

An Animated Cryptographic Learning Object

Rachid Anane1, Kevin Purohit2 and Georgios Theodoropoulos2
1Department of Computer Science, Coventry University, UK.

r.anane@coventry.ac.uk
2School of Computer Science, University of Birmingham, UK.

{k.purohit, g.k.theodoropoulos}@cs.bham.ac.uk

Abstract

Algorithmic animation has been the focus of intense
research in many disciplines and its impact on the
educational process has been marked by increasing
learner autonomy. Research in this field is driven by the
belief that algorithm animation can be a more effective
means of instruction than manual or verbal modes of
delivery. Encryption algorithms in particular offer an
interesting domain for the application of animation
principles in learner/content interaction. The main
challenge however has been how to design effective
animations with a pedagogical value. This paper is
concerned with the presentation of an animation of the
DES algorithm that exhibits many of the features of useful
instructional material. Its pedagogical value is expressed
in terms of intrinsic qualities and, in particular, the
degree of interactivity and the granularity of abstraction.

Keywords: Encryption, DES, algorithm animation,
pedagogical value

 1. Introduction

 Computer science instruction is increasingly relying on
animation as a way of addressing the complexity and the
dynamic nature of many core topics. It is also providing a
motivational impetus and offering students greater
autonomy. The educational concerns that are driving the
research into animations have also shaped the mode of
interaction that their use entails and constrained their
application; one major issue in the design of these
systems is to ensure that the meta-tools maintain accuracy
and facilitate the understanding of the subject matter in a
transparent manner.
 Algorithm animation has been the subject of much
attention and various systems have been proposed and
their impact evaluated. In this context the learning content
goes beyond mere e-distribution: it allows learners to
control and to follow the dynamic unfolding of the
algorithm as the data is being transformed [2].
 Research into this field is driven by the belief that
algorithm animation can be a more effective means of
instruction than mere static text-based resources. It is

considered as a serious alternative to verbal modes of
delivery such as lectures [1]. There is also a growing
awareness that the emergence of what is termed the
‘Nintendo generation’ is influencing the delivery of
courseware material. Modes of interaction that have
greater affinity with the pervasive nature of multimedia
environments are being promoted vigorously [3].
 These modes of operation are deemed to have a greater
motivational power than text-based methods and to
facilitate student-centred learning. Among the benefits
that accrue from the interactions with simulations in
general and animations in particular is the validation and
refinement of the conceptual models of the underlying
objects of investigation [4]. Simulation in general is
extremely important in engaging learners with the content
and in motivating independent investigation [5]. The role
of animation in enhancing the learning process has been
confirmed by many studies [6], although in some cases
the outcome of the experimental results was not
conclusive [7]. One major criticism levelled at many
animations is that the user is passive and has no control
over the animation apart from the initial start [1]. The use
and impact of animations on the learning process has
brought to the fore the issue of how to evaluate their
pedagogical value, namely their contribution to the
understanding of the underlying concepts. These concerns
are particularly relevant to encryption algorithms because
of their abstraction and their inherent complexity.
 An understanding of security in general and encryption
in particular has become a requirement for students of
computer science. With the increasing awareness of the
risks associated with networks and distributed systems the
deployment of sophisticated methods of encryption is also
associated with the demand for suitable instructional
material in encryption principles and models. Although
encryption algorithms are usually complex and their
behaviour is difficult to visualise, they follow sequential
and discrete stages that are well suited to animation. The
design of adequate animations has presented researchers
with the challenge on how to unravel these stages in a
clear and unambiguous manner. Various systems have
been proposed with different emphasis on levels of
interaction and the inner operations of the encryption
process [8, 9].

 This paper is concerned with the presentation of the
animation of the DES encryption algorithm and a
consideration of its pedagogical value. The DES
algorithm is part of a suite of animated encryption
algorithms such as the substitution algorithm; the
animation of the exchange of keys in Kerberos is used as
a motivational element. The animation is presented as a
tutorial.
 The remainder of the paper is organised as follows.
Section 2 identifies the requirements for the design and
deployment of animations. Section 3 gives a procedural
description of the DES algorithm. Section 4 presents the
salient features of the DES animation in terms of
screenshots with a brief outline of its implementation.
Section 5 gives an evaluation in terms of conformance to
evaluation criteria and comparisons with some existing
systems. Section 6 concludes the paper.

2 Design Considerations

 The enhancement of the pedagogical value of the
encryption algorithms was the main motivation behind the
design approach used for the animations. The pedagogical
value of the animation is formulated in terms of two
requirements, a contextual requirement and an interaction
requirement. These refer to the intrinsic qualities that an
animation should possess.

2.1 Context
 The contextual requirement is a prerequisite for
e-learning and its fulfilment depends on the adequacy of
the underlying distributed system. The DES animation
should address the following issues:
Access and autonomy: the animation should be designed
as a Web-based application in order to facilitate its access
from anywhere and at anytime. It should be self-contained
and supported by contextual information; standard
mathematical notations should be adhered to whenever
possible. The animation, by definition, should be
deterministic and repeatable. It should also foster
autonomy in the learning process by decoupling instructor
and student.
Motivation: a motivational framework should be provided
through a specific topic such as key exchange in Kerberos
and the intrinsic value of encryption should be
highlighted. As an aid to the understanding of the
structure of encryption algorithms and their dynamic
unfolding animation should make them more accessible
and less intimidating. Students should have the
opportunity to investigate different levels of complexity,
from transposition ciphers to DES as the archetypal
cipher. Where applicable various cognitive activities
should be combined in the instruction process.

2.2 Interaction
 The learner/content interaction is considered as the main
focus of the learning process. Its scope is formulated
along various concepts [10]. This interaction is however
more complex because it involves the animation of both
the operational framework and the data. The interaction
should take into account the following:
Focus: a learning object should have well-defined
objectives. The animation should emphasise what the
algorithm is doing (through data transformation) and how
it works (through a clear and annotated sequence of
steps).
Abstraction: discrete levels of abstraction should be
incorporated in the animation. The user should be able to
go through the sequence of steps at various levels of
abstraction and initiate transitions between stages. The
learner should control the encryption process with the
ability to focus on specific steps or skip them if required.
Navigation: the algorithm unfolds dynamically in the
transformation of the data. The student should be able to
accommodate different types of learner. A structural view
of algorithm should be explicit so that the learner can
determine the status of the encryption process as it moves
from one stage to the next.
Reduced cognitive load: the main tasks and operations of
the encryption should be clearly identified, and the
information manipulated or carried across the different
stages by the learner should be minimal. The animation
should make the obscure parts of the DES algorithm more
accessible and understandable [11].
Correspondence: a one to one mapping between the
steps of the algorithm and the structure of the animation
should be evident and supported by a relevant integration
of animation and text. The system should also
accommodate different modes of representation if
applicable.

3 Data Encryption Standard (DES)

 The DES algorithm is based around Horst Feistel’s
Lucifer Cipher, which was the first among many Feistel
ciphers. A Feistel cipher works by applying the same
function to the plaintext for numerous rounds, with each
round being parameterised by a round key (derived from
the main key). DES is a block cipher, which operates on
64-bit plain text blocks and uses a 64-bit key of which
only 56 bits are used to create cipher text. The remaining
8 bits are discarded or used as parity bits.

3.1 Encryption
 The DES algorithm is made up of two main stages: the
key schedule where sixteen sub-keys (round keys) are
generated, and the plaintext block encoding, where the
Feistel cipher is applied.

Key schedule
 The key schedule involves the generation of sixteen 48-
bit subkeys (the round keys) from the original 64-bit key,
as follows:

1. The original 64-bit key is stripped of every
eighth bit and permuted using the Permuted
Choice 1 (PC-1) table.

2. The resulting 56 bits are split in two 28-bit
blocks, C0 and D0.

3. For each round i, Ci and Di are computed as
follows:

Ci = Ci-1 <<< pi
Di = Di-1 <<< pi

 where <<< pi is 1 cyclic shift for i = 1, 2, 9 or
16, and 2 cyclic shifts for other values of i.

4. Ci and Di are then concatenated (Ci Di) and
permuted according to the PC-2 table to give the
subkey Ki.

5. All the subkeys are generated in a similar
manner, for i = 1,..,16.

Feistel Cipher
 Once the key schedule is complete, the algorithm then
encrypts the plaintext, a 64-bit block, permuted following
the initial permutation (IP) table to give a 64-bit cipher
text. The output of the initial permutation is split into two
32-bit halves, L0 and R0, which are then subjected to the
sixteen rounds of the Feistel cipher as follows:
 For each round i = 0, …,15
 Li+1 = Ri
 Ri+1 = Li XOR F(Ri ,Ki)
 The equations state that the right half Ri of the plaintext
and key Ki are put through the Feistel function, denoted
by F; its output is then XORed with the left half Li. The
original right half and the result of the XOR operation are
then swapped and are used in the next round as the new Li
and Ri. The exception to this operatrion is in the final
sixteenth round where there is no swap. For each round
the DES Feistel function consists of the following stages:
1. Expansion: the 32-bit block, Ri, is expanded into 48

bits by using the Expansion Permutation table. This
essentially involves duplicating 16 bits and
permuting them.

2. Subkey addition: the 48-bit block is XORed with the
Ki subkey for that round.

3. Substitution: the resulting 48 bits are then split into 8
blocks of 6 bits each, which are used as input to eight
substitution boxes (S-Box). The S-Box takes the
concatenation of the outer two bits of the 6 bits as the
row, and the four inner bits as the column of a lookup
table to return a 4-bit group. The output from each S-
Box is concatenated sequentially to generate a 32-bit
output. The first 4-bit output is generated by S1
(S-Box 1) and the last group of 4 bits by S8. The S-
Box substitutions are designed to make cryptanalysis

difficult and a slight change to the tables can
significantly reduce the security of DES.

4. Permutation: the 32 bits from the S-Boxes are
permuted according to the Permutation Box (P-Box)
to yield the final result of the Feistel function.

 At the end of the sixteenth round the order of L16 and
R16 is reversed to produce a block of 64 bits, R16L16., to
which the final permutation is applied according to the
inverse permutation (IP-1) table. This final permutation
represents the cipher text of the 64-bit plain text.

3.2 Decryption and Modes of Operation
 The decryption process works in the same manner as the
encryption with one exception: the generation of the
round keys occurs in reverse order, with a slight
modification to the key schedule.
 The DES algorithm transforms a 64-bit plain text into a
64-bit cipher text. The algorithm may however follow
different modes of operation in the encryption of a whole
text, which is split into 64-bit blocks. If the encryption of
each 64-bit block is independent of the other blocks, the
mode of operation is called Electronic Code Book (ECB);
otherwise two other modes of encryption may be used, the
Chain Block Coding (CBC) or the Cipher Feedback
(CFB).

3.3 DES Characteristics
 From the previous description of the DES algorithm it is
evident that the algorithm is quite complex in the
unfolding of its different phases and in the utilisation of a
variety of complex mathematical transformations. This
complexity is confirmed by some preliminary research,
which reveals that many students found the use of the
permutation and the substitution tables as major sources
of confusion. DES has also the characteristic of
introducing various operations while relying on carefully
designed tables to direct their application. The
combination of bit-shuffling (permutations or P-box), and
simple non-linear functions (S-boxes) as well as simple
mixing (XOR) has the merit of generating both diffusion
and confusion, often considered as properties of secure
ciphers. Diffusion is created by permutations or
transpositions techniques while substitutions mechanisms
are aimed at introducing confusion.
 The DES algorithm is mature and has been very
influential. Many recent encryption algorithms, such as
the Advanced Encryption Standard (AES) and Blowfish,
are based on design principles similar to DES. All these
factors confer to the DES algorithm a special status in
symmetric encryption, especially as it subsumes the
architecture of transposition and substitution encryption
schemes. In addition to a clear identification of the
different stages, different levels of details and complexity
are also manifest.

4 DES Animation

 The description of the DES animation follows the
procedural nature of the DES algorithm. The focus is on
the key stages of the algorithm with particular emphasis
on the most obscure functions. Since various tables are
focal points of activity their role and their operations
should be made explicit. The user interface is consistent
across the different animations. The DES animation is
presented as a tutorial with nine stages.
 For each animation a bar appears at the top of the
screen. It indicates the progress of the animation and the
current stage of the algorithm. A dialog box, providing
information and instructions to the user, accompanies
each stage of the algorithm; clearly visible navigation
buttons are also included. The transitions between stages
will be animated to indicate that the result of one stage of
the algorithm is passed on to the next.

4.1 DES Introduction
 The first frame of the DES animation offers a brief
description of the algorithm and invites the user to start
the encryption process. The user can enter 8 ASCII
characters for plaintext and 16 Hexadecimal numbers for
an encryption key. When the encrypt button is clicked, the
cipher text is displayed in hexadecimal and ASCII
notations so that the user can view the final cipher. The
binary versions of the plaintext and key are computed by
the server and displayed. The user can initiate the

animation of the encryption process by clicking the next
button.
 When the next button is clicked, the fields for the
binary plaintext and key are animated over 20 frames to
appear at the top of the next screen. This enables the user
to track the progress of the plaintext throughout the
transformation process. Any text or image, which is
carried forward onto the next stage is animated.

4.2 Interactive Permutation Tables
 At various stages of the DES algorithm, permutation
tables such the Initial Permutation, P-Box or Inverse
Permutation, are applied to binary strings. These have
proven to be a major source of confusion. A permutation
animation consists of an interactive permutation table
(clickable), a position arrow and the output of the
permutation (Figure. 1). When the user clicks on one
entry in the permutation table it is highlighted in bold; the
position arrow moves accordingly to indicate the
corresponding bit in the input string. The user is thus able
to generate the output string bit by bit. All the
permutation tables work in a similar manner and the user
has the option of skipping the permutation phase and
moving on to the next stage.

4.3 Key Schedule
 The description of the DES algorithm in Section 3 has
shown that the key schedule is a repetitive process, and
as such the animation of all sixteen rounds would add
very little to the educational value of the tutorial. It was

Figure 1. Permutation Table

therefore decided that in the key schedule only the
generation of the first key K1 would be shown in detail.
The key generation is shown in an animation where the
user can generate the keys and view the process without
going through all the stages (Figure. 2). The user has the
option of viewing the generation of all sixteen round
keys or to skip the animation.

4.4 Feistel Cipher
 The initial permutation (IP) behaves in a similar manner
to the interactive permutation table described above. The
result of the initial permutation is unveiled by the
different positions of the arrow. Since this forms the first
stage of the Feistel cipher the output string is split into
two sub-strings of the same size. The result of the round
key addition then goes into the S-Boxes. Special care was
taken in the design and implementation of the S-Box
animation, as it is another a source of difficulty and
confusion in the DES cipher. Various representations of
the S-Box have been introduced sequentially in order to
elucidate its behaviour. The S-Box can be considered as a
black box without any explanation of the inner operations.
The four bits generated by each S-Box are simply
displayed as output
 The user has also the option of opening any S-Box by
clicking on it. This stage of the tutorial demonstrates in
detail how the S-Box substitutions work. It shows an
animation of the stripped outer bits, the inner bits and an
animated table lookup (Figure 3). Although five distinct
stages have been allocated to S-Boxes, the user can skip

intermediate stages and investigate various levels of
abstraction.

4.5 Decryption
 The tutorial includes an animation and explanation of
how the decryption process works. This animation
presents a higher level of abstraction in the decryption
process. It encapsulates all the stages of Feistel cipher in
one single diagram.

4.6 System Implementation
 The system architecture is shaped by the need to address
the issue of access and availability. The underlying
technology should also provide support for animation and
user interface design, without weakening the semantics of
the interaction.
 The system architecture conforms to the client-server
model and is implemented using technologies that will
ensure the platform independence of the system. The
integration of Java and Flash in the implementation was
aimed at enhancing the interactive features of the teaching
material and maintaining the semantics of the animation.
The client requests are handled by JSP acting as
middleware with the algorithms running on the server
side. A clear separation between client side and server
side was enforced in order to allow for enhancements to
be introduced seamlessly. For example, it is possible to
replace the implementations without any change to the
animation or the interface.

Figure 2. Key Generation

5 Evaluation

 This section is concerned with the determination of the
pedagogical value of the DES animation. Following the
discussion in Section 2, the pedagogical value refers to
the intrinsic qualities of the DES animation. The
animation will also be put in perspective through a brief
appraisal of some published DES animations. Although a
preliminary user evaluation of the animation was
conducted with a small group of users its lack of formality
precludes its discussion here despite its positive feedback.
The group played an important role in determining the
scope of the animation and the final application
conformed to their requirements. A formal evaluation
with a control group will produce a more objective
evaluation of the pedagogical value of the animation.

5.1 Context and Interaction
 The evaluation of the context and interaction of the DES
animation will be framed in terms of a model of evaluation
of interactive education software proposed by Reichert and
Hartmann [12]. They introduce some criteria for good
interactive Education Software in their evaluation of the
learning in e-learning, a concept that overlaps the notion of
pedagogical value. The ‘criteria for good interactive
Education Software’ involve the following:
• Promotion of fundamental ideas
• Incorporation of different cognitive levels
• Affordance and a high degree of interactivity
• Provision of feedback
• Support for effective visualization and usability
 The application of these criteria to the DES animation
yields the following points:

The content is based on fundamental ideas: security is a
core concept in computer science and DES can be
considered as an archetypal encryption algorithm with an
intrinsic value. It has the advantage of subsuming the
permutation and substitution schemes and demonstrates
effectively the properties of confusion and diffusion. DES
is also based on sound mathematical ideas.
Incorporation of different cognitive levels: the learner is
engaged in the exploration of different levels of
abstraction. The main cognitive activities involve
comprehension of encryption processes and acquisition of
knowledge. Should the animation be incorporated into a
blended programme other cognitive activities such as
problem solving can be also invoked. The DES animation
can be the subject of various pedagogical activities.
High degree of interactivity: within the constraints of the
encryption process the system is highly interactive. The
level of interactivity depends on the nature of the
algorithm and the dependence of intermediate values on
the initial input. Within these constraints the learner is
able to control the pacing and the sequencing of the
animation. The taxonomy proposed by Schulmeister can
be used as a benchmark for evaluating the level of
interactivity of the application. In this classification level
1 stands for no interactivity and level 6 enables
‘visualisation generated by students’ [13]. The DES
animation operates at level 2 since navigation through the
animation is fully supported. Furthermore, as multiple
representations of the same function are provided, level 3
is also partially covered. This is particularly relevant to
the different representations and operations of the S-Box.
Higher levels of interactivity namely level 4, 5 and 6 are
not supported because of the procedural and the
sequential nature of DES.

Figure 3. S-box Substitution

Abstraction levels: as the algorithm is highly iterative
many intermediate operations are duplicated. The user has
the option of controlling their visibility in order to
improve readability and focus on the main steps of the
algorithm. Users can also situate themselves in the
encryption process as it unfolds through the different
stages; an animated pointer sweeps the corresponding bit
string. Control over the pacing of the animation is also
afforded at different degrees of granularity: at the bit level
in the gradual generation of the bits of the round keys, at
the group level in the substitution, at block level in the
application of the Feister function, at stage level in the
unfolding of the algorithm and finally at cipher level in
the direct encryption of plaintext into cipher text.
Different levels of abstraction are clearly manifest in the
screens dedicated to the S-Box transformation. The user is
able to delve into the low level details of the substitution
if required.
Feedback: this feature takes two forms. The first concerns
the transformational impact and the visibility of the effect
of selected operation on bits. The second deals with the
navigational process in terms of the horizontal shifts
across stages as well as the vertical transitions between
levels. Within the serial constraints of the DES algorithm
and the absence of intermediate input, the feedback is
immediate, visible and animated as an indication of the
transition to the next stage.
Visualization and usability: implementing a user
interface that conforms to sound HCI principles is a
fundamental requirement. There is an overlap between
interactivity and usability [14]. For the animation these
are expressed in terms of the following heuristics:
• Visibility of system status: users are informed about

the progress through the different stages of the
algorithm and within each stage.

• User control and freedom: clear navigation with the
aid buttons; ability to skip the operations and to
generate partial results progressively.

• Consistency and standards: consistent use of
standard mathematical notation and consistent
structure of the animation within the DES animation
and across all the encryption animations; provision of
invariants such as status bar.

• Recognition rather than recall: information is
introduced in stages with explicit instructions in order
to minimise cognitive and memory load.

• Flexibility and efficiency of use: The ability to skip
through operations and avoid repetitive tasks with no
educational value. The system offers flexibility
despite the inherent sequential nature of the DES
algorithm and the high dependence of the generation
of new data on the output of the previous stage.

• Aesthetic and minimalist design: only relevant
information is included so as to maintain interest and
focus on the underlying principles of the encryption.

5.2 Related DES Animations
 DES encryption has been the subject of some
animations, which are either available on line or described
in the literature. Their evaluation was conducted mainly
in terms of the scope of the animation, the level of
abstraction and the degree of interactivity.
 The implementation of DES by Eriko Nurvitadhi and
Elias Khair [8], demonstrates DES encryption in a Java
Applet. The user is allowed to enter a key and plaintext,
which is then encrypted using ECB. This is a useful
program for viewing intermediate values and the final
result of the encryption; it does not however open the
‘black box’ of DES and there is also a lack of explanation
of the different stages of the algorithm. The application
assumes that the user is already familiar with the inner
workings of DES. Apart from the initial input, there is no
user interaction and the encryption runs from start to
finish without user intervention. This animation has little
pedagogical value since an understanding of DES requires
access to additional sources; the level of abstraction is
restricted since it operates at block level.
 In contrast, an application that operates at bit level is
presented in [9]. It demonstrates the diffusion property
that results from the animation of the whole Feister
cipher. The movement of bits provided is the only
dynamic feature in this animation, as they traverse the
labelled stages of the cipher. All the components of the
Feistel cipher are presented in one single static diagram;
this increases the cognitive load of the learner and its
instructional content is weak. Users are passive viewers of
an animation with no control over its pacing or its
sequencing.
 McNear and Petty describe a pedagogical tool where the
stages of the encryption in the animation are clearly
identified. Although some user control is provided over
the pacing of the animation the operations take place at
block level. Overall, the animation appears too compact to
be used as a stand-alone tool and all the operations are
presented in one screen with little explanation. Although
the operational framework is made up of a few
screenshots it is on the whole static [15].
 CrypTool provides a more sophisticated animation of
DES [16]. The behaviour of the algorithm is presented by
a sequence of screen shots of the different stages. The
stages are gradually introduced with adequate
explanation, supported by an overview of the encryption
process. An effort is made to explain the function of the
different tables. This animation offers a procedural
description of the algorithm and is very diagrammatic in
appearance and essentially uniform in colour. The
different levels of abstraction are predefined and
illustrated accordingly. Although this animation has the
merit of opening the ‘black box’ of DES there is a lack of
explicit control by the user on the pacing of the
animation.

5.3 DES Animations and Pedagogical Value
 The appraisal of some DES animations has highlighted
deficiencies in the degree of interaction, the granularity of
abstraction and the heavy cognitive load imposed on the
learner. With the relative exception of CrypTool the
operation framework is static while the data is
dynamically modified. In contrast, the proposed DES tool
in this paper demonstrates the dynamic nature of both
operational framework and data. The learner is able to
interact with individual components such as permutation
tables. It also offers a high degree of interactivity at
different levels of abstraction. The animation enhances
the dynamic unfolding of the algorithm and is appropriate
in encryption. More static approaches to operational
framework are however more appropriate in many
applications [17].
 The DES animation described in this paper satisfies
most of the criteria required for a tool with an adequate
pedagogical value. Its significance is confirmed by its
relevance to formal models, its compliance with sound
HCI principles and its agreement with good practice as
elicited by empirical studies. This covers the ability of
learners to interact directly with the animation outside the
classroom, and to focus on the logical steps of the
algorithm with minimum distraction by the meta-tools. It
also implies a meaningful integration of text and
animation and a clear indication of the status of the
encryption process at any stage [18]. The mapping
between algorithm and animation has also enhanced its
relevance. All these features confer to the DES animation
an intrinsic pedagogical value.

6 Conclusion

 This paper has presented a DES animation, which
possesses an intrinsic pedagogical value. The animation
conforms to sound engineering and pedagogical
principles, and its evaluation has highlighted the
importance of designing animations that support a high
level of interactivity and promote autonomy. Although
this animation can be used effectively as a standalone unit
of instruction, its impact is greater when used as a means
of engaging students of computer security with the
complex topic of encryption. The flexibility and
availability of this animation makes it a useful
contribution to the teaching of encryption, especially as a
component of a blended programme.

References

[1] Shaffer C.A., Cooper M., and Edwards S.E., Algorithm
Visualisation: A Report on the State of the Field, ACM
SIGSE’07, Covington, Kentucky, USA, March 2007, pp150-
154.

[2] Muldner T. and Shakshuki E., A New Approach to Learning
Algorithms, Proceedings of the IEEE International Conference
on Information Technology: Coding and Computing IEEE
(ITCC’04), Las Vegas, USA, 2004, pp141-145.
[3] Guzdial M. and Soloway E., Teaching the Nintendo
Generation to Program, CACM 45(4), 2002, pp17-21.
[4] Waern Y., On the Dynamics of Mental Models, In Mental
Models and Human-Computer Interaction 1, Eds. D.
Ackermann and M.J. Tauber, Elsevier Science Publishing
Company, New York, 1990, pp73-93.
[5]. Ursulet S. and Gillet D., Introducing Flexibility in
Traditional Engineering Education by Providing Dedicated On-
Line Experimentation and Tutoring Resources”, International
Conference on Engineering Education, Manchester, UK, August
2002, pp1-4.
[6] Hansen S.R., Narayanan N.H. and Schrimpsher D., Helping
learners visualize and comprehend algorithms, Interactive
Multimedia Electronic Journal of Computer-Enhanced
Learning, 2(1), 2000.
[7] Stasko J., Badre A. and Lewis C., Do Algorithm Animation
Assist Learning? An Empirical Study and Analysis, Proceedings
INTERCHI’93 Conference on Human Factors in Computing
Systems, Amsterdam, Netherlands, April 1993, pp61-66.
[8] Nurvitadhi E. and Khair E. DES Java Implementation.
Oregon State University,
http://islab.oregonstate.edu/koc/ece575/02Project/Nur+Kha/
[9] Fikus E. and Crandall J., Diffusion in DE,
http://nsfsecurity.pr.erau.edu/crypto/sdesf.html
[10] Moore M.G., Three Types of Interaction, Journal of
Distance Education, vol. 3, no.2, 1989, pp1-6.
[11] Tudoreanu M.E, Wu R., Hamilton-Taylor A., and Kramer
E. Empirical Evidence that Animation Promotes Understanding
of Distributed Algorithms, Proceedings of the IEEE Symposium
on Human Centric Computing Languages and Environments
(HCC’02), 2002, pp236-243.
[12] Reichert R. and Hartmann W. On the Learning of E-
Learning, Proceedings of the EDMEDIA 2004 – World
Conference on Education Multimedia, Hypermedia and
Telecommunications, June 2004, Lugano, Switzerland,
pp1590-1595.
[13] Schulmeister R., Taxonomy of multimedia Component
interactivity. A Contribution to the Current Metadata Debate.
Studies in Communication Sciences. 3(1), 2003, pp61-80;also in
http://www.izhd.uni-hamburg.de/pdfs/Interactivity.pdf.
[14] Nielsen, J., Ten usability heuristics, 2005
http://www.useit.com/papers/heuristic/heuristic_list.htm.
[15] McNear C. and Petty C., A Free, Readily Upgradeable,
Interactive Tool for Teaching Encryption Algorithms, 43rd ACM
Southeast Conference, Kennesaw, GA, USA, March 2005,
pp1:280-285.
[16] CrypTool DES animation,
http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=
en&anim=214.
[17] Anane R., Crowther S., Beadle J. and Theodoropoulos G.
eLearning Content Provision. Proceedings of the 15th IEEE
International Workshop on Databases and Expert Systems
(DEXA04), Zaragoza, Spain, August 2004, pp420-425.
[18] Saraiya P., Shaffer C., McCrickard D. and North C.,
Effective features of algorithm visualization, Proceedings of the
35th SGSE Technical Symposium on Computer Science
Education (SGSE’04), Norfolk MA, March 2204, pp382-386.

