S 41

LSEVIE

COMPUTERS IN
INDUSTRY

Computers in Industry 48 (2002) 17-27
www.elsevier.com/locate/compind
An agent-based approach to engineering design
. # b .
Kuo-Ming Chao™, Peter Norman’, Rachid Anane”, Anne James"
4School of Mathematical & Information Sciences, Coventry University, Priory Street, Coventry CVI1 5FB, UK
bEngineering Design Centre, University of Newcastle-upon-Tyne, Armstrong Building, Newcastle-upon-Tyne, UK
Abstract

Among the features of concurrent engineering is the notion of distributed design, and the ability to communicate design
changes to multidisciplinary teams. Engineering design is a complex activity. Differences in system architectures and
information structures, and co-ordination requirements tend to reduce the effectiveness of distributed design. Current thinking
indicates that multi-agent systems (MAS) can alleviate some of the complex engineering design problems. In this paper, it is
argued that agent attributes such as proactiveness and autonomy can overcome these limitations. Agents provide a flexible and
dynamic approach to distributed/multidisciplinary design team which can reduce redundant design activities, and improve co-

ordination. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Intelligent agent; Proactiveness; ORB; Engineering design

1. Introduction

The successful design of large and complex made-
to-order (MTO) products such as ships, offshore oil
platforms and aeroplanes, require the collaboration of
multidisciplinary design teams. These teams use spe-
cialised computer systems to aid their design process.
Unfortunately, such computer systems may use dif-
ferent data representations of the product model. They
may also utilise different design software packages.
These packages may be written in dissimilar lan-
guages, for instance C, C++, Java or other languages,
and installed on different hardware systems. Conse-
quently, any collaborative communication or co-ordi-
nation between such diverse and different models,
languages and system architectures may prove diffi-
cult.

*Corresponding author. Tel.: +44-24-76888908.
E-mail address: k.chao@coventry.ac.uk (K.-M. Chao).

Within the last decade, a number of design tools
have been developed at the Engineering Design Cen-
tre, University of Newcastle. The following briefly
describes these:

e Process flow diagram (PFD) system [1], used to
design a gas-condensate separation process. The
system generated a PFD frame and rule model of
the process.

e Electrical system [2], computes the power demand
and power generation equipment dimensions. The
system can also select equipment from the suppli-
er’s catalogues. This selection is based on the PFD
specifications.

e Plant operation system [2], produces diagnostic
rules for functioning plant. These rules are based
on the output of the PFD system.

e Associativity data generation (ADG) [3], calculates
the strength of the relationship between any two
pieces of equipment based on connectivity, func-
tion, and cost. The equipment and connectivity data

0166-3615/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0166-3615(02)00007-6

18 K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27

are carried from the catalogue and the PFD system,
to the ADG system via a knowledge sharing and
reuse tool [4]. The ADG system also generates the
input for the spatial layout design (SLD) system.

e SLD system [5] is responsible for producing an
optimised graphical layout in two dimensions. The
system is based on simulated annealing algorithms
with the consideration of global constraints to
search all possible spaces in order to generate a
viable layout.

e 3D parametric cad system [6] improved layout
system that generates 3D parametric CAD informa-
tion. The parametric CAD system can forward any
design changes to the cost estimating system.

o Cost estimating system [6] includes a set of sophis-
ticated algorithms that can compute different levels
of a product model to produce the required cost in
the conceptual design. It also allows for a revision
of costs following a design change.

Some of these tools are implemented in Unix and
MS Windows using C, C++ and Java. Some tools use
commercial CAD, PFD packages, or expert system
tools to implement their methodologies. Consequently,

no source code (apart from the application program-
ming interfaces) will be accessible. The primary aim
of this research was the provision of a single colla-
borative environment that allows for the dynamic
interaction of such tools. Therefore, a means for
providing that collaborative interaction was needed.
Initially, the authors proposed a CORBA-based frame-
work as a wrapper to facilitate communication
between design tools. Within the CORBA-based fra-
mework an Interface Definition Language (IDL) is
used to define the system interfaces. Each system has a
client and a server program, so it can trigger other
systems and be invoked by yet others. The association
between these systems is identified as a sequential
flow (see Fig. 1).

The relationship between different individual data
models is monitored by a knock-on effect mechanism
[2]. The mechanism traces the information flow
between models, and is based on the interdependent
relationships between objects in the models (i.e.
equipment items). When a change to information held
within one system is made, changes to the related
information within other systems are indicated by this
knock-on effect mechanism.

PFD Desig
Tool

Cost P
Estimation $£Y

3D Layout
Generator

Plant Operation
System
\<<— Associativity
Data System
«
’
’
Vi
/
/
/
/
’
/
4
\
\
A \
N N\
/ \\ \\
\ \
N
\
4 Al 2D Layout

222222111133
2222211113333 Generator

Design Changes

Information Flow

Fig. 1. Interactions between tools.

K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27 19

2. Analysis of a scenario

The following scenario taken from a case study of
an offshore petrochemical plant design is used to
assess the effectiveness of the CORBA-based frame-
work.

A pump needs to be replaced by a bigger one in
order to produce more pressure. The change from the
PFD is passed to the electrical system for re-calculat-
ing and it produces a new specification of power
generators in order to accommodate this change.
The simulated PFD diagnosis system also takes this
change to analyse the potential faults.

The ADG system takes the result from both sys-
tems to produce the new associativity data. The SLD
starts to simulate the optimised layout according to
the new data from the ADG system. A new optimised
3D layout and cost were produced to reflect this
change.

Even though the process described is an automated
sequential approach, it is considered to be a concurrent
engineering approach. The participating systems in
the framework can initiate changes and then trigger
other systems to act accordingly. A number of design
activities based on different versions can be carried out
concurrently. However, the following limitations of
using the CORBA-based framework were identified in
this exercise:

e The systems were passive. The new pump, for
example, could be expensive and its replacement
may result in an excessive budget. The framework
could not identify this problem until the last pro-
cess. A system that can observe the changes and
proactively provide a solution is required in order to
reduce the unnecessary tasks.

e The systems were not autonomous. They could not
control their own behaviour. Each system did what
it was told by others. A system was unable to refuse
invocation. The SLD system, for example, may
generate a new layout and the designer may not
have the opportunity to look at it. The ADG system
with new data may trigger the system again and
overwrite it. A level of autonomy is required.

e The interfaces were too specific. This architecture
requires users or other systems to have a good
knowledge of the functions that other systems
provide. Function names and arguments need to

be specified by the requested system before the
functions can be invoked. The APIs supported in
commercial packages include low-level functions
that are awkward to use. The other system required,
is one to control the others in the correct sequence,
in order to produce the result. A level of abstraction
is required.

An intelligent agent that possesses properties like
proactiveness and autonomy as well as reactiveness
provides a promising solution to overcome the afore-
mentioned limitations. Intelligent agents with the most
sophisticated capabilities are known as proactive
agents. Proactive agents have the ability to assess
their surroundings and decide what action to take.

An example of this type of agent can be seen in
engineering design environments where the agent
monitors process flow design and prices of equipment
items needed, and estimates the cost in order to con-
form to budget constraints [7].

These agents can gather the related information and
exercise reasoning skills that will then enable it to
determine a specific course of action. Thus, the auton-
omous agents perform tasks without the need for
constant human intervention or other agent interac-
tion. Because an agent controls its behaviour within its
domain, it can choose whether or not it will approve
requests made by other agents [7]. A reactive agent
can respond to the requests made by other agents. An
agent is an abstraction that represents an application
and enables it to interact with its collaborative envir-
onment by reacting to the requests from other agents in
order to solve common problems. Reactiveness with-
out autonomy would imply obedience and the same
problem as that mentioned, where a system blindly
follows instructions from another system. Reactive-
ness with autonomy means that an agent can react to a
request in a number of ways, one of which may be to
obey the request and another to reject it.

3. The proposed framework for co-operation

The proposed system (see Fig. 2) includes four parts:
communication, mental model, observation mecha-
nism and application. The communication mecha-
nism is a message passing mechanism built upon
an Object Request Broker (ORB). It transports the

20 K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27

Agent s
g G
ORB- Communication 4 Con&m:mcatlon
Message Language nguage
Mental Model: Mental Model:
BDI Belief, Desire Belief, Desire
Intention Intention
* AP231 Product *
: Model '
Middleware ORB 4 l ORB
* Observing *
Java/C++
Application Application
Agent | Agent 2

Fig. 2. The proposed architecture with four layers mechanism.

agent’s message in the syntax of Agent Communication
Language (ACL) to the recipient and the recipient
parses the message. The mental model interprets the
content of the message, reasons with it and asks the
underlying application to perform the task. The under-
lying application returns the result to the mental
model. The mental model generates the appropriate
reply and forwards it to the request agent. Even though
message passing is used for the communication, and
the mental model reasons with the message content,
the remote method invocation is inevitably used to
invoke the functions in the application. The interface
between the application and the mental model uses the
ORB in order to accommodate diverse applications.
The observation mechanism is associated with the
Belief, Desire, Intention (BDI) mental model that
allows the agents to autonomously determine which
objects in other agents they need to observe and what
action should be taken. In addition, a common product
data model, in this case built upon STEP AP231 [8],
allows the agents to have a consistent interface for
accessing each other’s product data model. Although
Fig. 2 illustrates the interactions between two software
agents only, this model can also be applied to multiple
agents’ conversation.

3.1. The mental model

The agents communicate with each other through an
ACL. Since the agents are intended to perform some
action by virtue of being sent a message [9], then the
ACL messages are actions or communicative acts
(CAs). CAs, are a special class of actions, that are
modelled on speech act theory [10].

The BDI mental model implementation parses the
incoming message from ACL and reasons with it. The
BDI mental model then invokes the appropriate server
methods accordingly as a client side. The BDI model
is a reasoning mechanism that interprets the informa-
tional, motivational, and deliberative states of the
agents [11]. The following formulas describe the
behaviour of the BDI mental model:

e B’ = B(P, B) where P is the agent’s current percep-
tion,

e D' = D(B, D),

o I'=1(B, D, I).

Belief is about facts or information that the agent
receives from its internal states or environment status
when currently participating in some process. Desire
is a list of goals that the agent can or tries to achieve.

K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27 21

Intention is a plan for the agent to achieve its goal.
These attributes with three functions (B, D and I)
allow the agent to behave dynamically, according to
some change in their environment. A new belief (B') is
derived from the old belief (B) and the agent’s current
perception (P) of the environment and its internal
state. The new desire (D) is derived from the new
belief and the old desire (D). The new intention (I')
comes from belief, desire and old intention (I).

3.2. Mobile agent

A mobile agent (MA) is a piece of software that can
move from one host to the other over the network to
carry out the task that it was designed for. The mobile
agent is a delegate of the user who grants the program
a certain degree of autonomy to achieve its designed
goal. Mobile agents are most likely to be useful in
three general situations. One is disconnected comput-
ing such as laptops—they frequently disconnect from
the network or use a wireless network that might
become disconnected on short notice. The second is
information retrieval situations—applications where
the agent can be sent to the large data source and filter
through the data locally. The third category is dynamic
deployment of software [12].

3.3. Dual mode of observation

Observation is an important mechanism that
enables agents to act proactively. In the engineering
design process changing design specifications may
include the introduction of new items, the removal
of some items, and the replacement of some items with
others. The frequency of these changes may vary. In
order to deal with this dynamic situation and increase
communication efficiency, the observation mechan-
ism includes two components, a dual mode of obser-
vation and a set of meta BDI model rules. The
introduction of a dual mode of observation is to
improve the agent’s awareness of the dynamic envir-
onment in which it operates. The meta rules allows the
agent to have control over the scope and nature of its
observation. When an agent needs monitoring, the
agent deploys an MA to the observed agent. The
design agent through its meta BDI rules generates
the rules for the MA. The design agent is responsible
for the global observation whilst local observation is

performed by the MA. As a result, the filtering of data
at the local level and the reduction of communication
requirements are supported by a dual mode of obser-
vation that stems from the relationship between the
agent and the MAs, and their respective roles.

At the global level the design agent maintains a
table of the active objects that represent the product
model. Through its observer mechanism the agent is
able to keep the table up-to-date by being set to
observe any object creation or deletion that takes
place in the observed environment. This updating is
essential, since if the environment holds objects of
which the agent is not aware, the logical integrity of
any decision making process is flawed. Likewise a
lack of knowledge that an object has been deleted
would lead to a run-time error if the agent were to
attempt to reference such a deleted object.

A general schema for the ORB Observer mechan-
ism is presented in Table 1, with its main methods,
written in an Interface Definition Language (IDL).

When one agent creates any of the objects, the
addObserver method is called and the remote object
reference is stored in other agents’ tables. In the case
of objects being identified to monitor the design agent
responds by dispatching an MA to the corresponding
remote site. The MA is made aware of which object
and data to monitor, and where they are, through the
remote object reference obtained from the ORB
Observer mechanism. When the object is about to
reach the end of its life cycle, the deleteObserver
method will remove the remote object reference from
the table and the agent will instruct the MA to stop the
monitoring activity on that object to prevent any run-
time error.

Table 1
The schema for the ORB

module ORBObserver
{
interface Observer
{
void update(in any observables, in any message); };
interface Observable
{
void notifyObserver(in any data);
void addObserver(in Observer objRef);
void deleteObserver(in Observer objRef);
long countObservers(); }; };

22 K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27

(e)

~——

-
Observation path

4 @.\) Object set observed

Mobile Observer Agent system

——— —p Communication path

e ——

P -

///Imelli gem\ e
/ Agent

| ' i

m 1 : '
®,/
\N&—@

~ >

Design Agent
location - static

Fig. 3. Dual mode of observation.

Under the local mode of observation, the observer
mechanism of the MA and the ORB Observer mechan-
ism in the agent, together with rules allow the MA
to monitor specific data. If an abnormal condition
is detected in the observed agent, the MA will trigger
the notifyObserver method to notify the agent. Fig. 3
demonstrates the MA moving between agents and
illustrates the global and local observation [13].

3.4. BDI model and observation

The algorithm in Table 2 provides a framework
that allows the ORB observer to interact with the
BDI model, and the BDI model to work with the
design agent to create a new MA for information
collection. The MA sends back the filtered informa-
tion to its design agent. The meta BDI model rules in
the design agent generate a set of specific rules and
conditions which are then embedded in the MA in
order to monitor designated objects. When the rules
need to be changed or the object being monitored is
deleted, the MA is withdrawn. Such a system was
implemented using multiple threads as shown in the
Table 2 [14].

3.5. Other components

In order to facilitate the use of the integrated sys-
tem, a common Graphical User Interface (GUI) was
designed (see Fig. 4). The designers can activate and
control their specific tools and agent systems through
a user-friendly interface. The GUI also allows the
users to view the product model in a hierarchical
manner through the AP231 product model. The pro-
duct model is represented in STEP’s data definition
language, EXPRESS [15], and then translated into
IDL. The ORB compiler translates the IDL into C,
C++, or Java code according to the requirements of
the different applications. Each application maps its
own product model to the interfaces generated from
IDL. This mechanism allows diverse product models
in the design agents to interoperate in distributed
objects fashion.

The applications, the distributed/multidisciplinary
design tools including their domain knowledge, are
implemented using various tools such as CAD, PFD
packages, expert system shells and programming
languages (i.e. C++, Java). These tools provide dif-
ferent levels of APIs for the developers. The APIs are

K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27 23

Table 2
The schema for dual mode of observation

ObjectRefs = AddingObject(obj) //The ORB observing notes the new object
ObjectRefs = DeletingObject(obj) /The ORB observing notes an object deletion
/fimplement void update(in any observables, in any message) and assume objects being //maintained in the array of ObjectRefs.

//This pseudo operates as one thread in a multithread environment.

While (Observing_is_Active)

InterInform = GetInform(Internal_Application) //Get internal application data

ExterInform =GetInform(Other_Agent)

/I Get the information e.g. Request from agents and DMA and Inform ACL
Belief= Modify(Belief, InterInform)// store the information from internal applications into BDI
Belief = Modify(Belief, ExternInform) //store the information from other agents into BDI

If Monitoring_is_Requried() ==True and Monitoring_Is_Not_Activated == True

Then

ObjRef = DeterminingtheObject (ObjectRef[]) // Get observable object reference
Attributes = DeterminingtheAttribute(ObjRef) // Get the observable attributes
Rules = BDIRuleGenerator(ObjRef, Attributes) // Get rules from rule generator
MA = Instantiating_Mobile_Agent(Rules) // Instantiate the mobile agent

Send (MA, AgentAddress) / Send the mobile element to observable agent
Belief = Modify(MA, AgentAddress, True) /Change the belief state

Endif

wrapped by the ORB in order to communicate with the
BDI model. The BDI model invokes the ORB inter-
faces to activate the functions in the applications and
obtain the results.

@inlulliganl Agent Menu [_ O] <]
Product Model VRML Agent Knowledge Based System
<o R
“ aia || Remove | clear | | Dry GasiFead © 010 llillll
e T t ot - Teg Contactor After
Product Tree — Fa e A
©-[] STEP AP231 B g E.)Z B
% [systems i s R
@ [Liquid il
Lica e
T
Ldvaro IR T] =
LAP12s © " Lo TémparatufeEkdhariger
QVIUU - . I ‘ ;o
@[3 Condensate T
e cas ‘
& [Functions R
| fip
& [Safsty 'q““ i
List Selected Product Data
V1010 Flantliam..] Description Plant item Fun:i\un;LJ-_ ‘
k2010 V1010 |Vessel |Sepatator |
V2110 K2010 Power Generator | Power Supplier
P1125 V2110 Vessal Sepatator
E2910 P1125 |Pump Pump Impeller
i E2210 Heat Exchanger Sepatator
£2190 £2120 |Compressor |Sepatator
V2120 V2120 Vessel Storage
V2010 V2010 Vessel Sepatator
Selection mode: | MULTIPLE_INTERVAL_SELECTION ~
« DM

Fig. 4. A common Graphical User Interface.

This approach is similar to the previous CORBA-
based solution but here the applications do not directly
invoke other applications. Interaction is carried out
through agents. The course of action of the application
is controlled by its BDI mental model. Moreover, the
knowledge and reasoning mechanism in the mental
model can assess and determine whether the agent
should fulfil the requests. Consequently, this mechan-
ism allows the agents to have a certain degree of
autonomy.

4. An example from the design
of a petrochemical plant

Let us consider an example from the petrochemical
plant design with three scenarios.

Scenario I: The process engineer is required to
change the operating temperature drop across the
low temperature exchanger and so adjusts the flowsheet
parameters accordingly. New equipment is selected
and the change is passed to the other design agents.
The layout and electrical systems report that this does
not conflict with their existing models. They accept
these changes and update their models accordingly.
However, the cost engineer decides that this exchanger
configuration would be cheaper if replaced by a set of
two exchangers.

24 K.-M. Chao et al./Computers in Industry 48 (2002) 17-27

Scenario 2: The process engineer responds to this
suggestion, accepting it and changes his model
accordingly. The electrical system also accepts this
change. However, the extra space required for the two
exchangers configurations cannot be accommodated
in the existing area. In model terms, constraints in the
layout design have now been violated and the layout
engineer cannot accept this change.

Scenario 3: In response to this conflict the electrical
system produces a new design for the platform power
supply. This alternative uses a generator set up with
similar power output but which is smaller. However,
this generator configuration is more expensive. The cost
engineer states this violates a global project constraint.

A number of design processes have been carried
out. These scenarios are used to examine the effec-
tiveness of the proposed system. In Scenario 1, there is
no improvement compared with the solution derived
from the original CORBA-based framework. Scenario
2 also shows little improvement over this. Before the
electrical system starts to run, the layout system has
already determined that the implementation is not
feasible. So the electrical system rejects the request
from the PFD system. The diagnosis system, however,
has already carried out the simulation.

In Scenario 3, the cost agent observed the changes
in the electrical system, its mental model determined
that the new design has violated the global constraint
and autonomously issued it to the electrical system

through an ACL at an early stage before the new
design propagates to other agents. In this scenario, the
number of design processes was reduced under the
proposed systems. The 2D layout generator, 3D lay-
out, and associativity data systems did not activate the
simulations, after the cost system identified the exces-
sive cost in the new proposed design.

In Scenarios 2 and 3, the proposed framework pro-
duces better results by reducing the number of design
activities by one and three, respectively over the simple
CORBA-based system. These measurements only con-
sider the direct knock-on effect to the design with taking
into account related activities such as co-ordination
efforts. It is difficult to represent the improvements
in time-scale, because the layout system uses random
seeds to generate optimised layouts, so the system
process time varies. These scenarios, however, demon-
strate how the use of a middle layer, i.e. mental model
working with the observation mechanism in the federa-
tion creates the proactiveness and autonomy of the
underlying systems. The representation of beliefs,
desires and intentions allows conflicts to be identified
by distributed/multidisciplinary design teams before
expensive work had been undertaken by the system.
In other words, this approach enhances concurrency in
the design process. Fig. 5 shows a 3D product model
that satisfies all design agents, after a number of itera-
tions of design changes and interaction between the
designed agents.

Fig. 5. A recommended design in 3D.

K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27 25

5. Discussion

There are a number of research groups using agent
technologies to tackle various issues in concurrent
engineering. However, none of them really explores
or emphasises the potential of intelligent agents’
mental attributes such as proactiveness and autonomy
in reducing or avoiding redundant design tasks.

PACT [16] is one of the pioneering systems using
agent technology to achieve collaborative engineering
design in a distributed environment. The agent in
PACT encapsulates program modules and invokes
them remotely as network services when needed.
The aim of the experiment is to demonstrate its frame-
work for enabling knowledge reuse and sharing
among design agents. Olsen et al. [17] and Khedro
and Genesereth [18] use the same architecture to
demonstrate applications in car design and the build-
ing engineering environment. The facilitator, a task-
independent mechanism, co-ordinates the run-time
activities of the individual software agents. The agent
communication language allows agents to communi-
cate in the same expressive language. An ontology is
used to define common terms in the distributed/multi-
disciplinary agents in order to support effective com-
munication. Edmonds et al. [19] proposed a multi-
agent group support framework to provide agents with
context-sensitive dialogue and to enable group inter-
action with a remote geographic information system.

Agent-based blackboards [20], like federation sys-
tems, use grouping to manage agent interactions. Each
local group of agents shares a data repository that is
provided specifically for the efficient storage and
retrieval of active shared data. Along with design
data, tactical control knowledge can be represented
in the shared repository, enabling reasoning about how
to proceed with the design process and thus acquiring
the same status and priority as the reasoning about the
design itself. Within an agent group, a control shell
(analogous to the federation’s facilitator) notifies
appropriate agents of relevant events [20].

Mori and Cutkosky [21] proposed reactive design
agents that internally maintain states and rule-based
knowledge and they do not yet believe that autono-
mous agents are practical for most engineering appli-
cations. A new initiative from DARPA [22] proposed a
control strategy to enable autonomous agents to form
super applications at run time. This results from the

recognition that the autonomy and partial knowledge
make agents useful for addressing the problems of
complex engineering design environments. The power
of the autonomous agent, however, can cause pro-
blems such as misinterpreting the request, making
poor decisions and interacting with other agents in
destructive ways [22]. Thus, it requires a control
strategy to reduce risks of misuse or malfunction.
The A-Design theory [23] is founded on the notion
that engineering design occurs in an ever-changing
environment and therefore computer tools developed
to aid in the design process should be adaptive to these
changes. The essence of agents is to perceive their
environment (design states) through sensors (i.e. func-
tional inputs) and act upon their environment through
effectors (i.e. modifications to the design states). The
agents in A-Design do not fully conform to the defini-
tion of agency since its agents do not display specific
behaviours of autonomy, mobility, or sociability [23].
Shen and Douglas [24] carried out a comprehensive
literature survey in agent-based systems for intelligent
manufacturing and offered a good classification of
existing approaches. The survey, however, did not
highlight the potential of proactiveness in the agent
in preventing faults in the manufacturing process.
Agents as presented, whether referred to as software
or intelligent agents, are marked by some important
characteristics. In tackling large and complex concur-
rent engineering problems they focus on knowledge
sharing and reuse, and design co-ordination. However,
our view about intelligent agents goes beyond these
aspects. It is not only consistent with these features, but
includes also the desire to minimise redundant design
activities. A reduction in design activities benefits other
areas in design. It reduces the interaction of systems and
minimises the number of design versions [25]. Before
the agent formally publishes its design output, the
feasibility of solutions is assessed. It minimises the
number of design versions and the required space for
design archives. A fundamental aspect of the research in
the area of Distributed Artificial Intelligent is co-ordi-
nation, in a distributed environment [26]. An oversight
in this research area, however, is the failure to identify
the need for and development of agent-oriented systems
acting proactively and autonomously.
This approach could be applied to other fields.
However, a number of changes in the framework
would be required for new application areas. Domain

26 K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27

knowledge in the applications and the mental models
represented by the agents would need to be changed
according to the characteristics of the new application
areas. The IDL used to link the mental model and the
applications would also need to change to reflect the
new functions.

Tools such as Aglets (IBM [27]), FIPA-OS [9] and
JAM agents [28] used in the experiment are prototype
systems. Although their reliability is not adequate for
real applications, they are able to demonstrate the
effectiveness of this research. The monitored attri-
butes (such as the cost and functions of equipment
items) in the agents and the workflow are determined
according to the human expert’s arbitrary experiences
in the current design environment. In addition, each
agent only holds partial knowledge and information
about the overall design, so the suggestions may not
always be critical through the design life cycle. This
also leads to a number of conflicts increased among
design agents. In order to resolve this issue, an auto-
mated negotiation mechanism [29] is under develop-
ment. More agent attributes having positive impacts
on reducing design activities need to be explored.
However, two characteristics of agents, proactiveness
and autonomy have been shown to have an impact on
the effectiveness and efficiency of engineering design.

6. Summary and conclusions

One requirement of concurrent engineering is the
ability to communicate the effects of a design change
(within a distributed environment) to all distributed/
multidisciplinary design teams. However, the success-
ful communication of such a change faces many
hurdles. For example, different design tools may be
based on different system architectures or methodol-
ogies. Such tools will often be located at different
sites, and each tool may have a different data model of
the design process. Consequently, the difficulties in
understanding the diverse knowledge and information
generated from these distributed/multidisciplinary
design teams may reduce the effectiveness of a dis-
tributed design environment.

Initially, the authors proposed a CORBA-based
framework to address these problems, but as the work
progressed, the limitations of such a framework
became self-evident. As a result of these limitations

an agent-based framework (incorporating CORBA
technologies) was developed. Agent attributes (for
example, proactive, reactive and autonomous proper-
ties) are ideally suited to this particular problem. They
provide a more flexible and dynamic means by which
multidisciplinary design teams situated within distrib-
uted design environments can successfully design
large and complex MTO products.

Acknowledgements

This research was supported by the UK Engineering
and Physical Sciences Research Council (Grant
No. GR/L25387) to the Newcastle EDC. We wish
to thank AMEC Process and Energy Ltd. for their help
with the case study and the members in the Newcastle
EDC who have contributed to this work.

References

[1] B.King, Automatic Extraction of Knowledge from Design Data,
Ph.D. Thesis, University of Sunderland, Sunderland, 1995.

[2] M. Guenov, Modelling design change propagation in an
integrated design environment, Journal of Computer Model-
ling and Simulation in Engineering 1 (1996) 353-367.

[3] K.-M. Chao, B. Florida-James, P. Norman, P. Smith, B. Hills,
Use of virtual reality and agents in engineering design, in:
Proceedings of the Conference of EXEPERSYS-98, 16-17
November, 1998, Virgina Beach, Virgina, USA, pp. 183-188.

[4] K.-M. Chao, P. Smith, W. Hills, B. Florida-James, P. Norman,

Knowledge sharing and reuse for engineering design integra-

tion, Journal of Expert System with Applications 14 (1998)

399-408.

N. Smith, W. Hill, G. Cleland, A layout design system for

complex made-to-order products, Journal of Engineering

Design 7 (1996) 11-20.

[6] M. Guenov, K.-M. Chao, B. Florida-James, N. Smith, B.

Hills, I. Buxton, Tracing the effects of design changes across

distributed design agents, in: Proceedings of the Second

World Conference on Integrated Design and Process Tech-

nology, 1-4 December, 1990, Atlantic City, Florida, USA.

F. Greenstein, Electronic Commerce: Security Risk Manage-

ment and Control, McGraw-Hill, New York, 2000.

J. Owen, STEP An Introduction, Information Geometer Ltd.,

Winchester, UK, 1994.

[9] FIPA, Agent Communication Language Specifications 97
(http://www.fipa.org), 1997.

[10] J.R. Searle, Speech Acts, Cambridge University Press,
Cambridge, 1969.

[11] S.A.Rao, M.P. Georgeff, BDI agents: from theory to practice,
in: Proceedings of the 1st International Conference on
Multiple Agent System, 12—14 June, 1995, Sans Francisco,
California, USA, pp. 312-319.

[5

—

[7

—

[8

=

http://www.�pa.org

K.-M. Chao et al./ Computers in Industry 48 (2002) 17-27 27

[12] D. Milojicic, Mobile agent applications, IEEE Concurrency 7
(1999) 80-89.

[13] J. Plumley, K.-M. Chao, R. Anane, N. Godwin, Proactiveness
and effective observer mechanisms in intelligent agents, in:
Proceedings of the Conference on Intelligent Agent Technol-
ogy, 23-26 October, 2001, Maebashi, Japan, pp. 144—149.

[14] K.-M. Chao, R. Anane, J. Plumley, N. Godwin, R.N.G.
Naguib, A Mobile Agent Framework for Telecardiology, in:
Proceeding of the 23rd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, 25—
28 June, 2001, Istanbul, Turkey, p. 788.

[15] D.A. Schenck, PR. Wilson, Information Modelling: The
EXPRESS Way, Oxford University Press, Oxford, 1994.

[16] M. Cutkosky, R.S. Engelmore, R.F. Fikes, M.R. Genesereth,
T.R. Gruber, W.S. Mark, W.S. Tenenbaum, J.C. Weber, PACT:
an experiment in integrating concurrent engineering system,
IEEE Computer 26 (1993) 28-37.

[17] G.R. Olsen, M. Cukosky, J.M. Tenenbaum, T.R. Gruber,
Collaborative engineering based on knowledge sharing
agreements, Journal of Concurrent Engineering: Research
and Applications 3 (1995) 145-159.

[18] T. Khedro, M.R. Genesereth, The federation architecture for
interoperable agent-based concurrent engineering systems,
Journal of Concurrent Engineering: Research and Applica-
tions 2 (1994) 125-131.

[19] E.A. Edmonds, L. Candy, R. Jones, B. Soufi, Support for
collaborative design: agents and emergence, Communication
of ACM 37 (1994) 41-47.

[20] S.E. Lander, Issues on multiagent design systems, IEEE
Expert 12 (1997) 18-26.

[21] T. Mori, M. Cutkosky, Agent-based collaborative design of
parts in assembly, in: Proceeding of ASME Design Engineer-
ing Technical Conference, DETC98/CIS-5697, 13-16 Sep-
tember, 1998, Athens, Greece.

[22] D.E. Dyer, Multiagent systems and DARPA, Communication
of ACM 42 (1999) 53.

[23] M.I. Campbell, J. Cagan, K. Kotovsky, A-Design: an agent-
based approach to conceptual design in a dynamic environment,
Journal of Research in Engineering Design 11 (1999) 192-192.

[24] W. Shen, H.N. Douglas, Agent-based systems for intelligent
manufacturing: a state-of-the-art survey, International Journal
of Knowledge and Information Systems 1 (1998) 129-156.

[25] B. Florida-James, N. Rossiter, K.-M. Chao, An agent system
for collaborative version control in engineering, The Interna-
tional Journal of Manufacturing Technology Management 11
(2000) 258-266.

[26] G. Coates, 1. Ritchey, A.H.B. Duffy, W. Hills, R.I. Whitfield,
Integrated engineering environments for large complex
products, Concurrent Engineering—Research and Applica-
tions 8 (2000) 171-182.

[27] IBM, Aglets Software Development Kit (http://www.trl.ibm.-
com/aglets/).

[28] M.J. Huber, JAM Agents in a Nutshell (http://members.ho-
me.net/marcush/IRS), 1999.

[29] J.-H. Chen, K.-M. Chao, N. Godwin, C. Reeves, P. Smith, An
automated negotiation mechanism based on co-evolution and
game theory, in: Proceedings of the Conference of the 17th

ACM Symposium on Applied Computing, 10-14 March,
2002, Madrid Spain.

Kuo-Ming Chao received the MSc
degree and the PhD degree in computer
science from Sunderland University, UK,
in 1993 and 1997. He was a Research
Associate in the Engineering Design Cen-
tre at University of Newcastle-upon-Tyne
in 1997-2000. In late 2000, he joined the
School of Mathematical and Information
Sciences at Coventry University as a

N senior Lecturer. His research interest
includes intelligent agent technologies, game theory, engineering
design and supply chain management.

Peter Norman is Associate Director
of the Newcastle Engineering Design
Centre and a senior Lecturer in the
Department of Chemical and Process
Engineering. Current research interests
centre on systems integration, integrated
modelling environments and product data
modelling, as well as design for a clean
environment. He has been principal
Investigator for projects on design pro-
cess integration and eco-design decision
support. For the past 10 years Dr. Norman has closely followed the
development of STEP (ISO 10303) as applied to the process
industries and the systems integration area.

Rachid Anane is a senior lecturer in computer science in the School
of Mathematical and Information Sciences, Coventry University,
UK. He holds a BSc in computer science from the University of
Manchester, an MSc and a PhD in computer science from the
University of Birmingham. His research interests include software
engineering, distributed systems and the modelling and analysis of
historical data. Recently, he has taken an active interest in the role of
software agents in supporting distributed applications.

Anne James is the research group leader
for the data and knowledge engineering
research group (DKERG) at Coventry
University. Dr. James received the BSc
degree in computer science and lan-
guages studies from the University of
Aston in 1980. She was awarded a PhD
degree in the area of databases and data
modelling in 1986 after a programme of
work completed at The Polytechnic,
Wolverhampton. Since then, Dr. James
has remained engaged in teaching and research in the areas of data
and knowledge representation. She is an active member of the
British Computer Society and participates on a number of pro-
gramme committees for national and international conferences. Dr.
James is currently acting Associate Head of Computer Science at
Coventry University.

http://www.trl.ibm.-com/aglets/
http://members.ho-me.net/marcush/IRS

	An agent-based approach to engineering design
	Introduction
	Analysis of a scenario
	The proposed framework for co-operation
	The mental model
	Mobile agent
	Dual mode of observation
	BDI model and observation
	Other components

	An example from the design of a petrochemical plant
	Discussion
	Summary and conclusions
	Acknowledgements
	References

