MSc Project Orientation Programme
Introduction, Assessment, and Logistics

Alan P. Sexton
Director of Postgraduate Studies
School of Computer Science

1slightly modified from slides provided by Peter Hancox

Possible Awards

- Postgraduate Certificate
- Postgraduate Certificate with Merit
- Postgraduate Certificate with Distinction
- Postgraduate Diploma
- Postgraduate Diploma with Merit
- Postgraduate Diploma with Distinction
- MSc
- MSc with Merit
- MSc with Distinction

There are NO classifications for individual modules or the project, i.e. they are NOT classified as first class or with distinction — they are just given a numeric mark.

Conditions for Postgraduate Certificate

After rounding:
- Marks \(\geq 40\% \) in 60 credits
- Full pass \((\geq 50\)\) in 40 credits at 4th level (level M)
- Credit Weighted Mean \(\geq 50\% \)
- Credit Weighted Mean \(\geq 60\% = \text{with Merit} \)
- Credit Weighted Mean \(\geq 70\% = \text{with Distinction} \)

Conditions for Postgraduate Diploma

After rounding:
- Marks \(\geq 40\% \) in 120 credits
- Full pass \((\geq 50\)\) in 80 credits at level M
- Credit Weighted Mean \(\geq 50\% \)
- Credit Weighted Mean \(\geq 60\% = \text{with Merit} \)
- Credit Weighted Mean \(\geq 70\% = \text{with Distinction} \)
Conditions for MSc

After rounding:
- No more than 30 credits of non-level M modules
- Marks $\geq 40\%$ in 180 credits
- Full pass ($\geq 50\%$) in 80 taught credits at level M
- Full pass ($\geq 50\%$) in 60 credit project
- Credit Weighted Mean over taught modules $\geq 50\%$
 - Note: possible to pass EVERY module and not get an MSc because pass mark for non-level M modules = 40\%

Conditions for MSc with Merit

After rounding:
- No more than 30 credits of non-level M modules
- Full pass in 180 credits
 (Marks $\geq 50\%$ for level M, $\geq 40\%$ for non-level M)
- Credit Weighted Mean over taught modules $\geq 55\%$
- Project Mark $\geq 55\%$
- Credit Weighted Mean over ALL modules $\geq 60\%$

Conditions for MSc with Distinction

After rounding:
- No more than 30 credits of non-level M modules
- Full pass in 180 credits
 (Marks $\geq 50\%$ for level M, $\geq 40\%$ for non-level M)
- Credit Weighted Mean over taught modules $\geq 65\%$
- Project Mark $\geq 65\%$
- Credit Weighted Mean over ALL modules $\geq 70\%$

Reassessment

If you have failed one or more modules:
- You are allowed 1 further attempt at the module
 - Resist: you do not attend further lectures but take the assessment again. The assessment is based on the syllabus of the academic year that the module was taught to you.
 - Repeat: you attend lectures in the following academic year and your assessment is based on the syllabus of that following year.
- Check the module WWW page for details of reassessment
- Talk to your Programme Director or to the Director of Postgraduate Studies for clarification and options.
- Talk to the module co-ordinator (the lecturer(s) for the module) for guidance on the assessment for that module.
- Remember that, without mitigations, resit/repeat marks are capped to the pass mark.
Do I have to resit/repeat?

Your choice:
- Some students need to resit/repeat to get enough credits
- Some students can get an MSc without resitting.
- Some students can accept a PG Certificate or Diploma.
- Sometimes deferring a project while studying for resits would be wise: **NOTE: strict rules apply so this can only be done with agreement from Programme Director or Director of Postgraduate Studies**
- Talk to your Programme Director or to the Director of Postgraduate Studies for clarification and options.

Note:
- Repeats are charged pro-rata to the MSc Fee based on number of credits
- You can not resit modules you have already passed

Project — Aims

- Allow students to carry out a substantial task of their own choosing, in an area appropriate to their degree programme.
- Allow students to demonstrate their competence as computing professionals, and to apply what they have learnt in the other components of their degree programme.
- Facilitate independent work on a substantial individual software project, including background research and project management.

Project — Marking Guide

The headings are:
- Quality of Report
- Quality of Demonstration
- Quality of Management
- Quality of Process
- Quality of Product
- Substantiality of Achievement

Project — Subversion

You are **REQUIRED** to use the School Subversion server for your project.
Subversion provides the following services to you for your project:
- Backups. Problems such as laptops being stolen, hard disk crashes etc. are not accepted as excuses for project failures: it is your responsibility to maintain backups.
- Recovery of previous versions of software
- A reliable mechanism for synchronising the versions of your project on your laptop, desktop, school computer and anywhere else.
- Assistance to your supervisor in monitoring and advising you on your progress
- Defense against suspicions of plagiarism
You do not have to write software — but most students do. *Dissertation-only* projects could be:

- academic research, e.g. proving completeness of a concurrent scheduling algorithm
- analysing needs of a company
- comparing existing packages

These projects are harder to do well than software projects!

Some students incorrectly assume that their software is the only important thing. Software is important, but good software requires good investigation, design, testing and critical appraisal.

Software should:

- be robust and stable
- work efficiently
- have appropriate interfaces and/or interaction

Show off your skills
Demonstrate you can integrate components
Do not do the same thing more than once (unless necessary)
Test everything from the smallest component upwards

Remember the aims said:

"...apply what they have learnt in the other components of their degree programme"

You do this in analysis and specification, design, project management and appraisal of your work.

Key items:

- critical and analytical background research
- analysis and specification (including requirements analysis)
- design, including its justification
- testing, verification, validation
- critical appraisal of your project

Many of these are thinking activities.
How you do your project is important.

The Project Plan: A statement of
▶ what you are going to do
▶ why you are doing it
▶ how you are going to do it
▶ when you are going to do it.

The best students:
▶ have a good plan
▶ can justify modifications to the plan
▶ set goals and deadlines and keep to them
▶ keep in regular contact with their supervisor
▶ work systematically
▶ pace themselves so that they work consistently without overdoing it.

Your project is nothing without a demonstration and a report.

You must be able to present:
▶ background material and research
▶ analysis
▶ design
▶ critical appraisal of your work
Read the project writing guide and look at past projects

Your supervisor is a kindly, forgetful and busy person, so prepare for supervisions:
▶ What have you achieved since last time?
▶ What has not happened that you promised last time?
▶ What good ideas have you had?
▶ What do you think you should do next?
▶ How long will it take to do this?
Managing your supervisor

Supervisors do not like to hear:

▶ “Just tell me what to do and I’ll do it”
▶ “I’ve spent a month writing this; the deadline is in two days time; can you read by tomorrow?”
▶ “Couldn’t you make an exception in my case?”
▶ “Couldn’t you make an exception for little me?”

Laboratory Book

Get yourself a Laboratory Book.

▶ Simple, cheap, A4, hardcovered notebook, preferrably not loose-leaved or spiral bound. No graph paper version: simple lined on all page sides will do.
▶ NEVER tear pages out
▶ Allow it to be messy: if you try to keep it very neat and tidy, you will not write notes into it that should be written into it.
▶ Have it open and with you whenever you work on your project or see your supervisor.
▶ Every design idea and decision should be written into it — ESPECIALLY those that you discard.

Managing your supervisor

The best students teach their supervisor something worth learning

Laboratory Book

Point of a Laboratory Book.

▶ Your dissertation is a report about the PROJECT, not just about the PRODUCT that you built.
▶ It is easy to remember the designs, algorithms and methods that went into your final PRODUCT.
▶ The laboratory book helps you with the harder problem of remembering how your PROJECT achieved that PRODUCT: i.e. all the alternatives that you thought about for each design decision and why you rejected those that did not make it into your final PRODUCT.
▶ The lab book also helps you note down important ideas for later, or questions for your supervisors, without distracting you from the work at hand.
Advice about your Thesis

▶ Start writing now (if you haven’t done so already)
▶ Start with your title page and contents page. List your chapters, work out the subheadings and start writing the subsections.
▶ Plan your time — time management is one project management skill that you will need for the rest of your life

What do you hand in?

▶ 2 copies of your dissertation
▶ 2 copies of a CD containing:
 ▶ an electronic form of your dissertation
 ▶ all codes and files related to the project
▶ The dissertation must contain an attachment explaining the file structure on the CD and information on how to run your software.

Project Assessment

Three stages:
▶ Early summer inspection
▶ Early September demonstration
▶ Project report due mid September

Important Dates

▶ Inspection week: 27th June to 1st July 2011
▶ Demonstration week: 29th August to 2nd September 2011
▶ Dissertation hand-in:
 ▶ 15th September 2011, 12 noon, after which late penalties will be applied.
 ▶ Final cut-off date: 23rd September 2011, 12 noon. No dissertations are accepted after this date.
 ▶ Note: penalties for late submission could turn a project otherwise marked as a pass into a fail!
 ▶ Note: School hardware, printers, CD-writers tend to fail on approach to the submission deadline due to the unusually heavy use they get at this time: it is YOUR responsibility to ensure that you have your submission material together in good time.