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Abstract

We present an introduction to geometric logic and the mathematical structures
associated with it, such as categorical logic and toposes. We also describe some
of its applications in computer science including its potential as a logic for spec-
ification languages.

1 Introduction

What I shall present here is a personal overview of how—and why—1I see geo-
metric logic being used in computer science.

Mark Ryan commented on an earlier, rather different, draft of this paper
that he understood the title and thought “Oh, good”, but quickly ran into
words that made no sense to him. My revised intention therefore is to write
a popularization of geometric logic for the benefit of computer scientists. 1
shan’t present any new results, and in fact I shall hardly even present any old
ones in any technical details, but I shall try to explain the essential features
of the mathematics by explaining them (rather than by leaving the reader to
sift them out of a grand formal structure). T shall also try to take stock of the
ingredients we have to hand and what roles they should play.

2 Geometric Theories

Although the full mathematical insights come only through category theory,
I’'m going to start from a very logical point of view because I think in computer
science people are more comfortable with that. It is important to realise that
the particular properties of geometric logic come as much from its particular
definition of theory as from its definition of formulas.

Our notion of vocabulary is standard in many-sorted logic: it comprises
sorts, predicate symbols and function symbols (representing fotal functions).
Remember, of course, that functions and predicate symbols have arities, spec-
ifying the number and sorts of their arguments and (for functions) the sort of
the result, and that term formation has to respect the arities. Function and
predicates with no arguments are constants and propositions.

If there are no sorts, then function symbols are impossible because there
are no possible result sorts. But propositions are possible, so a theory with no
sorts is a propositional theory.



Given a vocabulary, geometric formulas are constructed in a way that is
completely unsurprising except that a peculiar collection of connectives is used:
these are

¢ conjunction (A for binary conjunction, true for nullary conjunction)

¢ disjunction (V for binary disjunction, false for nullary, and moreover arbi-
trary infinitary disjunction is allowed: \/;c;é;)

¢ equality (this is sorted, so in e; = es the two terms e; must have the same
sort)

¢ existential quantification 3

There is also the restriction that a formula may have only finitely many free
variables.

Why these connectives? To my mind, the most compelling reason is that
they have observational content in a way that the others (-, =,V and A) do
not. For a detailed discussion, see Vickers [10] or (for the propositional case)
[9]; but, briefly, the idea is that the sorts and formulas represent “observational
classes” in the real world, each comprising two ingredients:

¢ how to “apprehend” elements
¢ how to determine that two elements are equal

Moreover, these “how to”s are positive (e.g. nothing about determining
inequality), serendipitous (they merely describe how to know in retrospect when
you have succeeded) and finite (they don’t call on you to do an infinite amount
of work). The geometric connectives can then be interpreted as operations on
observational classes.

For the rest of the paper, I shall concentrate more on the mathematical
consequences of the particular choice of connectives.

The admission of infinitary disjunction may seem alarming. Since the dis-
juncts will be indexed by a set, a full formal system for geometric logic must
include a formal set theory and that is a heavy overhead. But even the co-
herent fragment, in which disjunctions must be finitary, is interesting, and as
we shall see it is desirable to go beyond and bring in formal constructions that
are geometric but non-coherent. One important example uses a theory of finite
sets and a formalism that includes universal quantification bounded over finite
sets.

A geometric theory comprises a vocabulary and a set of axioms of the form

¢ Fx ¥ where

¢ xis aset {xy,...,a,} of sorted variables
¢ ¢ and ¢ are geometric formulas whose free variables are all taken from x

Such a set {¢; Fyi ¢; : i € I} of axioms should be thought of as meaning
A;Vei 2, 2h.(¢; = ;). Now V, = and infinite A are not geometric
connectives and don’t appear in ¢; or 1;; but just at this one level they are
allowed into the geometric theory.

Note that this does not use the standard logical idea that a theory is a
vocabulary together with a set of sentences (formulas without free variables).
Hence geometric logic may fail to fit assumptions made for a general purpose
logic environment. Also, the fact that implication is not internalized in the
logic means that Hilbert style presentations of the logic are impossible, and
there is no deduction theorem.



Labelled Turnstiles

The label x on the turnstile is not peculiar to geometric logic. It is seen in
Lambek and Scott’s treatment [7] of intuitionistic logic, and its use improves
even classical logic. The essential logical point behind it is that the use of the
free variables x 1s just as much a hypothesis as the premiss ¢—it hypothesizes
the presence of values x. Some arguments are valid only in the presence of
values not explicitly mentioned in ¢ or %, and such values must be referred to
in the set x.

In many standard presentations of classical logic, one is allowed to deduce
Ve .P(x) b Jo.P(x): from Ya.P(x) we can deduce P(z) by Y-elimination, and
then Jz.P(x) by F-introduction. The deduction looks natural enough, but of
course it is invalid in any model with an empty carrier: Va.P(x) will then
be true, Jz.P(z) false. The traditional classical response is to reject empty
carriers—after all, what is the point of having the language of predicate logic
if there 1s nothing for it to talk about?—but that approach doesn’t work at all
well in constructive logic, where “non-emptiness” 1s a much subtler notion, and
even classically it is distinctly problematical in many-sorted logic. The labelled
turnstiles allow more careful rules of deduction that are valid even for empty
carriers. The example deduction depends not just on the truth of Va.P(z), but
also on the presence of x. Labelling turnstiles we see that Va.P(x) -, P(2) b,
Jx.P(x), so we can write Vo.P(x) b, Jz.P(2) meaning that the entailment
holds in the presence of an x, 1.e. if the carrier is inhabited. From that, we
should not deduce Va.P(x) b Jx.P(x). This example is not geometric, but
similar considerations apply for us. In a sequent calculus formalization, we can
reason freely within a context (list of free variables). What we deduce within
one context is true also in any bigger context:

¢Fx
¢ bxy ¥
However, contexts can be reduced only in a controlled way using 3-elimination.
¢y ¥
- y not in x, nor free in ¥
Jy.o bx v

The effect in natural deduction is that we cannot freely invent new free
variables (or constants). Some will be given us as the context for the overall
problem (e.g. the free variables in the premisses and conclusion), and they
can also be introduced in a controlled manner for 3-elimination (and, in more
standard logics, for Y-introduction); but that is all.

Examples of Geometric Theories

1. Algebraic theories, possibly many sorted. There are too many different
meanings for the word “algebraic”, but what I mean here is “defined by
finitary operators and equational laws”. These are geometric theories pre-
sented with sorts and functions, but no predicates, and all the axioms are
of the form k4 t; = 5.



2. Essentially algebraic theories. I mention these explicitly because although

they can look difficult to define they share most of the pleasant univer-
sal algebraic features of algebraic theories. The big generalization is that
the operators can represent operations that are partial, though not in an
unrestricted way. The operators are arranged in a well-founded hierarchy,
and for each operator its domain of definition is defined by a conjunction
of equations involving more primitive operators. The equational laws are
interpreted in the sense “if both sides are defined then they are equal”.
Putting such a description into the form of a geometric theory is not diffi-
cult, though of course a partial operator must be expressed as a predicate
symbol, not a function.
A good example is the theory of categories. It has two sorts, for objects and
arrows. The most primitive operators (necessarily total) are source, target
and identity; and then composition has its domain of definition determined
by equality between the target of one arrow and the source of the other.

3. Topological spaces. Let X be a topological space, QX its topology (family of
open subsets). A corresponding geometric theory can be defined as follows:
¢ no sorts (it is a propositional theory—hence no functions either)
¢ for each open set a, a proposition P,
¢ if « C b are open sets, then an axiom

P, F P

¢ if S is a family of open sets, then an axiom

Pus - \/GESPa

¢ if moreover S is finite, then an axiom

/\GESPa F Pns

(The converses of the last two axioms follow from the first.)

If z € X, then z gives a model of the theory in which P, is interpreted
as true iff x € a. It may be that different points z can give the same
model, and that some models do not arise from points in this way. If these
pathologies do not happen, and the points are in bijection with the models
of the theory, then X is sober. If you’re familiar at all with locales, you’ll
understand that generators and relations for a frame give propositions and
axioms for a propositional geometric theory (see [9]).

Some Logical Manipulations

I shall not attempt to give a full set of proof rules for the logic—you can find
them in Makkai and Reyes[8]. There are no surprises, because (apart from the
infinite digjunctions) the logic is a restriction of standard logic.

On a short digression, let me show how to simplify the sequents considerably.

Proposition 1 Every geometric formula ¢(x) is equivalent to one of the form

Vi (Ei A Elyi./\?;lPZj), where
1. The sets x and y* are disjoint.



2. Fach E; is a conjunction of non-trivial equations among the free variables
x. (A “rivial” equation is one of the form & = x, which can obviously be
omitted.)

3. Each Pjj 1s either a primitive predicate applied to variables, or is an equation
z =t where z is a variable (from x or y') and t is a primitive function
symbol applied to variables.

The description of the possible P;;’s doesn’t look nice. But it is always
possible to present a geometric theory without function symbols, by replacing
them by their graphs as predicate symbols, and then each F;; is just a primitive
predicate applied to variables.

Proof 1 shan’t give a detailed proof; after all, I haven’t given the full proof
rules. Instead, I shall show how to use equivalences that you might reasonably
expect geometric logic to have.

First, formulas of this form are (up to equivalence) closed under the geo-
metric connectives. For disjunctions, this is obvious. Next, consider existential
quantification 3z (z in x). This should (expected equivalence) distribute over
disjunction, and the digjuncts are of the form Jz.(E A Ely./\?zle). If # ap-
pears in | i.e. there is an equation z = &’ (or @’ = z), then our disjunct is
equivalent to (£’ /\Ely./\?zle)[x’/x], where E’ is obtained from F by omitting
all equations z = z’ or ' = x. If x does not appear in F, then the disjunct
is equivalent to E' A EIJ:EIy./\?:le. Finally, consider conjunction. Assuming
that conjunction distributes over arbitrary disjunction, we get a disjunction of
formulas (E' A Ely./\?zle) A(E" A Ely’./\?lzle’). By renaming, we can assume
that the sets y and y’ (and x too, of course) are disjoint, and then the disjunct
is equivalent to (£ A E') A Ty, y’.(/\?zle A /\;Lzle’).

It remains to be shown that atomic formulas are of this form. An equation
between variables is OK. An equation f(...) = g(...) is equivalent to 3z.(z =
f(..)Az=g(...)), and the only remaining problem is to arrange for predicates
and functions to be applied only to variables. This i1s done using equivalences

such as that between P(f(...),...) and Ju.(u = f(...) A P(u,...)). O

Let us note something rather curious. The equations get divided up be-
tween “functional” equations, z = #(...), which can be replaced by predicates
in a transformed theory presentation and are kept amongst the conjuncts, and
“structural” equations x = z’, which are ineradicable and pushed outside the
existential quantification. The structural equations look like atomic formulas,
and you might think their natural place is conjoined with F;;’s under the exis-
tential quantifications. But there is a good sense in which ‘E' A Jy’ is a single
unit, a generalized quantifier. F generates an equivalence relation on x; let
us then choose a representative from each equivalence class and define a new
set z of variables comprising these canonical representatives and also y. We
have an obvious relabelling function r : x —— z, and £ A Jy is left adjoint to
relabelling: ¢ b, Y[r(z)/z(x € x)] iff EAJy.¢ Fx . (When E is empty, this
just reduces to well-known properties of 3.)

The proposition allows a rather drastic simplification of geometric axioms
on the left-hand side, using V-elimination and 3-elimination: for \/;(E; A
Elyi./\?;lPij) Fx % can be replaced by a set (one for each ¢) of axioms E A

Ely./\?zle Fx ¢, and then each of these can be replaced (after suitable jug-



gling of the variables) by one of the form /\?Ile Fz 2.

3 DModels

If a geometric theory is given, then the models for it are understood in an
utterly standard way. First, the vocabulary must be interpreted: sorts as
sets (the carriers), predicates as relations (subsets of products of carriers) and
functions as functions (each from a product of carriers to a carrier). Once that
is done, then every geometric formula can be interpreted as a relation in its
free variables; then for an axiom ¢ Fx %, both ¢ and % can be interpreted as
subsets of the product of carriers for the sorts of the variables in x; and then
the interpretation is a model iff for every such axiom, the subset corresponding
to ¢ is included in that for .

Homomorphisms

Suppose a geometric theory is given, and we have two models M and N of it.
A homomorphism from M to N is a family of carrier functions a, : M, — N,
one for each sort o, that respect the vocabulary ingredients (the axioms don’t
enter in here). Specifically, if f(#,y,z,...) and P(x,y, z,...) are function and
predicate symbols, then (suppressing sorts)

¢ fyv(a(), a(y),alz),...) =a(fulx,y,2,...))
¢ Py(z,y,2,...) = Pn(a(z),aly),a(z),...)

For algebraic theories, this is exactly the usual definition of homomorphism
between algebras. For theories that include predicates, it is worth pointing
out the direction * = ’ in the second of these conditions. ‘=" would not be
compatible with the algebraic homomorphisms, as you can see if you consider
replacing an algebraic operator (say multiplication for monoids) by its graph:
P(z,y,z) means ‘z = z.y’. For an arbitrary monoid homomorphism o we have
z =2y — az) = a(z).a(y), but < would not be right in general. As
an example, for the theory of posets the homomorphisms are the monotone
functions.

It is also worth noting that once these two conditions are known for the
vocabulary ingredients, they are also true for all terms and geometric formulas:
this 1s because of the positivity of geometric logic. Of course, as soon as negation
is included, the second condition is destroyed because the implication for =P
gives us the reverse implication for P. Hence, this notion of homomorphism is
one that is not so useful in ordinary logic.

The topological example is interesting. A homomorphism will carry no data,
but it still has to obey a non-trivial condition: that for each proposition P,
if 1t holds in M then it must hold in N. Let us write M T N if M and N
satisfy this for every P,, so that there is a (unique) homomorphism from M to
N. If M and N correspond to the points # and y, then this says that every
open neighbourhood of z also contains y (i.e. meets {y}), in other words » is
in the topological closure of {y}. This is exactly the specialization preorder on
points.



The Category of Models

It is easy to see that under this notion of homomorphism, the models of a
theory T form a category, Mod(T)—though the topological example shows that
Mod(T) can have extra “topological” structure that is not categorical.

In general, this category has little categorical structure, lacking in general
most limits and colimits. However, a very important exception is that 1t has
all filtered colimits. T don’t want to define these in detail (see, e.g., Johnstone
[5]), but they are the categorical generalization of directed joins, and I shall de-
scribe two particular cases. There are some general points to remember. First,
they are constructed set-theoretically: a filtered colimit of models is carried by
the set-theoretic filtered colimits of the carriers. Second, the existence of these
colimits 1s intimately bound up with the geometric restrictions that conjunc-
tions must be finite, and only finitely many free variables are allowed in each
formula. Third, although the general filtered colimits may seem arcane, even
the special cases are crucial in domain theory, both in finding least fixpoints
within domains and in solving domain equations.

The first example of filtered colimit is the w-colimit, of a diagram

(&7} g a2
My My M,

If 7 < j, let us write «ay; for the composite ay; ... ;51 : My — M;. First,
suppose this is a diagram of sets and functions. You can think of progression
along the diagram as bringing in more and more elements (insofar as the a;’s
are not onto), and making more and more equalities among them (insofar as
the @;’s are not 1-1). The elements in the (co-)limit and the equalities between
them are exactly those that appear at some finite stage. (If you want to be
more formal, first take the disjoint union of the M;’s, then define an equivalence
relation by ¢ = y(z € M;,y € M;) iff yp(2) = «j5(y) for some k, and then the
colimit is the set of equivalence classes.)

Now let us return to the original problem, in which the M;’s are models (of
T) and the «;’s are homomorphisms. We can apply the set-theoretic construc-
tion to the carriers, but more work is needed to show that we still have a model.
If f is a function symbol, then to define f(x,y,z,...) in the limit we find a
finite stage at which #,y, z, ... all exist (there is such a finite stage because there
are only finitely many variables x,y,z,...) and calculate f(x,y,z,...) there.
This gives us a well defined result in the limit, because the homomorphisms «;
preserve the results at the finite stages. Predicates are similar; P(x,y,z,...)
holds in the limit iff it holds at some finite stage (and hence at all subsequent
ones, from the homomorphism property). Now consider an axiom ¢ Fx ¢. If
¢ holds in the limit, then it must hold at some finite stage—the finiteness of
conjunctions is used here, as well as the finiteness of the set x—, so ¥ also
holds there, so % holds in the limit.

I’ll mention one other example, that of splitting idempotents, to dispose
of a possible misconception. I said that filtered colimits were the categorical
generalization of directed joins, and you know that directed joins are essentially
infinite: finite directed joins are trivial. This is not quite the case with filtered
colimits. Finding a finite filtered colimit 1s equivalent to splitting an idempotent:
that is to say, if we are given a homomorphism « : M — M such that o? = a,



we seek a diagram M N such that p;e = « and e;p = Idy. The

e
argument that such colimits exist is similar to that for w-colimits.

Let me repeat two points that explain why this doesn’t look like conven-
tional logic. First, the above definition of homomorphism works well because
geometric logic is positive (no negation or implication), and second, the filtered
colimits exist because of the finiteness restrictions.

Varying Set Theory

A point of greater importance than you might expect is that if we vary the
notion of set, then we vary the notion of model; for instance, we could take
“set” to mean “object in some given elementary topos”, and—suitably inter-
preted, and provided there are enough infinitary colimits to cope with all the
disjunctions—the definition of model still makes perfect sense. We have to be
careful to reason constructively about these generalized models, for the logic
appropriate to an elementary topos is not classical but intuitionistic. But this
1s not just a concession to the generalizing ambitions of constructivists. It has
key significance in at least three ways.

First, the proof rules of geometric logic (as in [8]) are classically incomplete:
that is to say, within a given theory, there may be a sequent that holds in all
the classical set-theoretic models but is not provable from the axioms using
the proof rules. Even in the propositional case, there are theories that have
no models at all, but which are still consistent: you can’t prove true - false.
(This arises from the infinitary disjunctions. When they are banned—i.e. in
coherent theories—Deligne’s theorem proves completeness.)

However, this incompleteness is the fault not of the proof rules but of the
models. In the classical category § of sets, the constraints imposed by having
to satisfy excluded middle and choice sometimes make models impossible. But
the proof rules are constructive in nature, and hold for models in non-classical
set theories, and it turns out that they are complete as long as you allow your
set theory to vary (technically, by taking models in other elementary toposes).

Second, although in general we must allow the set theory to vary to get
completeness, for any given theory there is a “canonical geometric set theory”
that contains a generic model—any sequent that holds in the generic model is
provable. This set theory is really just made by taking the standard sets and
freely adjoining a model of the theory. It will be treated in more detail in the
next section, where we shall see how it can be used to understand the idea of
interpreting one theory in another.

Finally, you’d often like to think of a theory as being concretely embodied
in its class of models, but for an arbitrary geometric theory this can’t be done
naively because you don’t know a priori where the models have to be taken from.
I shall try to explain how topos theory answers this by providing a language
that’s designed to make it look as though we have a decent category of models.

4 Interpretations

One very restrictive idea of interpretation (of one theory, T, in another, T")
s a syntactic one: interpret the sorts, predicates and functions of T as sorts,



predicates and functions of T’, and prove that axioms of T become theorems in
T’. We shall be much more liberal, in effect by allowing syntactic interpretations
not just in T’ but more generally in theories (or rather theory presentations)
equivalent to it.

Equivalence of Presentations

We shall take it that two theories are equivalent if they have the same models
(essentially, i.e. up to isomorphism). By incompleteness, it is not enough just
to look at classical set-theoretic models; we should give equivalence arguments
that are constructively valid and so hold in the more general elementary toposes
where the models might be taken. Here are some ways of modifying a theory
to get an equivalent one:

¢ Add axioms that are consequences of the given ones.
¢ Replace axioms by logically equivalent ones as outlined above.
¢ For each function symbol f(x,...), replace it by a predicate P(z,z,...)

(which is to represent the graph of the function), and add axioms to say
that it is total and single-valued:

P(z,z,...) = P(Z,z,...) l_z,z’.,x,... z=2z
Also, eliminate f from formulas by replacing Q(f(=,...)) by Fu.(P(u,z,.. )A
Q(u)) (u new) and similar manoeuvres.
¢ Eliminate the sort structure by replacing sorts ¢ by unary predicates S, ()
over a single new sort representing their disjoint union:

Se(z) A S;(x) F,p false (c #7)
Fo VS (2)

(Note how this works when we start with no sorts at alll The first axiom
scheme has no instances, and the second becomes F, false. The # on the
turnstile stops this asserting out-and-out inconsistency; instead, the axiom
forces the single sort to represent the empty set.)

The sorting discipline shown by the arities of the symbols must also be
taken care of. For instance, if Q(w) had arity o, then there must be a new
axiom @Q(z) by Sy (). Functions must be replaced by their graphs, so that
if f(u), with arity ¢ — 7, is replaced by P(v,u) with arity 7 x o, then we
need axioms

P(z,2)
So(x)
P(z,z) N P(,x)

. Sr(2) A Se()
dz.P(z,x) (modified totality)

2zl x 2=z

)

T T T
8

27

¢ Add sorts that can be characterized uniquely up to isomorphism by geo-
metric axioms. For instance, consider products. If ¢ and 7 are existing



sorts, extend the presentation by a new sort m with functions fst : 7 — o,
snd : # — 7, and axioms

'_xza,yzr dz: T(fSt(Z) =x A snd(z) = y)
fst(z) = fst(z’) Asnd(z) =snd(2') . .0 z=2

In any model, the carrier for 7 is forced by the axioms to be the product of
the carriers for o and 7: so 7 is characterized uniquely up to isomorphism
by o and 7. Models for the new theory are essentially the same as those
for the old theory, the only difference being that the product o x 7 1s given
explicitly instead of implicitly.
Other constructions that can be characterized geometrically include co-
products (disjoint unions—even infinitary ones), equalizers and coequalizers
(slightly tricky! You need the infinitary digjunctions): in short, all colimits
and finite limits.

¢ Here is an interesting construction that can be characterized geometrically:
finite power sets. The finite power set FX is just the free semilattice over
X, and as it happens free things (for finitary algebraic theories) can always
be characterized geometrically. Here is a logical presentation.
Let o be a given sort. We add a new sort m and functions {-} : o — 7 (the
singleton embedding), § : # and U : # x # — m; also axioms

bsro SUTUU)=(SUT)UU

Fs Sup==s

Fsr SuUT=TuUS

Fs SusS=S9

Fs Visoder, . an.S = {1, .. a0}
{e1, ... ,em} C{yt, -, Un} l_a;ll .......... En /\;”:1\/;}:1%:%

where

{Z1,... 20} Zaa {x1}U---U{z,}
{} =aer 0
SQT =g SUT =T

Using this construction, we can see that universal quantification is geomet-
ric, provided that it is bounded over finite sets. If ¢ 1s a formula with free
variables in x, z : o is one of those variables, and S : Fo, then we can define

veeSozar\_ Iy u (S =1y md AN lui/a])

The knowledge that this is possible seems to be folklore, but I know of

nowhere where the formal details have been set out.

To show how different equivalent presentations may be, an example in [10]
has two of which one has infinitely many sorts and functions but no predicates,
while the other has one sort, no functions and infinitely many predicates (all
unary).



Giraud Frames

Given a theory T, one fundamental trick of categorical logic is to make a cate-
gory whose objects are the sorts and predicates, both primitive and derived: a
derived sort is one characterizable geometrically, and a derived predicate is just
a formula. These are all the things that in models get interpreted as sets, and
it is useful to think of them as sets parametrized by the model. For this rea-
son, the category obtained behaves sufficiently like the category of sets to have
many nice properties. In particular, by ignoring the parameter, the model, you
can generally reason validly as though the objects actually are sets, though of
course the reasoning has to be constructive. This category is really the “canon-
ical geometric set theory” for T referred to earlier; it includes of course the
ingredients explicitly presented in T, and these constitute the “generic model”.

If the theory is T, then this category is written S[T]: this means S (the
category of sets) extended by formally adjoining the ingredients of T (as inde-
terminate sets) subject to the axioms. (The notation comes from the notation
R[X] for a ring of polynomials.) The category is usually called the “classifying
topos” of T, but I shall offer my excuses for not doing so when I discuss toposes.
Instead I shall call it the “Giraud frame presented by” T.

In general, a Giraud frame is a category with all colimits and finite limits,
satisfying certain other conditions that (i) make the colimits and limits behave
like those in &, and (ii) ensure that it can be presented by a small (in the
set-theoretic sense) theory presentation. The conditions are exactly those set
out for Giraud’s theorem in Johnstone [4].

One aspect of Giraud frames being similar to & is that constructive set
theory can be interpreted in them, and we can talk about models of a theory T
in a Giraud frame—in fact, a model of T in S[T] is just an interpretation of T
in T’. (This is in accordance with what we originally said about interpretations,
because S[T'], by being made from all sorts geometrically derivable from T’
can be seen as including all the theories equivalent to T’.) Once that is given,
then we know—up to 1somorphism—how to interpret all the derived types, the
objects of S[T], and in fact we get a functor from S[T] to S[T']. Moreover, if we
have two models and a homomorphism between them, then the homomorphism
carrier functions for the primitive sorts extend uniquely to the derived sorts,
and categorically we get a natural transformation.

To summarize: if T is a theory and A is a Giraud frame, then

¢ Models of T in A4 are functors from S[T] to A that preserve the colimits and
finite limits. (We shall call such functors homomorphisms between Giraud
frames. More correctly, they are adjunctions f* - f, for which the left
adjoint f*, which anyway preserves colimits, also preserves finite limits.)

¢ Homomorphisms between models are natural transformations between the
Giraud frame homomorphisms. (Sorry to have the two different kinds of
homomorphisms so close together.)

Thus the constructive model theory has been turned into category theory.

Non-geometric Type Constructors

Since the finite power set constructor (which I'm calling ) is geometric, it’s
natural to ask whether the full power set P is. The answer is no: it cannot be



characterized by geometric axioms. The same also goes for exponentials Y%
(the set of functions from X to Y'). The way this is proved is by working in
the Giraud frame. As it happens, Giraud frames have P and exponentials (the
categories are elementary toposes, in fact), characterized uniquely but non-
geometrically. The functors that correspond to interpretations preserve all the
geometric constructions. It is possible with some work to see these categories
and functors concretely, and to find examples of interpretation functors that do
not preserve [P and exponentials: hence those constructions are not geometric.

There is a parallel here to the way that ¥V and — come in to a theory
at just one level. The predicate and function symbols can be considered to be
elements of power type or function type; but this is allowed just at the one
level: you can have sorts such as FFIFX for finite sets of finite sets of finite
subsets of X, but you can’t do this with [P.

It is natural to ask whether geometric logic is classical or intuitionistic in
nature, though on the face of it the question is meaningless because the prime
distinguishing feature—excluded middle—cannot be expressed in the absence
of negation. The non-geometric structure of Giraud frames casts some light on
this, because using it one can interpret the non-geometric logical connectives
and 1t turns out that excluded middle is not obeyed: hence geometric and
intuitionistic logic are intimately associated with one another. On the other
hand, the very fact that this extra structure is not preserved by Giraud frame
homomorphisms shows a sharp distinction between the two logics.

5 Toposes

I have been somewhat coy so far about the word “topos”. If you’re at all
familiar with the literature, you will know that it generally means “category
somewhat like §”. There are elementary toposes, and amongst those there
are some—in fact exactly what I have called Giraud frames—that are called
Grothendieck toposes; and S[T] is normally called the classifying topos of T.
I’'m going to use the word with a quite different meaning. It would be vain
to expect to overturn the established usage, but 1'd like to try to show you how
the word can convey some different intuitions. These are not new insights of my
own. Grothendieck invented the word topos as a back-formation from “topol-
ogy” (so toposes are “those things of which topology is the study”) and said that
a topos is a generalized topological space, and topos theorists understand these
intuitions perfectly well. However, they have not often expressed them clearly,
and I shall try to explain them by enforcing a distinction—between toposes
and Giraud frames—that is analogous to that between locales and frames.

Definition 2 A topos is the space of models (the classifying topos) of a geo-
melric theory. If T is a geomelric theory, then we write [T] for ils classifying
topos.

Definition 3 Let D and E be toposes. A geometric morphism (or map) from
D to E is a continuous transformation of points of D into points of E.

IMPORTANT! These definitions are mystical. They are intended to convey
not the mathematical formalization but the intuitive meaning, and if you try to
analyse them compositionally through detailed accounts of the terms “space”,
“model”, “geometric theory” and so on, you will get a false formalization.



¢ A “space” is more than an unstructured class of points, for we have already
seen that the models form a category. But there is also some mysterious
topological structure that we haven’t attempted to formalize, so a topos is
not just the category of models. One problem in the formalization is how
to account for this “topology”.

¢ Similary, “continuous transformation” is mysterious. Actually, even for
topological spaces it is quite mysterious.

¢ “Models” —where? It is not enough to consider models in &; they must be
allowed in arbitrary Giraud frames. The formalization must allow for this.

¢ “Geometric theory presentations” have sets of sorts, predicates, functions
and axioms, and sets of disjuncts in a disjunction: so what geometric the-
ories are possible depends on what your underlying set theory is. Each
elementary topos leads to its own theory of Grothendieck toposes. We shall
assume a fixed underlying category of “the classical sets” S.

Implementation 4 A topos D is equipped with a Giraud frame SD. If D
and E are toposes, then a geometric morphism f from D to E s equipped with
a Giraud frame homomorphism Sf (or f*) from SE to 8D (note the reversal
of direction!)

“Implementation” means that this is just a means to an end, a formal-
ization that gives us a mathematical handle on the prior intuitions. Toposes
could equally well be implemented as theory presentations—more easily, in fact,
though geometric morphisms are then harder to describe.

“Equipped with” has no technical substance—giving a topos is just the same
as giving a Giraud frame. But it is intended to dispel ideas that a topos “is” a
Giraud frame and “has” objects and morphisms that are those of the Giraud
frame. It decouples the language of toposes from that of Giraud frames, and
hides the implementational details behind the “S” prefix. Large parts of the
traditional language of toposes are designed to reinforce the “space of models”
intuitions, and my own opinion is that this can usefully be taken even further.
(See the remarks on notation at the end of this section.)

An example of this is in the apparently perverse direction of geometric
morphisms. Suppose f : D — F is a geometric morphism, with D = [T]. A
point of D is a model of T, in other words a Giraud frame homomorphism
from 8D to your favourite Giraud frame A (where you like to look for models).
Composing with §f turns i1t into a Giraud frame homomorphism from SE to
A, and so transforms points  of D into points f(z) of F, in accordance with
the conceptual definition and without regard to your choice of A. It is easily
checked that this extends to homomorphisms, giving a functor, but as for the
topological aspects of continuity we are really defining what continuity means
by our implementation.

Note also that if f and ¢ are two geometric morphisms from D to £, and
« : f — ¢ 1s a natural transformation, then each point z of D gives rise to a
homorphism ay : f(x) — g(2); and that this is natural with respect to x.

Summary: Suppose we have [T] |l o [T'] where T and T’ are geometric

theories, f and ¢ are geometric morphisms and « is a natural transformation.
Then the intuitions are



¢ [T] is the space of models for T. It has category structure using the ho-
momorphisms as arrows (this intuitive category is not S-like, and is quite

different from S[T]).

¢ fis a continuous transformation of models for T (points of [T]) into models
for T'. 1t is functorial with respect to homomorphisms, and so can be
considered a functor.

¢ « i1s a natural transformation from f to g considered as functors.

As a particularly important example, consider the empty theory * with no
vocabulary and no axioms. It has a unique model, and the Giraud frame S[*]
it presents is just 8. [¥] can be thought of as a one-point space. A geometric
morphism f : [¥*] — [T] intuitively just picks out a model of T; looking at it
another way, §f is a model of T in §. A natural transformation between two
geometric morphisms f and g is just a homomorphism. Up to equivalence,
there is only one geometric morphism from [T] to [*]: intuitively, every point
of [T] has to map to the unique point * of [].

For another example, consider the theories MON and SET of monoids and
sets. SET can be interpreted in MON in an obvious way—its only ingredient is a
single sort, which is interpreted as the single sort in MoN—and this corresponds
to a geometric morphism Forget : [MoN] — [SET]. On points, it works exactly
like the forgetful functor from the category of monoids to that of sets, taking a
monoid and returning its carrier, forgetting the multiplicative structure. It is
in fact intuitively helpful to think of the classifying toposes [MoN] and [SET]
as the categories of monoids and sets (in these algebraic examples there is no
extra “topological” structure), but this is clearly incompatible with any idea
that these toposes are their Giraud frames. (For instance, the Giraud frame
S[SET] that implements [SET] is most definitely not the Giraud frame S.) That
is why I took such care to separate out the notions.

It is also interesting to note that there is a geometric morphism Free :
[SET] — [MoN] that on points constructs the free monoid over a set. Free is
left adjoint to Forget just as one would expect from ordinary categories, though
the definition of adjunction here has to be the general one that applies within
2-categories.

The 2-category structure—the natural transformations between geometric
morphisms—is important, because it gives real support to our intuition that
the individual toposes have the structure of categories (and categories with
all filtered colimits, because filtered colimits of natural transformations always
exist).

A good example of this is part of Johnstone’s discussion [6] of bagtoposes. If
D is a topos, then the bagtopos Br (D) classifies set-indexed families of points
of D, and a homomorphism from (2;)ier to (y;)jes is a function o : I — J
together with, for each ¢, a homomorphism f; : z; — ya(;). If you carried
out this construction with a category instead of a topos, you’d be constructing
the free category-with-all-coproducts over D. Now a category D has an initial
object (nullary coproduct) iff the unique functor from D to 1 has a left adjoint,
and 1t has binary coproducts iff the diagonal functor from D to D x D has a
left adjoint. (These are easy to see as direct expressions of the definition of
coproduct.) Hence a category that has both these left adjoints has all finite
coproducts; and if it has filtered colimits too then it has all coproducts. So
we can reasonably define a topos D to “have all coproducts” iff these two left



adjoints both exist, and we just need the 2-categorical structure to be able to
define what adjoints are. It then turns out that the two adjoints are equivalent
to Br-algebra structure for D, so for toposes too we can say that Br (D) is the
free topos-with-all-coproducts over D.

Remarks on the Notation

Although the notation S[T] is standard, its separation into [T] and SD is not.
A happy accident of the notation is that & can stand not only for Sets, but
equally well for Sheaves. Locales can be understood as a particular (localic)
kind of topos, namely those classifying a propositional theory, and for a locale
D, 8D is the category of sheaves over D. This could be made more general.
If a topos D is a generalized space, then I propose that the objects of the
corresponding Giraud frame 8D should be called sheaves over D. Then, just
as in [9] a locale has points and opens but not elements, a topos would have
points and sheaves but not objects.

6 Three Examples in Computer Science

These are the three examples that I have worked on myself. I should say that
applications of elementary toposes—“S-like categories” —are more common; it
1s specifically the application of geometric logic and Grothendieck toposes that
is still quite new.

Geometric Theories and Databases

This is my paper [10]. The applications to database theory are very simplistic—
as presented, the theory cannot cope with relations between entities, nor with
database update to reflect change in the world (as opposed to improved knowl-
edge in the database). However, it sets out some aspects of the move from
propositional geometric logic in computer science—principally localic domain
theory—to predicate logic.

First, we have an observational account. The propositional case (Abram-
sky [1], Vickers [9]) corresponds to observing a single atomic world, though
the theories may often be constructed (e.g. for product domains) to allow for
components. In the predicate case the components are allowed for in the logic
itself: a theory then expresses ideas of (i) how we can “apprehend” components
of the world—observe their existence and lay hands on them—, and (ii) how
to observe equality between apprehended objects.

Second, the theory of the lower powerdomain is generalized to a “bagdo-
main” that naturally uses toposes instead of locales. (Johnstone [6] took this
much further and also showed how to generalize the upper powerdomain.)

Third, it gave an ilustration of the use of the well known categorical general-
ization of algebraicity, replacing 1deal completions of posets by ind-completions
of categories (i.e. free categories-with-all-filtered-colimits—see [5]).



Topical Categories of Domains

This work is still in preparation, though a preliminary account was given in
Vickers [11]. Tt exploits the fact that theories of “information systems” used to
present domains (there are various flavours) are geometric: so there are toposes
classifying information systems and hence in a sense classifying domains. Where
the sense falls down is in the morphisms—homomorphisms between information
systems are not at all the same as the continuous maps between the domains,
which must be represented by “approximable mappings”. However, the theory
of approximable mappings is also geometric, so there is a classifying topos for
them. Putting these together with the appropriate geometric morphisms gives
a “topical category”, an internal category in the category of toposes. This
means that starting from an ordinary category of domains, its unstructured
classes of objects (domains) and arrows (maps) have been made into toposes
and hence given categorical and topological structure.

The benefits of doing this are great. First of all, limits needed for finding
least fixpoints within domains, and for solving domain equations, exist for free
in the filtered colimits. When writing a domain equation D = F(D), it is
not possible to express F' without it having the necessary continuity and func-
toriality properties. Because the functoriality 1s with respect to information
system homomorphisms, not continuous maps, the problem of the contravari-
ant argument in the function space construction vanishes—it turns out that
for SFP, where function space 1s expressible, the information systems have so
much structure needing to be preserved that homomorphisms correspond to
embedding- projection pairs between domains.

It is hoped that this work will lead to an axiomatic account of domain
theory.

Geometric Logic as Specification Language

When a software system 1s specified, an important aspect of it is the way it
models the real world. For instance, for a credit account system the computer
should be aware that the world contains a class of people (and that people
have names, ages, and so on), a subclass comprising creditworthy people, and
a subclass of that comprising the account holders. In the format of logical
theories, we have a sort person and functions and predicates (confused with
classes)

¢ name: person — string
4 age: person — nuin
¢ cw, ah: Pperson

We also want an axiom ah(x) b, cw(z).

There is on the face of it no special reason why the logic should be geometric,
but the observational account gives grounds for believing that the restrictions of
geometric logic fit natural restrictions of the real world. For instance, compare
cw with ah. There are untold numbers of people in the world, of whom untold
numbers are creditworthy. The computer is certainly not expected to have a
list of them all; rather it needs to know that if you do come across a person
there are various procedures for establishing their creditworthiness—get a bank
reference, ask their parents; see if they have an honest face, and so on. On the



other hand, it really does need a complete list of all account holders, so ah is
fundamentally different from cw. In geometric logic this would be reflected by
making ah not a predicate of arity person (“type Pperson”), but a constant of
sort Fperson, and it is only when that is done that useful notions such as the
cardinality of ah can be considered. In observational terms, the computer must
know how to “apprehend” (i.e. in this case record in its database) individual
people and finite sets of them, but not the entire class. The work of Hodges [3]
on 17 lends support to this idea that a restricted logic is better for specification.

The equivalences inherent in geometric logic make functions equivalent to
their graphs (just as in set theory), and in the observational account functions
lose all their computational content and become retrospective checks that the
result 1s correct. This obviously looks like specification as opposed to implemen-
tation, and again supports the idea that geometric logic is good for specification
(but this time in a negative way, by saying that it is not good for expressing
dynamic computational features).

These considerations suggest a program of using geometric logic—or at least
a finitary approximation to it, including coherent logic and finite sets and uni-
versal quantification bounded over them—as a specification language. The idea
is to take existing specificational notation (such as Z) and give it a semantics
in geometric logic and toposes: slogan—schemas are geometric theories. The
expected benefits are

¢ Some existing specificational constructions will have to be dropped, but
if the program 1s soundly based they should be in some sense unrealistic
anyway (e.g. replacing P by TF).

¢ There is a very precise geometricity criterion to decide when a proposed
new construction is legitimate.

¢ A “categorical specification theory” (or perhaps “categorical schema calcu-
lus”) exists in the 2-category of toposes, the category structure being the
key to modularization. The reason for this is that the aim of a module is to
hide internal workings behind an interface specification of how the module
is to relate to all other possible modules, and this is just what a universal
property such as that for product or pullback does. It is category struc-
ture that makes this possible, by describing through the morphisms how
the objects relate to each other. Working in the category of toposes, rather
than the opposite category of Giraud frames, aids this through the spatial
intuitions: for instance, a product topos 1s a “space of pairs”.
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