenz
e-mail: evol @infko.uni-koblenz.de

September 29, 1994
(First edition published in 1992)

Contents
1 Introduction 3
2 Application 3
3 Mathematical Notation 3
4 Backpropagation 5
5 Global learning rate adaptation 8
5.1 Fixedcalculating of thelearningrate 8
5.2 Decreasinglearningrate oo 8
5.3 Learning rate adaptation for eachtraining pattern 12
5.4 Evolutionarily adapted learningrate 12
55 Angledrivenlearning rate adaptation L. 15
5.6 Nearly optimal learning rate adjust using linesearch 15
5.6.1 Polak-Ribieremethodandlinesearch 17
5.6.2 Conjugate gradient method and linesearch 18

*This work is supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the project FE—
generator (grant Schi 304/1-1)

6 Local learning rate adaptations
6.1 Learningrate adaptationby signchanges.
6.2 DeltaBar-DeltaTechnique

6.3 RPROP.
6.4 Quickprop

6.5 Cascade Correlation

7 Conclusion

8 References

19
19
24
26
28
32

32

35

1 Introduction

This is the revised edition of our technical report, which has been published in 1992.
There is no new stuff in this revision, but some minor bug fixes are helpful for imple-
menting the described algorithms. The results of this report also have been published
on ESANN ’'93 [Schiffmann et a., 1993]. The dataset used in this comparision is
available by anonymous ftp (FTP server: ics.uci.edu, files: pub/machine-learning-
databases/thyroid-disease/annx).

Backpropagation is one of the most popular training algorithms for multilayer per-
ceptrons. Unfortunately it can be very slow for practical applications. Over the last
years many improvement strategies have been developed to speed up backpropagation.
It's very difficult to compare these different techniques, because most of them have been
tested on very special datasets. Thereported results are based on somekind of tiny and
artificia training sets like XOR, encoder or decoder. It's very doubtful if this results
hold for a much more complicate practical application. In these report an overview
of many different speedup techniques is given. All of them are tested on a very hard
practical classification task, which consists of a big medical data set. Asyou will see
many of these optimized algorithms fail in learning the data set.

2 Application

We have used measurements of the thyroid gland for testing different approaches. Each
measurement vector consists of 21 values— 15 binary and 6 analog. Three classesare
assigned to each of the measurement vectors which correspond to the hyper-, hypo- and
normal function of the thyroid gland. Since over 92% of all patients have a normal
function, auseful classifier must be significantly better than 92% correct classifications.
The training set consists of 3772 measurement vectors and again 3428 measurements
are available for testing. The training period was limited to 5000 epochs using a fixed
3 layer network architecture with 21 input- , 10 hidden- and 3 output units. The
Network was fully interconnected. Using a SPARC2 CPU training takes from 12 to 24
hours. Theweights of the network have been randomly chosen by anormal distribution
(v = 0.0,0 = 0.1). The bias of each unit has been computed as follows. First the
average input pattern of the whole learning set has been calculated. While propagating
this averaged pattern through the network the bias of each unit is tuned to half activate
every hidden or output unit. By this means the gradient of the sigmoid activation
function of every unit is maximized, which has some benefits on the gradient descent
during the training.

3 Mathematical Notation

Many different mathematical notations are used to describe training algorithms for neu-
ral networks. In order to compare different techniques a uniform notation is necessary:

a; : Activation of unit 7

wi; © Connection strength from unit 7 to unit 5

0; . Desired activation of output unit
(i-th's component of the output vector)

net; . Netinput to unit ¢

net; = E Wi * aj

Vjw;#0

1

;= —
? 1+ e—neli

E, : Quadrétic Error for pattern p

E,= > (ai—0;)

i€Qutputunits

E : Total quadratic error on the training set

E=) E,
p

aEP .
8w.;j

Pertial derivative for pattern p with respect to w;;

OE

(9w.;j

Partial derivative for the whole training set with respect to w;;

OF OE,

8wij » au,’ij

V E : Gradient with respect to the whole trainings set

_OE OE OF

VE=(——,..., —
owy Ows’ 8uzn)

VE, : Gradient with respect to pattern p

0E, 0E, 0K,

VE = (8101’81—112“”’ awn)

Aw;;(n) : Weight update of w;; in the n-th learning step

w;j(n+ 1) = Aw;j(n) + w;;(n)

4 Backpropagation

Basically, Backpropagation [Rumelhart, 1986] is a gradient descent technique to min-
imize some error criteria £. In the batched mode variant the descent is based on the
gradient V E for the total training set :

Dw;j(n) = —e * E + o % Aw;j(n — 1)
wi;

€ and o are two non negative constant parameters called learning rate and momentum.
The momentum can speed up training in very flat regions of the error surface and
suppresses weight oscillation in step valleys or ravines. Unfortunately it is necessary
propagate the whole training set through the network for calculating VE . This can
slow down training for bigger training sets. For some tasks (e.g. neura controllers)
[Schiffmann and Geffers, 1993] no finite training set is available. Therefore the update
is based just on the gradient for the actual training pattern VE,,:

Aw;j(n) = —e x gf:’; + ax Aw;j(n — 1)
A good choice of € and « is very essential for training success and speed. Adjusting
these parameters by hand can be very difficult and might take a very long time for more
complicated tasks.

Results of the training with backpropagation and update after every pattern presen-
tation heavily depend on a proper choice of the parameters (see Figure 1 and Table 1,
respectively). Neverthelessgood results can be achieved by carefully adjusting learning
rate and momentum. Total error and recognition rate with respect to the training set and
for the testing set (rightmost 2 columns) are presented in every table of this report. In
order to compare the results more easily the best result in every column is underlined.
The recognition rate specifies the percentage of correct classified patterns. A pattern
is called correct classified, if the euclidian distance between the network output vector
and the desired output vector is smaller than to any other possible output vector.

Error

700.00

350.00

300.00

250.00

200.00

150.00

100.00

0.00

Error

700.00

650.00

600.00

550.00

250.00

200.00

150.00

100.00

0.00

e
pe
12
AR Iinnz iy,
Periods x 103
0.00 1.00 2.00 3.00 4.00 5.00
16
] y
Periods x 103
0.00 1.00 2.00 3.00 4.00

Figure 1: Backprop updated after every pattern for run 4, 8, 12 and 16

of Table 1

Training Set

Testing Set

€ a || Error Recog. rate Error Recog. rate
1001 00 | 2673 95.07 293.14 94.52
21001 01| 2509 95.47 279.14 94.69
31001 02| 2318 96.24 261.44 95.19
41001 05| 1238 98.25 163.95 97.14
5001 09 61.3 98.91 151.07 97.37
6| 005 00 70.7 98.94 141.86 97.64
71005 01 72.0 98.94 145.83 97.52
8005 02 68.3 98.94 150.04 97.49
91005 05 80.9 98.75 173.97 96.85
10 | 0.05 09 50.5 99.13 139.11 97.55
11|01 00 74.9 98.81 168.92 97.05
12|01 01 67.0 98.83 158.50 97.17
13|01 02 64.5 98.91 171.50 96.94
14| 01 05 || 1037 98.14 208.52 96.30
15|01 09 77.0 98.67 170.02 97.05
16 | 05 00 59.3 98.89 137.63 97.58
17|05 01 69.8 98.75 149.26 97.32
18| 05 05 55.0 98.94 148.45 97.52
19| 05 09 775 98.59 150.63 97.26

Table 1. Backprop updated after every pattern

Results for a batched update after every training epoch are much worse (see Figure
2). No suitable parameters have been found for training a useful network.

5 Global learning rate adaptation

One way to optimize the backpropagation algorithm is to find proper values for the
learning rate automatically. The following techniques try to adjust this parameters
during the training. Most of them also adjust the momentum parameter, so that step size
and search direction are altered.

5.1 Fixed calculating of the learning rate

Harry A. C. Eaton and Tracy L. Olivier have suggested a calculation of the learning
rate for backpropagation using batched updates[Eaton et al., 1992]. Thiscalculationis
based on the assumption that similar training patternsresult in similar gradients. Soitis
desirableto reducethelearningrateif therearemany similar training patterns. Therefore
thetraining set must bedividedinm subsetsof similar patterns. Let Ny, N, ..., N, be
the sizes of these subsets. Learning rate and momentum can now be set in the following
manner:

1.5
VNZ+NZ+...+ N2

a=0.9

For our applicationthetraining set was divided in 3 subsetsrepresenting the 3 different
output classes:

15

€= ~ 0.00043
V932 1 1912 + 34882

As one can see (see Figure 3) the results are very disappointing. The learning rate
is to small while the momentum is to big (compare with Figure 2). No useful network
could be trained with this technique.

5.2 Decreasing learning rate

Christian Darken and John Moody decreasethelearning rate during thetraining [Darken
et a., 1990]. This so called “Search-Then-Converge” strategy is suggested for back-
propagation using updates for every training pattern. Starting with a big learning rate
¢(0) the valueis decreased during the training to approx €(0) /(1 + n) later on:

Training Set

Testing Set

€ a || Error Recog. rate Error Recog. rate
1| 0.0001 0.0 |f 525.5 92.47 462.63 92.71
2| 0.0001 01| 524.8 92.47 461.98 92.71
3| 0.0001 0.9 | 4785 92.58 426.07 92.85
40001 00] 4733 92.60 422.32 92.85
510001 0.1 | 4618 92.63 414.34 92.85
6| 0001 0.9 | 568.0 92.47 500.00 92.71
71 0.01 0.0 || 568.0 92.47 500.00 92.71
8| 0.01 0.1 || 568.0 92.47 500.00 92.71
9] 0.01 0.9 || 568.0 92.47 500.00 92.71

Error

700.00

650.00

600.00

(SN AT |

550.00

500.00

450.00

400.00

350.00

0.00

1.00

Figure 2:

2.00 3.00

Periods x 103

4.00

Backprop using batchmode

€

«

Training Set
Error Recog. rate

Testing Set
Error Recog. rate

0.00043 0.9
0.00043 0.0

568.0 9247
511.0 92.47

500.00 92.71
450.10 92.71

Error

700.00

650.00

600.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

0.00

0.00

1.00

2.00 3.00 4.00

10

Periods x 103

Figure 3: Fixed calculating of the learning rate

The constant parameter » can be used to adjust this learning rate schedule with respect
to the total training period. After thefirst r learning stepsthe learning rate is halved by
this update rule.

Asyou see in Figure 1 big learning rates are useful in the early training phase but
result in oscillation later on. By using a decreasing learning rate during the training
the advantages of big values (fast learning in the early learning phase) and small values
(good asymptotic behavior) can be combined by a proper value for r (see Figure 4).
Unfortunately agood r can only be found by trial and error. Neverthelessnetworkswith
amoderate performance have been trained by this algorithm.

Training Set Testing Set

€ @ r || Error Recog. rate Error Recog. rate
105 00 500]| 57.7 98.99 141.78 97.46
2|05 00 1000 | 518 99.15 135.62 97.67
305 00 2000 | 442 99.20 126.84 97.90

1

700.00 2

650.00 3

600.00

550.00

500.00

350.00

300.00 \\

250.00 \{\'

150.00 \

100.00 \lﬁﬁm 3

50.00

Periods x 103
5.00

0.00 1.00 2.00 3.00 4.00

Figure 4: Decreasing learning rate

11

5.3 Learningrate adaptation for each training pattern

J. Schmidhuber also uses updates for every training pattern [Schmidhuber, 1989]. He
is calculating a new learning rate for every update and doesn’t use any momentum.
Therefore the tangent in the error surface of the actual training pattern at the current
positionisused. The new valuesfor every connection are found by calculating the point
of intersection with the zero plane. For practical reasonsit is necessary to define an
upper limit for asinglelearning step. There also may be someerror surfaceswhich never
reach the zero plane. For those surfaces a small constant value E s, iS subtracted to
make sure that zero points exists:

Ep - Eoffset

e(n) = min
CIVE 12

3 emaa:)

OF
Aw;j(n) = —e(n) * 8102-

20.0 isthe recommend valuefor €,,,... Schmidhuber emphasized, that his algorithm
is able to escape from a local minimum. Undoubtedly his strategy can escape from
such alocal minimum (E, # OA || VE, || = 0). Neverthelessthis may result in very
big updates, which might corrupt the whole network in one learning step. 1t's doubtful
if this is desirable especially for networks which already classify most of the training
patterns correctly. This strategy also can’t handle very big training sets where some
wrong classified patterns are likely to exist.

The achieved results (see Figure 5) support this theoretical disadvantages. Without
any offset the system shows a chaotic behavior which results in infinite updates. By
using a small offset useful networks can be trained. Nevertheless training with fixed
learning rates is superior to this approach (compare with Figure 1).

5.4 Evolutionarily adapted learning rate

R. Salomon uses a simple evolution strategy to adjust the learning rate [Salomon, 1989
and 1990]. Starting with some e the next update is done by using an increased and a
decreased|earning rate. The onewhich resultsin better performanceis used asastarting
point for the next update:

1. Createtwo equal networks and an initial learning rate .
2. Adjust the weights of both networks as follows:
OF

Ow;;

I VE

Aw;j(n) = —e(n) *

12

67’71 axr

Eoffset

Training Set
Error Recog. rate

Testing Set

Error Recog. rate

20
20

0.00
0.03

91.5 98.36

163.54 97.23

Error

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

y
liiae NN N i

0.00 1.00

200 3.00

4.00

Periods x 103
5.00

Figure 5: Learning rate adaptation for each training pattern

13

3. Discard the networks and restart with the former network and the initial learning
rate, if both total errors have been increased (Backtracking).
In the case of decreasing total errors use the network with a smaller total error
with learning ratese(n) * 8 and e(n) * % to start the next learning step.

This simple strategy can handle almost any initial learning rate and greatly improves
the performance of backpropagation using batched updates (see Figure 6). To compare
the results one hasto take into consideration the doubled calculation time. Nevertheless
no useful network can be trained.

Training Set Testing Set

€(0) B3 || Error Recog. rate Error Recog. rate
0001 11| 3321 94.64 347.32 94.14
001 11| 3311 94.64 346.79 94.08
0.1 1.1 3313 94.64 346.73 94.11
0.5 1.1 || 535.2 92.47 472.46 92.71
1.0 1.1 536.1 92.47 472.85 92.71

G~ WN P

Error

1
700.00 3
3
650.00
600.00
550.00
Y
500.00 o
450,00 5
400.00
o e |
350.00
R S
300.00
250.00
200.00
150.00
100.00
50.00
0.00
Periods x 103
0.00 1.00 2.00 3.00 4.00 5.00

Figure 6: Evolutionary adapted learning rate

14

5.5 Angledriven learning rate adaptation

L.-W. Chan and F. Fallside adapt |earning rate and momentum during the training [Chan
et a., 1987]. Therefore the angle between VE(n) and Aw(n — 1) is calculated. The
adaptation tries to adjust this angel at 90°. As long as the angle is less than 90° the
learning rate is increased otherwise it is decreased:

1. Cdculate:

n) — —VE(n) - Aw(n — 1)
C0SO() = T EG) [+ [aw(=1

2. Adapt thelearning rate:
e(n) =e(n—1) % (14 0.5% cos®(n))
3. Adapt the momentum:

| VE(n) ||
a(n) = a(0) ¥ ——8 ———

=20 T =17
4. Adjust the weights:

oF
011:,;]'

Aw;j(n) = €e(n) * (+ a(n) x Aw;j(n — 1))

Unfortunately the learning rate was adapted much to rapidly which resultsin very big
learning rates. So we tried to modify the adaptation rule:

e(n) =e(n — 1) % (14 0.1 % cosO(n))

In addition we use a backtracking strategy, which restarts a learning step using a
halved learning rate in the case of increasing total error. Results (see Figure 7) are
almost similar to the evolution strategy.

5.6 Nearly optimal learning rate adjust using line search

Onprincipleit’s possibleto calculatethe optimal learning rate for an updatedirection. A
learning rateis called optimal for agiven update direction if it minimizes E with respect
to that search direction. If one uses the negative gradient for the search a " steepest
descent” isperformed. A simple way to approximate the optimal learning rateisto start
with asmall value, perform aweight update and calcul ate the total new error. Aslong as
the total error decreasesthe update is redone using an increased learning rate [Hertz et
al., 1991]. Unfortunately E hasto be calculated for every new iteration of the learning
rate. This may be computational intensive if many iterations are necessary. It's also
difficult to define a proper start value for the learning rate iteration.

15

€(0)

a(0)

Training Set

Error Recog. rate

Testing Set
Error Recog. rate

A WN PP

0.0001
0.0001
0.0001
0.0001

0.0
0.001
0.01
0.1

332.1 94.64
317.6 94.67

347.46 94.14
335.47 94.17

568.0 92.47
568.0 92.47

500.00 92.71
500.00 92.71

Error

700.00

650.00

600.00

550.00

500.00

450.00

400.00

350.00

0.00

1.00

2.00 3.00

Periods x 103

4.00

Figure 7: Angle driven learning rate adaptation

16

Finding the optimal learning rate for a given search update direction means to mini-
mize a one dimensional function. Therefore standard strategies like Newton’s method
can be applied. Unfortunately Newton’s method requires the calculation of the second
derivative. Another possibility isto useaNewton like iteration like the method of “ False
Position” [Luenberger, 1973]. Instead of using the second derivative an approximation
by calculating a difference quotient is used:

f k1) — f (xx)

Tp_1— Tk

flan) =

The minimum can now be approximated by calculating the following iteration:

Tp—1— g

fzr_1) — f(2k)

T4l =T — f‘ (Tk) *

Finally ‘f;—’f hasto be cal culated and somecriteriafor stopping theiteration isnecessary
to apply the “ False Position” method. In our simulations the search isterminated by the
following criteria:

lze=zial 09
|2k

Starting values for the iteration have been calculated as follows:

zo(n + 1) = €(n)
zi(n+ 1) = ¢(n) * 1.5 Jif £ (z0) < 0.0
zi(n+1)=¢(n)/15 ,dse

Typically the line search requires about 3 iterations when used with the Polak—
Ribiere rule (chapter 5.6.1). Using a conjugate gradient method (chapter 5.6.2) amore
conservative setting for the start valuesis necessary, resulting in some more iterations:

zo(n+ 1) = ¢(n)

5.6.1 Polak—Ribieremethod and line search

A. H. Kramer and A. Sangiovanni-Vincentelli are using the Polak—Ribiere method for
calculating the momentum [Kramer et al., 1989]. The learning rate is adjusted by aline
search to minimize E with respect to the current search direction:

(VE(n)—VE(n—1))" «VE(n)

Aw(n) = €(n) x (=VE(n) + VE(n —1)T * VE(n — 1)

x Aw(n — 1))

17

This algorithm is free from any adjustable parameters. Results (see Figure 8) are
similar to the evolution strategy and the angle driven adaptation. Unfortunately some
more calculation time is necessary due to some iterations needed to adjust the learning
rate by aline search (typically 2 - 3 iterations). Nevertheless no useful networks can be
trained by this algorithm.

Training Set Testing Set
Error Recog. rate Error Recog. rate
1| 3220 94.70 339.33 94.17

Error

Sl

700.00

650.00

600.00

550.00

500.00
450.00 \
400.00

350.00

300.00

250.00

200.00

150.00

100.00

0.00

Periods x 103
0.00 1.00 2.00 3.00 4.00 5.00

Figure 8: Polak—Ribiere method with line search

5.6.2 Conjugate gradient method and line search

J. Leonard and M. A. Kramer combine a conjugate gradient method and a line search
strategy [Leonard et al., 1990]:

1. Calculate the exponential averaged gradient:

| VE(n) |I? =

VE(n) =VE(n) + TNEm -1 * VE(n — 1)

18

For to start this calculation and every r updates simply use the actual gradient:
VE(n)=VE(n),ifnmodr =0

2. Update the connections:

Aw(n) = e(n) x VE(n)

¢(n) iscalculated by aline search to minimize E with respect to the actual search
direction.

This agorithm is the most powerful one using global adaptations and batch mode
updates (see Figure 9). Neverthelessresults are very poor.

6 Local learning rate adaptations

Local adaptations are using independent learning rates for every adjustable parameter
(every connection). Therefore they are able to find optimal learning rates for every
weight.

6.1 Learningrate adaptation by sign changes

F. M. Silvaand L. B. Almeida are using separate learning rates ¢, ; for each connection.
The adaptation of these learning rates is done by observing the signs of the last two
gradients. Aslong as no changein sign is detected the corresponding learning rate is
increased. If the sign changesthelearning rateis decreased. Thisisthe exact algorithm:

1. Choosesome small initial valuefor every e;;(0).

2. Adapt the learning rates:

OF (n) * OF
Owij " Ow;j
€i(n) =e€;(n—1)xd , else

€ij(n) =e€ijin—1)xu ,if (n—1)>0

3. Update the connections:

OF

Ow;;j

Aw;j(n) = —€(n) = (+ o x Aw;j(n — 1))
According to Silvaand Almeida the choice of proper parameters . and d is easy aslong
asu = % holds. The recommend valuesare 1.1 — 1.3 or 0.7 — 0.9 respectively. They
also use a backtracking strategy which restarts an update step if the total error increases.
For thisrestart all learning rates are halved.

Results (see Figure 10) are very impressing. Most of the runs result in better perfor-
mance and reduced learning time.

19

Training Set Testing Set

r {| Error Recog. rate Error Recog. rate
1 50 || 244.9 94.57 267.92 93.84
2| 100 || 252.6 94.54 278.28 93.84
3 | 1000 || 267.5 94.57 299.24 93.73
4 | 5000 | 269.1 94.54 297.83 93.70
Error

I
700.00 ?
650.00 ;3‘
600.00
550.00
500.00
450.00
400.00 N
350.00 \\‘ —
AN 1
250,00 e T
200.00
150.00
100.00
50.00
0.00
Periodsx 103
0.00 1.00 2.00 3.00 4.00

Figure 9: Conjugate gradient method and line search

20

Training Set

Testing Set

21

€i;(0) u d «a || Error Recog. rate Error Recog. rate
100001 11 1/u 00| 259 99.60 105.54 98.45
200001 11 1/u 01| 384 99.42 108.73 98.28
3100001 1.1 1/u 09 || 536.7 92.47 473.87 92.71
410001 11 1/u 00| 215 99.60 97.40 98.37
510001 11 1/u 01| 339 99.34 96.65 98.45
6 | 0.01 11 1/u 00 568 92.47 500.00 92.71
Error
700.00 ;
650.00 :g
600.00
550.00
500.00 ‘\
450.00 n‘ﬁ
400.00 %Jk
350.00 &
300.00 “}
eoor |
200.00 “‘
150.00 i
100.00 \
5000 e
04
Periods x 103
Figure 10: Learning rate adaptation by sign changes (Silva and
Almeida)

T. Tollenaere’s SuperSAB algorithm [Tollenaere, 1990] is quite similar to Silvaand
Almeida’s approach. He has modified the update rule, so that updates which result in
sign changes are undone;

3. Update the connections:

) OF

If (n) *

(n=1)>0

Ow;; Ow;;

OF

81[}2‘ j

Dw;j(n) = —e;j(n) * + o Aw;j(n —1)

Else:
wij(n+ 1) = w;j(n —1); bw;;(n) = 0.0

Recommend values for « and d are 1.05 or 0.5 respectively. Instead of using global
backtracking only some kind of local backtracking is used. Therefore weight updates
which result in sign changesin the corresponding gradients are undone.

Resultsfor thefirst 1000 training epoch are superior to Silvaand Almeida’s approach.
Nevertheless the training became chaotic later on. In Figure 11 atypical training runis
shown (momentum = 0.0, learning rate = 0.001).

Therefore we tried to combine SuperSAB with Silva and Almeida’s backtracking
strategy. Neverthelessto many backtracking steps are performed. One reason may be
the local backtracking technique in the SuperSAB algorithm, which may result in an
increased total error.

Our second try was to perform some weight decay in every update:

3. Update the connections:

+ ax Mw;j(n — 1) — decay * w;j(n)
Wi

Else:
w;i(n+ 1) = —Aw;;(n) ; bdw;j(n) = 0.0

Unfortunately no suitable decay factor could befound. Thedecay factor just slightly
changes the time, where the chaotic behaviour starts. Therefore one may suggest that
it's not a problem with to big connection strength rather the learning rates may grow to
much. So we used an upper limit for the learning rates:

2. Adapt the learning rates:

.. OF E
€j(n) =¢€;(n—1)xu if aau—w(n)*aaTw(n—l)ZO/\
Gij (n - l) S €max
€i(n) =¢€i;(n—1)xd , else

22

Error

Bl

700.00

650.00

600.00

550.00

500.00 \

450.00 \

o}

350.00

250.00

200.00

300.00 \
|
|

150.00 t T
100.00
50.00 \

0.00

Periods x 103
000 1.00 200 300 400 5.00

Figure 11: SuperSAB

23

By using a proper upper limit ¢,,., the algorithm behaves perfectly all over the
training period. Resultsare similar to Silvaand Almeida’ s approach but even somewhat
better in the early training phase (see Figure 12). Figure 13 illustrates dependencieson
the momentum factor.

Training Set Testing Set
€:;(0) €maz u d «a || Error Recog. rate Error Recog. rate
0.001 01 105 05 00| 579 99.15 111.12 98.02

0.001 10 105 05 00| 404 99.39 108.72 98.25
0.001 100 105 05 0.0 329 99.47 105.31 98.42
0.001 1000 105 05 00| 292 99.55 122.44 98.19
0.001 10000 105 05 00| 1078 98.49 153.94 97.70

a b~ wdNE

Error

650.00

ol B! NP

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

Periods x 103
0.00 1.00 2.00 3.00 4.00 5.00

Figure 12: SuperSAB with limited learning rates

6.2 Ddta—Bar-Delta Technique

Robert A. Jacobs also uses alocal learning rate adaptation [Jacobs, 1988]. In contrary
to the former approaches his delta—bar—delta algorithm controls the learning rates by
observing the sign changes of an exponential averaged gradient. He increases the

24

€i;(0)

Fmam

u

d

«

Training Set

Testing Set

Error Recog. rate Error Recog. rate

0.001
0.001
0.001

100.0
100.0
100.0

1.05
1.05
1.05

0.5
05
0.5

0.0
0.1
0.9

29.2 99.55
30.6 99.47
41.0 99.31

122.44 98.19
123.59 98.07
122.73 98.28

OOl RWNRE

0.001
0.001
0.001

10.0
10.0
10.0

1.05
1.05
1.05

05
0.5
05

0.0
0.1
09

32.9 99.47
27.9 99.55

30.0 99.47

105.31 98.42
107.71 98.13
128.30 97.72

Error

650.00

w! NP

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

EEPE PPELE By

200.00

150.00

100.00

0.00

0.00

1.00

200

3.00 4.00

Periods x 103

5.00

Figure 13; SuperSAB with limited learning rates

25

learning rates by adding a constant value instead of multiplying it:

1. Choosesome small initial valuefor every €;;(0).

2. Adapt the learning rates:

€ij(n) =€;(n—1)+u , if 8—E(n)*5_{j(n—l)>0
Owij

€ij(n) =ej(n—1)xd if OF (n)*8;;(n—1)< 0
811,’1']'

€j(n) =€ij(n—1) , else

d(n) denotes the exponential averaged gradient:

i) = (L=) 5

s (n)+ ¢ *dij(n—1)

3. Update the connections:

E

Aw;j(n) = —eij(n) x 881—%
Very different values are recommend for « (5.0,0.095,0.085,0.035). Jacobs uses
(0.9,0.85,0.666) for d and 0.7 for ¢. Using ¢ = 0 the algorithm becomes quite similar
to Silvaand Almeida’s approach.

Results (see Figure 14) are quite good but worse than using Siva and Almeida’s
algorithm. In particular it's difficult to find a proper «. Small values may result in slow
adaptations while big ones endanger the learning process.

6.3 RPROP

M. Riedmiller and H. Braun are using an adaptive version of the “ Manhattan-L earning”

rule[Riedmilleretal., 1992]. Incontrasttoall other described algorithmsthe* Manhattan-
Learning” rule uses a fixed update step size not influenced by the magnitude of the
gradient. Only the sign of the derivative is used to find the proper update direction.

RPROP uses independent update step sizes A;; for every connection. Further more
these step sizes are adapted with respect to the sign of the actual and the last derivative.

The step sizes are bound by upper and lower limits in order to avoid oscillation and

arithmetic underflow of floating point values. Finally local backtracking is applied to

those connections where sign changes of the derivative are detected:

1. Choose some small initial value for every update step sizeA;;(0).

26

Figure 14: Delta—Bar—Delta

27

Training Set Testing Set
€;(0) d ¢ || Error Recog. rate Error Recog. rate
1| 0.0001 0.0001 09 0.7 51.6 99.20 110.64 98.37
2100001 0001 09 0.7 | 2954 94.90 316.59 94.31
3| 0.0001 0.01 09 0.7 || 568.0 92.47 500.00 92.71
4 (00001 01 0.9 0.7 || 568.0 92.47 500.00 92.71
510001 0001 09 07| 3178 94.70 335.71 94.19
60001 001 0.9 0.7 || 505.1 92.50 445.34 92.71
710001 01 09 0.7 || 568.0 92.47 500.00 92.71
8| 001 0.01 0.9 0.7 || 568.0 92.47 500.00 92.71
1
700.00 2
650.00 >
600.00
550.00
500.00 “‘\
350,00 \
30000 ——— N\ L L
250.00 \
150.00 \
100.00
\\
50.00
0.00 Periods x 103
0.00 1.00 2.00 3.00 4.00 5.00

2. Adapt the step sizes:

OFE OF
Dij(n) = Dij(n—1) xu M s (n) * D (n—1)>0
.. OFE OF
Dij(n)=D0j(n—1)xd |, if %(n) * B (n—1)<0
A”(n) = Ama:u ’ if Al](n) 2 Anzum
ij(n) = Dpin if Al](n) < Dnmin
3. Update the connections:
OE oF
—1>
Jun (n) x wns (n—1)>0
OF
Dw;j(n) = —A;j(n) if ur (n)>0
OF
Dw;j(n) = +0;j(n) if B (n)<0
Else:
wij(n+1) = w;j(n—1); ;TE,J(n) =0.0

Recommend values for the parameters are:

Dz = 50.0
A,,;» = 0.000001
u=12

d=05

RPROP is fastest training algorithm tested in this report (see Figure 15). Resultsare
almost independent from theinitial setting of the update step size. Networks with very
good performance have been trained. According to training speed only Quickprop is
comparableto RPROP.

6.4 Quickprop

This algorithm is a collection of different heuristics for optimizing backpropagation
[Fahlman, 1988]. Having a closer look at the derivative i_E] we haveto noticethat it's
necessary to calculate o; x (1 — o;). By using a sigmoid activation function this value
is limited to the range [0.0 ... 0.25]. Unfortunately it tends to become very small if
the output approaches 0.0 or 1.0. This may slow down a gradient descent. Therefore
Fahlman modifies the calculation to o; * (1 — o;) + 0.1. The modified gradient based

on this calculation is further denoted by .3 f . Further a new error function is used. If
i

the absolute unit error becomes less than 0.1 the error is simply set to zero. By using

28

Ai;(0)

Training Set Testing Set

Error

Recog. rate Error Recog. rate

a b~ wdNPE

0.0001
0.001
0.01
0.1
1.0

52.0
2599
26.0
29.1
284

98.81 155.12 97.02
99.58 123.42 97.93
99.52 129.13 97.93
99.47 120.73 98.02
99.50 129.84 97.93

Error

700.00

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

0.00

ol B! NP

0.00

1.00

Periods x 103
200 3.00 4.00

Figure 15: RPROP

29

this error criteria units having a quadratic error less than 0.01 aren’t trained anymore.
For to prevent weights from growing very large a small weight decay is used by further
modifying the gradient:

aE**() OE™~
n)=
3wij

B (n) + decay * w;;(n)
OE**

Dw;ij(n) = —e;j(n) * D

(n) + aij(n) * Dw;j(n — 1)

Basically the connection updates is calculated by the method of “False Position”
(chapter 5.6), which is applied independently to every connection. The second term
of the sum exactly calculates this value if the momentum in chosen in the following
manner:

OE™*
aij(n) = Py)
1) — OE** OE**
m(n - 1) - OQwij (n)

Nevertheless the calculated update has to be limited if the step computed by this

formulaistoo large, infinite or uphill on the current gradient 885 (n):
i

Qi (n) = Qmaz ,if &ij(n) infinite
\ aij(n) > Qae
OE**

V a;j(n) « Aw;j(n — 1) * B

(n) > 0.0
aﬁ,jj(n) = ai]’(n) , else

A learning rate is still necessary to start the training or restart it after a 0.0 update. If
the gradient and the last update have the same sign the learning rate is also used:

OE™*
Ow;;

V Aw;j(n —1)=0.0
eij(n) =0 , Else

Eij(n) =€ Jif (n) * Awij(n — 1) < 0.0

Recommend values for the parameters are:

Omaz = 1.75
€0 = 0.55
decay = 0.0001

Almost perfect results (see Figure 16) have produced by this algorithm. Quickprop’s
performance is close to rprop’s resullts.

30

€0

Training Set

Testing Set

Error Recog. rate Error Recog. rate

0.0001
0.001
0.01
0.1

A WN PP

338 99.5
29.2 99.6
36.8 99.4
568.0 92.5

123.38 97.99
119.28 98.10
110.91 98.25
500.00 92.71

Error

700.00

w! N R

650.00

600.00

550.00

500.00

450.00

400.00

350.00

0.00

1.00 2.00

Periods x 103
3.00 4.00

Figure 16: Quickprop

31

6.5 Cascade Correation

Scott E. Fahlman and Christian L ebiere have presented anew |learning architecture called
cascaded correlation algorithm [Fahlman et al., 1990]. This algorithm differs in many
ways from all other approaches. It begins with a minimal network, then automatically
trains and adds new hidden units one by one, creating a multi-layer structure. Once a
new hidden unit has been added to the network, its input-side weights are frozen. The
hidden unitsare trained in order to maximize the correlation between the unit output and
the output error. So atraining cycleisdivided into two phases. First the output units are
trained to minimize the total output error. Thistraining isdone upto out,, . epochs. In
phase two ncand candidate units are inserted having connections to every output unit
and every previously inserted hidden unit. This units are trained up to hid 4. €pochs
in order to correlate with the output error. The best of this candidate units becamea new
hidden unit, whereasthe other onesare deleted. Next weights of the new unit get frozen.
Now a new training cycle starts. Weights are adjusted by the quickprop update rule.
Because all input connections of a hidden unit are frozen after the training of this unit,
it's possible to store the activations of the hidden units over the entire training set. This
can speed up the training. For further details of this algorithm see Fahiman et al. 1990 .
Thisalgorithm wasincluded in our report, becauseit seemsto beinteresting to compare
the results. Nevertheless comparison is quite difficult, because networks grow during
thetraining and start with very little connections. Although hidden units connectionsget
frozen after training. Figure 17 shows resultsin terms of training epochs. Nevertheless
results became more impressing if we compare it in terms of updated connections.
Therefore we have calculated the number epochsin conventional training having nearly
the same number of updated weights (see Figure 18). As one can see this algorithm
is superior to training algorithms using fixed topologies. Nevertheless the network
performance could not be further improved. The algorithm was able to train networks
with 100 % recognition rate with respect to the training set, if sufficient hidden units are
used (nhidden = 20). Nevertheless generalization ability with respect to the testing set
could not be improved. Most of the networks using 10 hidden units generalize as good
or even better as those having 20 hidden units.

7 Conclusion

Table 2 shows a comparison of the best results of every training algorithm.

Many “optimized” algorithms failed in training the considered task, although most
authors promised a algorithm superior to standard backpropagation. Many of these
algorithms have only been tested by training tiny artificial tasks. These results cannot
betransferred to more complicated training sets. Especially for thesekind of training sets
optimization is necessary, whereas it's of little importance to speed up XOR learning.
Neverthelessmost of the algorithms are superior to standard backpropagationrunningin
batched mode. On the other hand backpropagation updating the connections after every
pattern presentation outperforms all global adaptive learning algorithms. Algorithms
using local adaptation strategies greatly reduce the training time and also improve the
network performance. In terms of learning speed RPROP and Quickprop seemsto be

32

Training Set Testing Set
ncand out,g; hidne. nhidden || Error Recog. rate Error Recog. rate
1 8 50 50 10 || 38.44 99.47 99.56 98.25
2 8 50 50 20 || 14.20 99.81 || 123.79 98.10
3 8 50 100 10 || 2351 99.71 91.50 98.42
4 8 50 100 20 0.83 100.00 (| 104.84 98.25
5 8 100 50 10 || 40.79 99.36 99.36 98.34
6 8 100 50 20 0.82 100.00 [101.36 98.48
7 8 100 100 10 || 10.37 99.84 || 122.32 97.96
8 8 100 100 20 6.55 99.89 || 142.69 97.84

Error

700.00

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

! o AN

0.00

1.00

Figure 17: Cascade Correlation

2.00

3.00

33

4.00

Periods x 103
5.00

Error

700.00

! o A NI

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

10000 — %
|
5000 — -3

Periods x 103
000 1.00 200 300 400 5.00

Figure 18: Cascade Correlation with rescaled x-axis

Training Set Testing Set
Algorithm Error Recog. rate Error Recog. rate
Backprop 50.3 99.13 || 137.63 97.58
Backprop (batch mode) 461.8 92.63 || 414.34 92.85
Backprop (batch mode) + Eaton and Oliver | 511.0 92.47 || 450.10 92.71
Backprop + Darken and Moody 442 99.20 || 126.84 97.90
J. Schmidhuber 91.5 98.36 || 163.54 97.23
R. Salomon 331.1 94.64 || 346.73 94.14
Chan and Fallside 317.6 94.67 || 33547 94.17
Polak-Ribiere + line search 322.0 94.70 || 339.33 94.17
Conj. gradient + line search 244.9 94.57 || 267.92 93.84
Silvaand Almeida 215 99.60 96.65 98.45
SuperSAB 279 99.55 || 105.31 98.42
Delta-Bar-Delta 51.6 99.20 || 110.64 98.37
RPROP 25.99 99.58 || 120.73 98.02
Quickprop 292 99.60 | 110.91 98.25
Cascade correlation 10 units 10.37 99.84 91.50 98.42
Cascade correlation 20 units 0.82 100.00 || 101.36 98.48

Table 2: Best results

34

superior to al other training algorithms using fixed topologies. Nevertheless Silvaand
Almeida’s approach and SuperSAB have trained networks, which generalize a little
better. The cascade correlation algorithm clearly outperforms all other approaches but
is not directly comparable with them.

Most algorithms are using batched updates. Very little optimization is done on back-
propagation updating connections with respect to VE,,. Further research in needed on
thistopic. There seemsto be little influence on the generalization ability. Nevertheless
generalization depends on the network topology, as the cascade correlation algorithm
shows. Training a network with more and more hidden units just increases the approx-
imation quality with respect to the learning set but doesn’t improve the generalization
behaviour.

8 References

Chan, L. W. and Fallside, F. : An adaptive training algorithm for backpropagation
networks, Computer Speech and Language, Vol. 2, page 205-218,1987

Darken, C. and Moody, J. : Note on Learning Rate Schedules for Sochastic Opti-
mization, Neural Information Processing Systems, Lippmann R. P. and Moody
J. E. and Touretzky D. S. (Editors), page 832-838, 1991

Eaton, Harry A. C. and Olivier, Tracy L. : Learning Coefficient Dependenceon Train-
ing Set Sze, Neural Networks, Vol. 5, page 283-288, 1992

Fahlman, Scott E. : An Empirical Study of Learning Speed in Back-Propagation Net-
works, Technical Report CMU-CS-88-162, 1988

Fahlman, Scott E. and Lebiere, Christian : The Cascade-Correlation Learning Ar-
chitecture, Neural Information Processing Systems 2, page 524-532, 1990

Hertz, John and Krogh, Andersand Palmer, Richard G. : Introductionto theory of
neural computation, Addison-Wesley Publishing Company, ISBN 0-201-51560-
1,1991

Jacobs, Rabert A. : Increased Rates of Convergence Through Learning Rate Adaption,
Neural Networks, Vol. 1, page 295-307,1988

Joost, Merten and Werner, Randolf : Algorithmen zur Optimierung neuronaler Merk-
malsfilter, Diplomarbeit, Universitéat Koblenz, 1991

Kramer, Alan H. and Vincentelli, A. Sangiovanni : Efficient parallel learning algo-
rithmsfor neural networks, Advancesin Neural Information Processing Systems
I, Touretzky D. S. (Editor), page 40-48, 1989

Leonard, J. and Kramer, M. A. :Improvement of the Backpropagation Algorithm for
Training Neural Networks, Computers Chem. Engng., Volume 14, No 3, page
337-341, 1990

35

Luenberger, David G. : Introduction to linear and nonlinear programming, Addison-
Wesley, 1973

Rumelhart D.E., Hinton G.E. and Williams R.J., 1986 : Learning internal repre-
sentations by error propagation, in Parallel Distributed Processing: Explorations
in the Microstructuresof Cognition, VVol.l, MIT Press, pp. 318-362

Robinson, T. and Fallside, F. : A recurrent error propagation network
speech recognition system, Computer Speech and Language, Vol. 5, No 3, page
259-274, 1991

Riedmiller, Martin and Braun, Heinrich : RPROP - A Fast Adaptive Learning Algo-
rithm, Technical Report (To appear in: Proc. of ISCISVII), Universitat Karlsruhe,
1992

Salomon, Ralf : Adaptive Regelung der Lernrate bei back-propagation, Forschungs-
berichte des Fachbereichs Informatik, Technische Universitét Berlin, Bericht
1989/24, 1989

Salomon, Ralf : Improved convergence rate of back-propagation with dynamic adap-
tion of the learning rate, L ecture Notesin Computer Science, PPSN I, Dortmund,
page 269-273, 1990

Scalero, Robert S. and Tepedelenlioglu, Nazif : A Fast Algorithmfor Training Feed-
forward Neural Networks, |EEE Transactions on Signal Processing, Vol. 40, No
1, page 202-210, January 1992

Schiffmann, W. and Joost, M. and Werner, R. : Comparison of optimized backprop-
agation algorithms, Proc. of the European Symposium on Artificial Neural Net-
works, ESANN ’93, Brussels, page 97-104, 1993

Schmidhuber, Jirgen : Accelerated Learning in Back-Propagation Nets, Connec-
tionism in perspective, Elsevier Science Publishers B.V. (North-Holland), page
439-445, 1989

Silva, Fernando M. and Almeida, Luis B. : Speeding up Backpropagation, Advanced
Neural Computers, Eckmiller R. (Editor), page 151-158, 1990

Tollenaere, Tom : SuperSAB: Fast Adaptive Backpropagation with Good Scaling
Properties, Neural Networks, Vol. 3, page 561-573, 1990

36

