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Abstract 
 
Algorithmic animation has been the focus of intense 
research in many disciplines and its impact on the 
educational process has been marked by increasing 
learner autonomy.  Research in this field is driven by the 
belief that algorithm animation can be a more effective 
means of instruction than manual or verbal modes of 
delivery. Encryption algorithms in particular offer an 
interesting domain for the application of animation 
principles in learner/content interaction. The main 
challenge however has been how to design effective 
animations with a pedagogical value. This paper is 
concerned with the presentation of an animation of the 
DES algorithm that exhibits many of the features of useful 
instructional material. Its pedagogical value is expressed 
in terms of intrinsic qualities and, in particular, the 
degree of interactivity and the granularity of abstraction.    
 
Keywords: Encryption, DES, algorithm animation, 
pedagogical value 
 
 1. Introduction 

 
  Computer science instruction is increasingly relying on 
animation as a way of addressing the complexity and the 
dynamic nature of many core topics. It is also providing a 
motivational impetus and offering students greater 
autonomy.  The educational concerns that are driving the 
research into animations have also shaped the mode of 
interaction that their use entails and constrained their 
application; one major issue in the design of these 
systems is to ensure that the meta-tools maintain accuracy 
and facilitate the understanding of the subject matter in a 
transparent manner.  
  Algorithm animation has been the subject of much 
attention and various systems have been proposed and 
their impact evaluated. In this context the learning content 
goes beyond mere e-distribution: it allows learners to 
control and to follow the dynamic unfolding of the 
algorithm as the data is being transformed [2].  
   Research into this field is driven by the belief that 
algorithm animation can be a more effective means of 
instruction than mere static text-based resources. It is 

considered as a serious alternative to verbal modes of 
delivery such as lectures [1]. There is also a growing 
awareness that the emergence of what is termed the 
‘Nintendo generation’ is influencing the delivery of 
courseware material. Modes of interaction that have 
greater affinity with the pervasive nature of multimedia 
environments are being promoted vigorously [3].    
   These modes of operation are deemed to have a greater 
motivational power than text-based methods and to 
facilitate student-centred learning.  Among the benefits 
that accrue from the interactions with simulations in 
general and animations in particular is the validation and 
refinement of the conceptual models of the underlying 
objects of investigation [4]. Simulation in general is 
extremely important in engaging learners with the content 
and in motivating independent investigation [5]. The role 
of animation in enhancing the learning process has been 
confirmed by many studies [6], although in some cases 
the outcome of the experimental results was not 
conclusive [7]. One major criticism levelled at many 
animations is that the user is passive and has no control 
over the animation apart from the initial start [1]. The use 
and impact of animations on the learning process has 
brought to the fore the issue of how to evaluate their 
pedagogical value, namely their contribution to the 
understanding of the underlying concepts. These concerns 
are particularly relevant to encryption algorithms because 
of their abstraction and their inherent complexity. 
   An understanding of security in general and encryption 
in particular has become a requirement for students of 
computer science.  With the increasing awareness of the 
risks associated with networks and distributed systems the 
deployment of sophisticated methods of encryption is also 
associated with the demand for suitable instructional 
material in encryption principles and models.  Although 
encryption algorithms are usually complex and their 
behaviour is difficult to visualise, they follow sequential 
and discrete stages that are well suited to animation.  The 
design of adequate animations has presented researchers 
with the challenge on how to unravel these stages in a 
clear and unambiguous manner.  Various systems have 
been proposed with different emphasis on levels of 
interaction and the inner operations of the encryption 
process [8, 9].   



 

   This paper is concerned with the presentation of the 
animation of the DES encryption algorithm and a 
consideration of its pedagogical value. The DES 
algorithm is part of a suite of animated encryption 
algorithms such as the substitution algorithm; the 
animation of the exchange of keys in Kerberos is used as 
a motivational element.  The animation is presented as a 
tutorial. 
   The remainder of the paper is organised as follows. 
Section 2 identifies the requirements for the design and 
deployment of animations. Section 3 gives a procedural 
description of the DES algorithm. Section 4 presents the 
salient features of the DES animation in terms of 
screenshots with a brief outline of its implementation. 
Section 5 gives an evaluation in terms of conformance to 
evaluation criteria and comparisons with some existing 
systems. Section 6 concludes the paper.  
 
2   Design Considerations 
 
   The enhancement of the pedagogical value of the 
encryption algorithms was the main motivation behind the 
design approach used for the animations. The pedagogical 
value of the animation is formulated in terms of two 
requirements, a contextual requirement and an interaction 
requirement. These refer to the intrinsic qualities that an 
animation should possess. 
 
2.1 Context  
   The  contextual   requirement  is  a    prerequisite   for   
e-learning and its fulfilment depends on the adequacy of 
the underlying distributed system. The DES animation 
should address the following issues: 
Access and autonomy: the animation should be designed 
as a Web-based application in order to facilitate its access 
from anywhere and at anytime. It should be self-contained 
and supported by contextual information; standard 
mathematical notations should be adhered to whenever 
possible. The animation, by definition, should be 
deterministic and repeatable. It should also foster 
autonomy in the learning process by decoupling instructor 
and student.  
Motivation: a motivational framework should be provided 
through a specific topic such as key exchange in Kerberos 
and the intrinsic value of encryption should be 
highlighted. As an aid to the understanding of the 
structure of encryption algorithms and their dynamic 
unfolding animation should make them more accessible 
and less intimidating. Students should have the 
opportunity to investigate different levels of complexity, 
from transposition ciphers to DES as the archetypal 
cipher. Where applicable various cognitive activities 
should be combined in the instruction process. 
 

2.2 Interaction 
   The learner/content interaction is considered as the main 
focus of the learning process. Its scope is formulated 
along various concepts [10]. This interaction is however 
more complex because it involves the animation of both 
the operational framework and the data. The interaction 
should take into account the following: 
Focus: a learning object should have well-defined 
objectives. The animation should emphasise what the 
algorithm is doing (through data transformation) and how 
it works (through a clear and annotated sequence of 
steps). 
Abstraction: discrete levels of abstraction should be 
incorporated in the animation. The user should be able to 
go through the sequence of steps at various levels of 
abstraction and initiate transitions between stages. The 
learner should control the encryption process with the 
ability to focus on specific steps or skip them if required.  
Navigation: the algorithm unfolds dynamically in the 
transformation of the data. The student should be able to 
accommodate different types of learner. A structural view 
of algorithm should be explicit so that the learner can 
determine the status of the encryption process as it moves 
from one stage to the next. 
Reduced cognitive load: the main tasks and operations of 
the encryption should be clearly identified, and the 
information manipulated or carried across the different 
stages by the learner should be minimal. The animation 
should make the obscure parts of the DES algorithm more 
accessible and understandable [11]. 
Correspondence:  a one to one mapping between the 
steps of the algorithm and the structure of the animation 
should be evident and supported by a relevant integration 
of animation and text. The system should also 
accommodate different modes of representation if 
applicable. 
 
3 Data Encryption Standard (DES)   
 
   The DES algorithm is based around Horst Feistel’s 
Lucifer Cipher, which was the first among many Feistel 
ciphers. A Feistel cipher works by applying the same 
function to the plaintext for numerous rounds, with each 
round being parameterised by a round key (derived from 
the main key). DES is a block cipher, which operates on 
64-bit plain text blocks and uses a 64-bit key of which 
only 56 bits are used to create cipher text. The remaining 
8 bits are discarded or used as parity bits. 
 
3.1 Encryption  
   The DES algorithm is made up of two main stages: the 
key schedule where sixteen sub-keys (round keys) are 
generated, and the plaintext block encoding, where the 
Feistel cipher is applied.  

 



 

Key schedule 
   The key schedule involves the generation of sixteen 48-
bit subkeys (the round keys) from the original 64-bit key, 
as follows: 

1. The original 64-bit key is stripped of every 
eighth bit and permuted using the Permuted 
Choice 1 (PC-1) table.  

2. The resulting 56 bits are split in two 28-bit 
blocks, C0 and D0. 

3. For each round i, Ci and Di are computed as 
follows: 

Ci = Ci-1 <<< pi 
Di = Di-1 <<< pi 

 where   <<< pi  is  1 cyclic shift for i = 1, 2, 9 or 
16, and 2 cyclic shifts for other values of i. 

4. Ci and Di are then concatenated (Ci Di) and 
permuted according to the PC-2 table to give the 
subkey Ki. 

5. All the subkeys are generated in a similar 
manner, for i = 1,..,16. 

 
Feistel Cipher 
   Once the key schedule is complete, the algorithm then 
encrypts the plaintext, a 64-bit block, permuted following 
the initial permutation (IP) table to give a 64-bit cipher 
text. The output of the initial permutation is split into two 
32-bit halves, L0 and R0, which are then subjected to the 
sixteen rounds of the Feistel cipher as follows: 
             For each round  i = 0, …,15 
                    Li+1 = Ri 
                   Ri+1 = Li  XOR  F(Ri ,Ki) 
   The equations state that the right half  Ri  of the plaintext 
and key Ki are put through the Feistel function, denoted 
by F; its output is then XORed with the left half Li. The 
original right half and the result of the XOR operation are 
then swapped and are used in the next round as the new Li 
and Ri. The exception to this operatrion is in the final 
sixteenth round where there is no swap. For each round 
the DES Feistel function consists of the following stages: 
1. Expansion: the 32-bit block, Ri, is expanded into 48 

bits by using the Expansion Permutation table. This 
essentially involves duplicating 16 bits and 
permuting them. 

2. Subkey addition: the 48-bit block is XORed with the 
Ki subkey for that round. 

3. Substitution: the resulting 48 bits are then split into 8 
blocks of 6 bits each, which are used as input to eight 
substitution boxes (S-Box). The S-Box takes the 
concatenation of the outer two bits of the 6 bits as the 
row, and the four inner bits as the column of a lookup 
table to return a 4-bit group. The output from each S-
Box is concatenated sequentially to generate a 32-bit 
output. The  first 4-bit output  is  generated  by  S1 
(S-Box 1) and the last group of 4 bits by S8. The S-
Box substitutions are designed to make cryptanalysis 

difficult and a slight change to the tables can 
significantly reduce the security of DES. 

4. Permutation: the 32 bits from the S-Boxes are 
permuted according to the Permutation Box (P-Box) 
to yield the final result of the Feistel function. 

 
   At the end of the sixteenth round the order of L16 and 
R16  is reversed to produce a block of 64 bits,  R16L16., to 
which the final permutation is applied according to the 
inverse permutation   (IP-1)  table.  This final permutation 
represents the cipher text of the 64-bit plain text. 
 
3.2 Decryption and Modes of Operation  
   The decryption process works in the same manner as the 
encryption with one exception: the generation of the 
round keys occurs in reverse order, with a slight 
modification to the key schedule.   
   The DES algorithm transforms a 64-bit plain text into a 
64-bit cipher text. The algorithm may however follow 
different modes of operation in the encryption of a whole 
text, which is split into 64-bit blocks. If the encryption of 
each 64-bit block is independent of the other blocks, the 
mode of operation is called Electronic Code Book (ECB); 
otherwise two other modes of encryption may be used, the 
Chain Block Coding (CBC) or the Cipher Feedback 
(CFB).  
 
3.3 DES Characteristics 
   From the previous description of the DES algorithm it is 
evident that the algorithm is quite complex in the 
unfolding of its different phases and in the utilisation of a 
variety of complex mathematical transformations.  This 
complexity is confirmed by some preliminary research, 
which reveals that many students found the use of the 
permutation and the substitution tables as major sources 
of confusion.   DES has also the characteristic of 
introducing various operations while relying on carefully 
designed tables to direct their application.  The 
combination of bit-shuffling (permutations or P-box), and 
simple non-linear functions (S-boxes) as well as simple 
mixing (XOR) has the merit of generating both diffusion 
and confusion, often considered as properties of secure 
ciphers. Diffusion is created by permutations or 
transpositions techniques while substitutions mechanisms 
are aimed at introducing confusion. 
   The DES algorithm is mature and has been very 
influential. Many recent encryption algorithms, such as 
the Advanced Encryption Standard (AES) and Blowfish, 
are based on design principles similar to DES. All these 
factors confer to the DES algorithm a special status in 
symmetric encryption, especially as it subsumes the 
architecture of transposition and substitution encryption 
schemes.  In addition to a clear identification of the 
different stages, different levels of details and complexity 
are also manifest.  



 

 
4 DES Animation 
 
   The description of the DES animation follows the 
procedural nature of the DES algorithm. The focus is on 
the key stages of the algorithm with particular emphasis 
on the most obscure functions. Since various tables are 
focal points of activity their role and their operations 
should be made explicit.   The user interface is consistent 
across the different animations. The DES animation is 
presented as a tutorial with nine stages. 
   For each animation a bar appears at the top of the 
screen. It indicates the progress of the animation and the 
current stage of the algorithm. A dialog box, providing 
information and instructions to the user, accompanies 
each stage of the algorithm; clearly visible navigation 
buttons are also included. The transitions between stages 
will be animated to indicate that the result of one stage of 
the algorithm is passed on to the next. 
 
4.1   DES Introduction 
   The first frame of the DES animation offers a brief 
description of the algorithm and invites the user to start 
the encryption process. The user can enter 8 ASCII 
characters for plaintext and 16 Hexadecimal numbers for 
an encryption key. When the encrypt button is clicked, the 
cipher text is displayed in hexadecimal and ASCII 
notations so that the user can view the final cipher. The 
binary versions of the plaintext and key are computed by 
the server and displayed. The user can initiate the 

animation of the encryption process by clicking the next 
button.  
   When the next button is clicked, the fields for the 
binary   plaintext and key are animated over 20 frames to 
appear at the top of the next screen. This enables the user 
to track the progress of the plaintext throughout the 
transformation process. Any text or image, which is 
carried forward onto the next stage is animated.   
 
4.2   Interactive Permutation Tables 
   At various stages of the DES algorithm, permutation 
tables such the Initial Permutation, P-Box or Inverse 
Permutation, are applied to binary strings. These have 
proven to be a major source of confusion. A permutation 
animation consists of an interactive permutation table 
(clickable), a position arrow and the output of the 
permutation (Figure. 1). When the user clicks on one 
entry in the permutation table it is highlighted in bold; the 
position arrow moves accordingly to indicate the 
corresponding bit in the input string. The user is thus able 
to generate the output string bit by bit. All the 
permutation tables work in a similar manner and the user 
has the option of skipping the permutation phase and 
moving on to the next stage. 
 
4.3 Key Schedule
   The description of the DES algorithm in Section 3 has 
shown that the key schedule is a repetitive process, and 
as such the animation of all sixteen rounds would add 
very little to the educational value of the tutorial.  It was 

 
Figure 1. Permutation Table 



 

therefore decided that in the key schedule only the 
generation of the first key K1 would be shown in detail.  
The key generation is shown in an animation where the 
user can generate the keys and view the process without 
going through all the stages (Figure. 2). The user has the 
option of viewing the generation of all sixteen round 
keys or to skip the animation.   
 
4.4   Feistel Cipher    
   The initial permutation (IP) behaves in a similar manner 
to the interactive permutation table described above. The 
result of the initial permutation is unveiled by the 
different positions of the arrow. Since this forms the first 
stage of the Feistel cipher the output string is split into 
two sub-strings of the same size. The result of the round 
key addition then goes into the S-Boxes. Special care was 
taken in the design and implementation of the S-Box 
animation, as it is another a source of difficulty and 
confusion in the DES cipher. Various representations of 
the S-Box have been introduced sequentially in order to 
elucidate its behaviour.  The S-Box can be considered as a 
black box without any explanation of the inner operations. 
The four bits generated by each S-Box are simply 
displayed as output 
   The user has also the option of opening any S-Box by 
clicking on it. This stage of the tutorial demonstrates in 
detail how the S-Box substitutions work. It shows an 
animation of the stripped outer bits, the inner bits and an 
animated table lookup (Figure 3). Although five distinct 
stages have been allocated to S-Boxes, the user can skip 

intermediate stages and investigate various levels of 
abstraction. 
 
4.5   Decryption 
   The tutorial includes an animation and explanation of 
how the decryption process works.  This animation 
presents a higher level of abstraction in the decryption 
process. It encapsulates all the stages of Feistel cipher in 
one single diagram. 
 
4.6 System Implementation  
   The system architecture is shaped by the need to address 
the issue of access and availability. The underlying 
technology should also provide support for animation and 
user interface design, without weakening the semantics of 
the interaction. 
   The system architecture conforms to the client-server 
model and is implemented using technologies that will 
ensure the platform independence of the system. The 
integration of Java and Flash in the implementation was 
aimed at enhancing the interactive features of the teaching 
material and maintaining the semantics of the animation. 
The client requests are handled by JSP acting as 
middleware with the algorithms running on the server 
side. A clear separation between client side and server 
side was enforced in order to allow for enhancements to 
be introduced seamlessly.  For example, it is possible to 
replace the implementations without any change to the 
animation or the interface. 

 
Figure 2. Key Generation 



 

5 Evaluation 
 
   This section is concerned with the determination of the 
pedagogical value of the DES animation. Following the 
discussion in Section 2, the pedagogical value refers to 
the intrinsic qualities of the DES animation. The 
animation will also be put in perspective through a brief 
appraisal of some published DES animations. Although a 
preliminary user evaluation of the animation was 
conducted with a small group of users its lack of formality 
precludes its discussion here despite its positive feedback.  
The group played an important role in determining the 
scope of the animation and the final application 
conformed to their requirements. A  formal evaluation 
with a control group will produce a more objective 
evaluation of the pedagogical value of the animation. 

 
5.1 Context and Interaction 
     The evaluation of the context and interaction of the DES 
animation will be framed in terms of a model of evaluation 
of interactive education software proposed by Reichert and 
Hartmann [12]. They introduce some criteria for good 
interactive Education Software in their evaluation of the 
learning in e-learning, a concept that overlaps the notion of 
pedagogical value. The ‘criteria for good interactive 
Education Software’ involve the following: 
• Promotion of fundamental ideas  
• Incorporation of different cognitive levels 
• Affordance and a high degree of interactivity   
• Provision of feedback 
• Support for effective visualization and usability 
   The application of these criteria to the DES animation 
yields the following points: 

The content is based on fundamental ideas: security is a 
core concept in computer science and DES can be 
considered as an archetypal encryption algorithm with an 
intrinsic value.  It has the advantage of subsuming the 
permutation and substitution schemes and demonstrates 
effectively the properties of confusion and diffusion. DES 
is also based on sound mathematical ideas. 
Incorporation of different cognitive levels: the learner is 
engaged in the exploration of different levels of 
abstraction. The main cognitive activities involve 
comprehension of encryption processes and acquisition of 
knowledge. Should the animation be incorporated into a 
blended programme other cognitive activities such as 
problem solving can be also invoked. The DES animation 
can be the subject of various pedagogical activities. 
High degree of interactivity: within the constraints of the 
encryption process the system is highly interactive. The 
level of interactivity depends on the nature of the 
algorithm and the dependence of intermediate values on 
the initial input. Within these constraints the learner is 
able to control the pacing and the sequencing of the 
animation. The taxonomy proposed by Schulmeister can 
be used as a benchmark for evaluating the level of 
interactivity of the application. In this classification level 
1 stands for no interactivity and level 6 enables 
‘visualisation generated by students’ [13]. The DES 
animation operates at level 2 since navigation through the 
animation is fully supported. Furthermore, as multiple 
representations of the same function are provided, level 3 
is also partially covered. This is particularly relevant to 
the different representations and operations of the S-Box. 
Higher levels of interactivity namely level 4, 5 and 6 are 
not supported because of the procedural and the 
sequential nature of DES. 

 
Figure 3. S-box Substitution 



 

Abstraction levels: as the algorithm is highly iterative 
many intermediate operations are duplicated. The user has 
the option of controlling their visibility in order to 
improve readability and focus on the main steps of the 
algorithm. Users can also situate themselves in the 
encryption process as it unfolds through the different 
stages; an animated pointer sweeps the corresponding bit 
string. Control over the pacing of the animation is also 
afforded at different degrees of granularity: at the bit level 
in the gradual generation of the bits of the round keys, at 
the group level in the substitution, at block level in the 
application of the Feister function, at stage level in the 
unfolding of the algorithm and finally at cipher level in 
the direct encryption of plaintext into cipher text. 
Different levels of abstraction are clearly manifest in the 
screens dedicated to the S-Box transformation. The user is 
able to delve into the low level details of the substitution 
if required. 
Feedback: this feature takes two forms. The first concerns 
the transformational impact and the visibility of the effect 
of selected operation on bits. The second deals with the 
navigational process in terms of the horizontal shifts 
across stages as well as the vertical transitions between 
levels. Within the serial constraints of the DES algorithm 
and the absence of intermediate input, the feedback is 
immediate, visible and animated as an indication of the 
transition to the next stage.   
Visualization and usability: implementing a user 
interface that conforms to sound HCI principles is a 
fundamental requirement. There is an overlap between 
interactivity and usability  [14]. For the animation these 
are expressed in terms of the following heuristics: 
• Visibility of system status: users are informed about 

the progress through the different stages of the 
algorithm and within each stage. 

• User control and freedom: clear navigation with the 
aid buttons; ability to skip the operations and to 
generate partial results progressively. 

• Consistency and standards: consistent use of 
standard mathematical notation and consistent 
structure of the animation within the DES animation 
and across all the encryption animations; provision of 
invariants such as status bar.  

• Recognition rather than recall: information is 
introduced in stages with explicit instructions in order 
to minimise cognitive and memory load.  

• Flexibility and efficiency of use: The ability to skip 
through operations and avoid repetitive tasks with no 
educational value. The system offers flexibility 
despite the inherent sequential nature of the DES 
algorithm and the high dependence of the generation 
of new data on the output of the previous stage. 

• Aesthetic and minimalist design: only relevant 
information is included so as to maintain interest and 
focus on the underlying principles of the encryption. 

5.2 Related DES Animations 
  DES encryption has been the subject of some 
animations, which are either available on line or described 
in the literature. Their evaluation was conducted mainly 
in terms of the scope of the animation, the level of 
abstraction and the degree of interactivity. 
   The implementation of DES by Eriko Nurvitadhi and 
Elias Khair [8], demonstrates DES encryption in a Java 
Applet. The user is allowed to enter a key and plaintext, 
which is then encrypted using ECB. This is a useful 
program for viewing intermediate values and the final 
result of the encryption; it does not however open the 
‘black box’ of DES and there is also a lack of explanation 
of the different stages of the algorithm. The application 
assumes that the user is already familiar with the inner 
workings of DES. Apart from the initial input, there is no 
user interaction and the encryption runs from start to 
finish without user intervention. This animation has little 
pedagogical value since an understanding of DES requires 
access to additional sources; the level of abstraction is 
restricted since it operates at block level.  
   In contrast, an application that operates at bit level is 
presented in [9].   It demonstrates the diffusion property 
that results from the animation of the whole Feister 
cipher. The movement of bits provided is the only 
dynamic feature in this animation, as they traverse the 
labelled stages of the cipher. All the components of the 
Feistel cipher are presented in one single static diagram; 
this increases the cognitive load of the learner and its 
instructional content is weak. Users are passive viewers of 
an animation with no control over its pacing or its 
sequencing.  
   McNear and Petty describe a pedagogical tool where the 
stages of the encryption in the animation are clearly 
identified. Although some user control is provided over 
the pacing of the animation the operations take place at 
block level. Overall, the animation appears too compact to 
be used as a stand-alone tool and all the operations are 
presented in one screen with little explanation. Although 
the operational framework is made up of a few 
screenshots it is on the whole static [15].   
   CrypTool provides a more sophisticated animation of 
DES [16]. The behaviour of the algorithm is presented by 
a sequence of screen shots of the different stages. The 
stages are gradually introduced with adequate 
explanation, supported by an overview of the encryption 
process. An effort is made to explain the function of the 
different tables. This animation offers a procedural 
description of the algorithm and is very diagrammatic in 
appearance and essentially uniform in colour. The 
different levels of abstraction are predefined and 
illustrated accordingly. Although this animation has the 
merit of opening the ‘black box’ of DES there is a lack of 
explicit control by the user on the pacing of the 
animation. 



 

5.3 DES Animations and Pedagogical Value 
   The appraisal of some DES animations has highlighted 
deficiencies in the degree of interaction, the granularity of 
abstraction and the heavy cognitive load imposed on the 
learner. With the relative exception of CrypTool the 
operation framework is static while the data is 
dynamically modified. In contrast, the proposed DES tool 
in this paper demonstrates the dynamic nature of both 
operational framework and data. The learner is able to 
interact with individual components such as permutation 
tables. It also offers a high degree of interactivity at 
different levels of abstraction. The animation enhances 
the dynamic unfolding of the algorithm and is appropriate 
in encryption. More static approaches to operational 
framework are however more appropriate in many 
applications [17]. 
   The DES animation described in this paper satisfies 
most of the criteria required for a tool with an adequate 
pedagogical value. Its significance is confirmed by its 
relevance to formal models, its compliance with sound 
HCI principles and its agreement with good practice as 
elicited by empirical studies. This covers the ability of 
learners to interact directly with the animation outside the 
classroom, and to focus on the logical steps of the 
algorithm with minimum distraction by the meta-tools. It 
also implies a meaningful integration of text and 
animation and a clear indication of the status of the 
encryption process at any stage [18].  The mapping 
between algorithm and animation has also enhanced its 
relevance. All these features confer to the DES animation 
an intrinsic pedagogical value. 
 
6   Conclusion 
 
   This paper has presented a DES animation, which 
possesses an intrinsic pedagogical value.  The animation 
conforms to sound engineering and pedagogical 
principles, and its evaluation has highlighted the 
importance of designing animations that support a high 
level of interactivity and promote autonomy. Although 
this animation can be used effectively as a standalone unit 
of instruction, its impact is greater when used as a means 
of engaging students of computer security with the 
complex topic of encryption. The flexibility and 
availability of this animation makes it a useful 
contribution to the teaching of encryption, especially as a 
component of a blended programme. 
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